Duke University Dissertation Template

Total Page:16

File Type:pdf, Size:1020Kb

Duke University Dissertation Template Regulation of HIF-1α during Hypoxia by DAP5-Induced Translation of PHD2 by Jeffrey David Bryant Department of Molecular Genetics and Microbiology Duke University Date:_______________________ Approved: ___________________________ Matthias Gromeier, Supervisor ___________________________ Jack Keene ___________________________ Christopher Nicchitta ___________________________ Jen-Tsan Ashley Chi ___________________________ Christopher Counter Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Molecular Genetics and Microbiology in the Graduate School of Duke University 2018 ABSTRACT Regulation of HIF-1α during Hypoxia by DAP5-Induced Translation of PHD2 by Jeffrey David Bryant Department of Molecular Genetics and Microbiology Duke University Date:_______________________ Approved: ___________________________ Matthias Gromeier, Supervisor ___________________________ Jack Keene ___________________________ Christopher Nicchitta ___________________________ Jen-Tsan Ashley Chi ___________________________ Christopher Counter An abstract of a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Molecular Genetics and Microbiology in the Graduate School of Duke University 2018 Copyright by Jeffrey David Bryant 2018 Abstract Death associated protein 5 (DAP5) is an atypical isoform of the translation initiation scaffold eukaryotic initiation factors 4GI and II (eIF4GI/II), which recruit mRNAs to ribosomes in mammals. Unlike eIF4GI/II, DAP5 binds eIF2β, a subunit of the eIF2 complex that delivers methionyl-tRNA to ribosomes. Despite extensive work describing eIF4GI, an understanding of DAP5 activation is yet to be described. Here I describe our discovery that DAP5:eIF2β binding is regulated by DAP5 phosphorylation and can be stimulated by specific stimuli including protein kinase C PKC-Raf-ERK1/2 signals, mitosis and hypoxia, wherein DAP5:eIF2β binding determines DAP5’s influence on global and template-specific translation. However, DAP5 depletion causes an unanticipated surge of hypoxia-inducible factor 1α (HIF-1α), the transcription factor and master switch of the hypoxia response. The hypoxia response is tempered through HIF-1α hydroxylation by the oxygen-sensing prolyl hydroxylase-domain protein 2 (PHD2), and subsequent ubiquitination and degradation. Furthermore, we found that DAP5 regulates HIF-1α abundance and Akt signaling through DAP5:eIF2β- dependent translation of PHD2. DAP5:eIF2-induced PHD2 translation occurs during hypoxia-associated protein synthesis repression, indicating a role as a safeguard to reverse HIF-1α accumulation and curb the hypoxic response implying that DAP5:eIF2β binding may describe a conserved mechanism for selective stress induced translation. iv Dedication This is dedicated to the multitude of people who have supported me, offered me counsel, and/or put up with my frustrations over this long process. v Contents Abstract ......................................................................................................................................... iv List of Tables .................................................................................................................................. x List of Figures ............................................................................................................................... xi Acknowledgements .................................................................................................................. xiii 1. Introduction ............................................................................................................................... 1 1.1 Protein Synthesis in Eukaryotes ..................................................................................... 1 1.2 Initiation of Translation ................................................................................................... 2 1.2.1 Mechanisms of Translation Initiation ....................................................................... 2 1.2.1.1 Cap-dependent Translation ................................................................................ 3 1.2.1.2 Cap-independent Translation ............................................................................ 6 1.2.2 Function and Regulation of eIF4GI and its Homologues ...................................... 7 1.2.2.1 eIF4GI/II ................................................................................................................. 7 1.2.2.2 DAP5 ...................................................................................................................... 9 1.2.3 Function and Regulation of eIF2 ............................................................................. 11 1.2.3.1 Role of eIF2 during translation initiation ....................................................... 11 1.2.3.2 Regulatory eIF2 phosphorylation .................................................................... 14 1.3 Regulation of Translation by Cell Signaling and during Mitosis ............................ 15 1.3.1 MAPK Signaling ........................................................................................................ 16 1.3.1.1 ERK1/2 MAPKs .................................................................................................. 17 1.3.1.2 p38 and JNK MAPKs ......................................................................................... 19 vi 1.3.2 Regulation of Translation during Mitosis .............................................................. 20 1.3.2.1 CDK1 signaling .................................................................................................. 20 1.3.2.2 Protein synthesis during mitosis ..................................................................... 22 1.4 The Cellular Hypoxia Response ................................................................................... 23 1.4.1 The HIF-1 Transcription Factor ............................................................................... 23 1.4.1.1 HIF-1α activity ................................................................................................... 24 1.4.1.2 Regulation of HIF-1α ......................................................................................... 26 1.4.1.3 pVHL ................................................................................................................... 27 1.4.1.4 PHD2 .................................................................................................................... 27 1.4.2 Protein Synthesis in Hypoxia .................................................................................. 28 1.5 Introduction to the Dissertation Chapters .................................................................. 29 2. Materials and Methods........................................................................................................... 32 2.1 Cell lines, Inhibitors, and Stimulants ........................................................................... 32 2.2 Expression Plasmids and Stable Cell lines .................................................................. 33 2.3 Antibodies, Immunoprecipitation, Immunoblots, siRNA Transfection, and RT- qPCR ....................................................................................................................................... 34 2.4 In vitro Phosphorylation Assays and Phospho-proteomic Analysis ...................... 35 2.5 Polysome Profiling ......................................................................................................... 36 2.6 Hypoxia Treatment ........................................................................................................ 37 2.7 Statistics ........................................................................................................................... 38 3. Results ....................................................................................................................................... 39 3.1 PKC-Raf-ERK1/2 Signaling Induced DAP5:eIF2β Binding impacts Global Translation ............................................................................................................................. 39 vii 3.1.1 Introduction................................................................................................................ 39 3.1.2 Results ......................................................................................................................... 41 3.1.2.1 DAP5:eIF2β binding is induced by PKC-Raf-ERK1/2 signaling ................. 41 3.1.2.2 DAP5 depletion inhibits TPA-induced global translation ........................... 44 3.1.2.3 Loss of DAP5:eIF2β association results in decreased global translation ... 46 3.1.3 Discussion ................................................................................................................... 48 3.2 Phosphorylation of DAP5 regulates DAP5:eIF2β binding ....................................... 49 3.2.1 Introduction................................................................................................................ 49 3.2.2 Results ......................................................................................................................... 50 3.2.2.1 DAP5 is phosphorylated following PKC-Raf-ERK1/2 Signaling ................ 50 3.2.2.2 DAP5(S902) is phosphorylated by CK-2α ...................................................... 52 3.2.2.3 Phosphorylation
Recommended publications
  • Extensive Translation of Circular Rnas Driven by N6-Methyladenosine
    Cell Research (2017) 27:626-641. ORIGINAL ARTICLE www.nature.com/cr Extensive translation of circular RNAs driven by N6-methyladenosine Yun Yang1, 2, 3, 4, *, Xiaojuan Fan2, *, Miaowei Mao4, 5, *, Xiaowei Song2, 4, Ping Wu6, 7, Yang Zhang8, Yongfeng Jin1, Yi Yang5, Ling-Ling Chen8, Yang Wang9, Catherine CL Wong6, 7, Xinshu Xiao3, Zefeng Wang2, 4 1Institute of Biochemistry, College of Life Sciences, Zhejiang University at Zijingang, Zhejiang, Hangzhou, Zhejiang 310058, Chi- na; 2CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 3Department of Integrative Biology and Physiology and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; 4Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; 5Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Sci- ence and Technology, Shanghai, China; 6National Center for Protein Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 7Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China; 8Institute of Biochemistry and Cell Biology, Shanghai Institute for Biolog- ical Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 9Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from cir- cRNAs in human cells.
    [Show full text]
  • Composition of Herpesvirus Ribonucleoprotein Complexes †
    Abstract Composition of Herpesvirus Ribonucleoprotein Complexes † Eric S. Pringle 1,2,* and Craig McCormick 1,2 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 2 Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected] † Presented at Viruses 2020—Novel Concepts in Virology, Barcelona, Spain, 5–7 February 2020. Published: 4 July 2020 Abstract: Herpesvirus genomes are decoded by host RNA polymerase enzymes, generating messenger ribonucleotides (mRNA) that are post-transcriptionally modified and exported to the cytoplasm through the combined work of host and viral factors. These viral mRNA bear 5′-m7GTP caps and poly(A) tails that should permit the assembly of canonical host eIF4F cap-binding complexes to initiate protein synthesis. However, the precise mechanisms of translation initiation remain to be investigated for Kaposi’s sarcoma-associated herpesvirus (KSHV) and other herpesviruses. During KSHV lytic replication in lymphoid cells, the activation of caspases leads to the cleavage of eIF4G and depletion of eIF4F. Translating mRNPs depleted of eIF4F retain viral mRNA, suggesting that non-eIF4F translation initiation is sufficient to support viral protein synthesis. To identify proteins required to support viral protein synthesis, we isolated and characterized actively translating messenger ribonucleoprotein (mRNP) complexes by ultracentrifugation and sucrose-gradient fractionation followed by quantitative mass spectrometry. The abundance of host translation initiation factors available to initiate viral protein synthesis were comparable between cells undergoing KSHV lytic or latent replication. The translation initiation factors eIF4E2, NCBP1, eIF4G2, and eIF3d were detected in association with actively translating mRNP complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production.
    [Show full text]
  • Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
    www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full
    [Show full text]
  • EIF4G2 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science EIF4G2 Rabbit pAb Catalog No.: A2897 Basic Information Background Catalog No. Translation initiation is mediated by specific recognition of the cap structure by A2897 eukaryotic translation initiation factor 4F (eIF4F), which is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. The protein encoded by this gene Observed MW shares similarity with the C-terminal region of eIF4G that contains the binding sites for 102kDa eIF4A and eIF3; eIF4G, in addition, contains a binding site for eIF4E at the N-terminus. Unlike eIF4G, which supports cap-dependent and independent translation, this gene Calculated MW product functions as a general repressor of translation by forming translationally 98kDa/102kDa inactive complexes. In vitro and in vivo studies indicate that translation of this mRNA initiates exclusively at a non-AUG (GUG) codon. Alternatively spliced transcript variants Category encoding different isoforms of this gene have been described. Primary antibody Applications WB, IHC, IF, IP Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:1000 Gene ID Swiss Prot 1982 P78344 IHC 1:100 - 1:200 Immunogen 1:50 - 1:200 IF A synthetic peptide corresponding to a sequence within amino acids 750-850 of human EIF4G2 (NP_001409.3). IP 1:50 - 1:200 Synonyms EIF4G2;AAG1;DAP5;NAT1;P97 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using EIF4G2 antibody (A2897) at 1:400 dilution.
    [Show full text]
  • Robust Heat Shock Induces Eif2α-Phosphorylation
    2078 Research Article Robust heat shock induces eIF2α-phosphorylation- independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae Tomás Grousl1, Pavel Ivanov1,*, Ivana Frydlová1, Pavla Vasicová1, Filip Janda1, Jana Vojtová1, Katerina Malínská1, Ivana Malcová1, Lenka Nováková1, Dana Janosková1, Leos Valásek2 and Jirí Hasek1,‡ 1Laboratory of Cell Reproduction, Institute of Microbiology of the AS CR, v.v.i., Prague, Czech Republic 2Laboratory of Regulation of Gene Expression, Institute of Microbiology of the AS CR, v.v.i., Prague, Czech Republic *Present address: A.N. Belozersky Institute of Physico-Chemical Biology MSU, Moscow, Russia ‡Author for correspondence (e-mail: [email protected]) Accepted 18 March 2009 Journal of Cell Science 122, 2078-2088 Published by The Company of Biologists 2009 doi:10.1242/jcs.045104 Summary Environmental stresses inducing translation arrest are markers also colocalized with eIF3a. Microscopic analyses of accompanied by the deposition of translational components into the edc3Δlsm4ΔC mutant demonstrated that different stress granules (SGs) serving as mRNA triage sites. It has scaffolding proteins are required to induce SGs upon robust recently been reported that, in Saccharomyces cerevisiae, heat shock as opposed to glucose deprivation. Even though formation of SGs occurs as a result of a prolonged glucose eIF2α became phosphorylated under these stress conditions, the starvation. However, these SGs did not contain eIF3, one of decrease in polysomes and formation of SGs occurred hallmarks of mammalian SGs. We have analyzed the effect of independently of phosphorylation of eIF2α. We conclude that robust heat shock on distribution of eIF3a/Tif32p/Rpg1p and under specific stress conditions, such as robust heat shock, yeast showed that it results in the formation of eIF3a accumulations SGs do contain eIF3 and 40S ribosomes and utilize alternative containing other eIF3 subunits, known yeast SG components routes for their assembly.
    [Show full text]
  • Early Alterations of RNA Metabolism and Splicing from Adult Corticospinal Neurons In
    bioRxiv preprint doi: https://doi.org/10.1101/667733; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Early alterations of RNA metabolism and splicing from adult corticospinal neurons in 2 an ALS mouse model 3 4 Christine Marques1,2, Mathieu Fischer1,3, Céline Keime4, Thibaut Burg1, Aurore Brunet1, 5 Jelena Scekic-Zahirovic1 & Caroline Rouaux1* 6 7 8 9 1Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, 10 Faculté de Médecine, Université de Strasbourg, Strasbourg, France. 11 2Current address: Department of Neurobiology, Harvard Medical School, Boston, MA, USA; 12 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. 13 3Current address: Department of Paediatrics, John Radcliffe Hospital, University of Oxford, 14 Oxford, UK. 15 4Inserm UMR_S 1258, CRNS UMR_S 7104, Université de Strasbourg, IGBMC, Strasbourg, 16 France. 17 18 *Correspondence should be addressed to: C.R. ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/667733; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease clinically defined as the combined degeneration of corticospinal and corticobulbar neurons (CSN), and bulbar and spinal motor neurons (MN). A growing body of evidence points to the motor cortex, where CSN are located, as the potential initiation site of ALS. However, little is known about the spatiotemporal dynamics of CSN degeneration and the molecular pathways involved.
    [Show full text]
  • Translational Control by TOR and TAP42 Through Dephosphorylation of Eif2␣ Kinase GCN2
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Translational control by TOR and TAP42 through dephosphorylation of eIF2␣ kinase GCN2 Vera A. Cherkasova and Alan G. Hinnebusch1 Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Yeast protein kinase GCN2 stimulates the translation of transcriptional activator GCN4 by phosphorylating eIF2␣ in response to amino acid starvation. Kinase activation requires binding of uncharged tRNA to a histidyl tRNA synthetase-related domain in GCN2. Phosphorylation of serine 577 (Ser 577) in GCN2 by another kinase in vivo inhibits GCN2 function in rich medium by reducing tRNA binding activity. We show that rapamycin stimulates eIF2␣ phosphorylation by GCN2, with attendant induction of GCN4 translation, while reducing Ser 577 phosphorylation in nonstarved cells. The alanine 577 (Ala 577) mutation in GCN2 (S577A) dampened the effects of rapamycin on eIF2␣ phosphorylation and GCN4 translation, suggesting that GCN2 activation by rapamycin involves Ser 577 dephosphorylation. Rapamycin regulates the phosphorylation of Ser 577 and eIF2␣ by inhibiting the TOR pathway. Rapamycin-induced dephosphorylation of Ser 577, eIF2␣ phosphorylation, and induction of GCN4 all involve TAP42, a regulator of type 2A-related protein phosphatases. Our results add a new dimension to the regulation of protein synthesis by TOR proteins and demonstrate cross-talk between two major pathways for nutrient control of gene expression in yeast. [Keywords: TOR; TAP42; translational control; eIF2␣ kinase; GCN2] Received December 20, 2002; revised version accepted February 5, 2003. General amino acid control (GAAC) is a major pathway (uORFs) in the GCN4 mRNA leader serves to repress for regulating amino acid biosynthesis in the yeast Sac- GCN4 translation under nonstarvation conditions and charomyces cerevisiae.
    [Show full text]
  • GCN2 Antibody Rabbit Polyclonal Antibody Catalog # ALS12046
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 GCN2 Antibody Rabbit Polyclonal Antibody Catalog # ALS12046 Specification GCN2 Antibody - Product Information Application IHC Primary Accession Q9P2K8 Reactivity Human Host Rabbit Clonality Polyclonal Calculated MW 187kDa KDa GCN2 Antibody - Additional Information Gene ID 440275 Other Names Eukaryotic translation initiation factor Anti-EIF2AK4 / GCN2 antibody IHC of human 2-alpha kinase 4, 2.7.11.1, GCN2-like brain, cortex. protein, EIF2AK4, GCN2, KIAA1338 Target/Specificity GCN2 Antibody - Background Recombinant partial protein corresponding to a. a.120-330 of human GCN2. Can phosphorylate the alpha subunit of EIF2 and may mediate translational control. Reconstitution & Storage Aliquot and store at -20°C. Minimize GCN2 Antibody - References freezing and thawing. Zody M.C.,et al.Nature 440:671-675(2006). Precautions Nagase T.,et al.DNA Res. 7:65-73(2000). GCN2 Antibody is for research use only and Bechtel S.,et al.BMC Genomics not for use in diagnostic or therapeutic 8:399-399(2007). procedures. Ota T.,et al.Nat. Genet. 36:40-45(2004). Berlanga J.J.,et al.Eur. J. Biochem. 265:754-762(1999). GCN2 Antibody - Protein Information Name EIF2AK4 (HGNC:19687) Synonyms GCN2, KIAA1338 Function Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:<a href="h ttp://www.uniprot.org/citations/25329545" target="_blank">25329545</a>). Plays a Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity).
    [Show full text]
  • GCN2 Sustains Mtorc1 Suppression Upon Amino Acid Deprivation by Inducing Sestrin2
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION proteins (4EBPs) to promote 5′ cap-dependent translation GCN2 sustains mTORC1 (Hara et al. 1998; Wang et al. 1998). In addition, mTORC1 suppression upon amino acid phosphorylates and inactivates unc-51-like autophagy-ac- tivating kinase 1 (ULK1), the initiating kinase of autoph- deprivation by inducing Sestrin2 agy, to inhibit autophagic protein degradation (Kim et al. 2011; Shang et al. 2011). Through these two mechanisms, Jiangbin Ye,1 Wilhelm Palm,1 Min Peng,2 1 2 2 mTORC1 enhances protein anabolism under amino acid- Bryan King, Tullia Lindsten, Ming O. Li, replete conditions. However, the mechanisms by which Constantinos Koumenis,3 and Craig B. Thompson1 mTORC1 senses amino acids remain elusive. When ami- 1 2 no acids are present, the Rag family of GTPases plays an Cancer Biology and Genetics Program, Immunology Program, essential role in recruiting mTORC1 to the surface of Memorial Sloan Kettering Cancer Center, New York, New York the lysosome (Kim et al. 2008; Sancak et al. 2008, 2010), 3 10065, USA; Department of Radiation Oncology, Perelman where another small GTPase, Rheb, stimulates the kinase School of Medicine at the University of Pennsylvania, activity of mTORC1. Several recent reports demonstrate Philadelphia, Pennsylvania 19104, USA that a family of stress response proteins, Sestrins, inhibit Mammalian cells possess two amino acid-sensing kinas- the Rag complex to disrupt mTORC1 localization to the es: general control nonderepressible 2 (GCN2) and mech- lysosome (Chantranupong et al. 2014; Parmigiani et al. 2014; Peng et al.
    [Show full text]
  • Relevance of Translation Initiation in Diffuse Glioma Biology and Its
    cells Review Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential Digregorio Marina 1, Lombard Arnaud 1,2, Lumapat Paul Noel 1, Scholtes Felix 1,2, Rogister Bernard 1,3 and Coppieters Natacha 1,* 1 Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; [email protected] (D.M.); [email protected] (L.A.); [email protected] (L.P.N.); [email protected] (S.F.); [email protected] (R.B.) 2 Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium 3 Department of Neurology, CHU of Liège, 4000 Liège, Belgium * Correspondence: [email protected] Received: 18 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation.
    [Show full text]
  • Activation of GCN2 Kinase by Ribosome Stalling Links Translation Elongation with Translation Initiation
    RESEARCH ARTICLE Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation Ryuta Ishimura1†, Gabor Nagy1†, Ivan Dotu2, Jeffrey H Chuang3,4, Susan L Ackerman1,5,6* 1Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States; 2Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; 3The Jackson Laboratory for Genomic Medicine, Farmington, United States; 4Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, United States; 5Department of Cell and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States; 6Section of Neurobiology, University of California, La Jolla, United States Abstract Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a Arg tRNA UCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2a (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated *For correspondence: stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the [email protected] eIF2a kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that nmf205-/- † the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2 mice, underscoring the These authors contributed equally to this work importance of cellular and stress context on the outcome of activation of this pathway.
    [Show full text]
  • Proteomic Analysis of Mtor Inhibition-Mediated Phosphorylation
    Protein Cell DOI 10.1007/s13238-016-0279-0 Protein & Cell LETTER Proteomic analysis of mTOR inhibition- mediated phosphorylation changes in ribosomal proteins and eukaryotic translation initiation factors Dear Editor, analysis based on the SILAC (stable isotope labeling by amino acids in cell culture) method was carried out to analyze affinity The mammalian target of rapamycin (mTOR), as a critical enriched phosphoproteins from the untreated and rapamycin- Cell energy sensor and cell-growth regulator, controls protein treated 293T cells. The experimental workflow was displayed & 12 14 synthesis, autophagy and many important cellular processes in Fig. 1A. Briefly, cells grown in light medium ( C6 N2-Lysine 12 0 0 through forming functional distinct complexes, mTORC1 and and C6-Arginine, K R ) were treated with 200 nmol/L rapa- 13 15 mTORC2. mTORC1 that is sensitive to rapamycin, regulates mycin for 2 h, while cells grown in heavy medium ( C6 N2- 13 8 6 cell growth and protein synthesis, while mTORC2 that is Lysine and C6-Arginine, K R ) were untreated. Sucrose insensitive to rapamycin, regulates cellular metabolism and cushion centrifugation was used to isolate ribosomes. Pro- Protein the cytoskeletal organization (Gingras et al., 2001; Hay and teins extracted from the whole cell lysate or the isolated ribo- Sonenberg, 2004). Translation initiation is the rate-limiting some fraction of the untreated and rapamycin-treated cells step in protein synthesis, which proceeds through a multi- were mixed and trypsin digested. Then phosphopeptides step process that can be divided into three major steps. First, were enriched with TiO2 beads and analyzed by nano-LC-MS/ eukaryotic translation initiation factor 2 (eIF2) binds with GTP MS.
    [Show full text]