Perfect Matchings: Modified Aztec Diamonds, Covering Graphs Andn-Matchings

Total Page:16

File Type:pdf, Size:1020Kb

Perfect Matchings: Modified Aztec Diamonds, Covering Graphs Andn-Matchings University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1997 Perfect matchings: Modified Aztec diamonds, covering graphs andn-matchings Adriana Badauta Cransac University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Cransac, Adriana Badauta, "Perfect matchings: Modified Aztec diamonds, covering graphs andn- matchings" (1997). Doctoral Dissertations. 1969. https://scholars.unh.edu/dissertation/1969 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PERFECT MATCHINGS: MODIFIED AZTEC DIAMONDS, COVERING GRAPHS AND n-MATCHINGS BY Adriana Badauta Cransac B.S., University of Bucharest (1987) M.S., University of Bucharest (1988) DISSERTATION Submitted to the University of New Hampshire in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics September 1997 I Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9807555 Copyright 1997 by Cransac, Adriana Badauta All rights reserved. UMI Microform 9807555 Copyright 1998, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ALL RIGHTS RESERVED ©1997 Adriana Badauta Cransac ^ ____________ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation has been examined and approved. Director, David V. Feldman Associate Professor of Mathematics Donovan H. Van Osdol Professor of Mathematics Kenneth I. Appel y J Professor of Mathematics Eric A. Nordgren Professor of Mathematics Edward K. Hinson Associate Professor of Mathematics J-frn > , m Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Please Note Page(s) missing in number only; text follows. Filmed as received. iv UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEDICATION To my parents and my grandmother, to Didier, to aH my mathematics teachers. v I __ .. _____ ___________ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Please Note Page(s) missing in number only; text follows. Filmed as received. vi UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS I want to show my appreciation to all the people that offered their help, moral support and friendship during my studies at UNH. I would like to express my warm gratitude to Professor David Feldman, for being an excellent advisor and teacher, for his constructive help during this research and also for being available, patient and friendly. Many thanks to the Committee members for proofreading my thesis. I wish to thank Professor Ken Appel for his concern, advice and encouragement during all my stay at UNH I am obliged to Professor Edward Hinson, not only as a teacher and member of the Committee, but also as the person who solved the ’’administrative” problems caused by my absence. Thanks to Professor Don van Osdol for his most instructive and enjoyable reading classes. Many, many thanks to Ioana and Bogdan Mihaila, for being ready to help at any time and for all the good advice (including the choice of University). To all my family in Philadelphia, thank you from my heart. My love goes to my parents who, through many years of care prepared me for this work, and kept supporting me even from fax away. Finally, to my husband Didier, for his patience, permanent availability and love. May we “discover new worlds... ” together. v ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS DEDICATION ................................................................................................................ v ACKNOWLEDGMENTS............................................................................................ vii LIST OF TABLES ...................................................................................................... x LIST OF FIGURES ...................................................................................................... xiii ABSTRACT ................................................................................................................... xiv CHAPTER PAGE INTRODUCTION ......................................................................................................... I 0.1 Graph Theory ........................................................................................... 2 0.2 Topology and Topological Graph Theory ............................................ 7 I. STATISTICS FOR RANDOM MATCHINGS OF MODIFIED AZTEC DIAMONDS ......................................................................................................... 9 1.1 The Initial Problem ................................................................................. 9 1.2 The Dual Problem .................................................................................... 16 1.3 Modifications of the Problem ................................................................ 21 1.4 Cylindrical Aztec Diamonds .................................................................... 28 1.5 Mobius Aztec Diamonds .......................................................................... 31 1.6 Klein Aztec Diamonds .............................................................................. 36 1.7 Projective Aztec Diamonds .................................................................... 41 1.8 Torus Aztec Diamonds .............................................................................. 45 viii f Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1.9 Conclusions .................................................................................................. 48 II. MATCHINGS AND COVERING GRAPHS ................................................... 51 2.1 Perfect Matchings, 2-Matchings and n-M atchings ............................. 51 2.2 Structure and Decomposition of Non-Ramified Perfect n-Matchings 55 2.3 Covering Graphs and Perfect n-Matchings ........................................... 58 2.3.1 Branched Covering G r a p h s ........................................................ 59 2.3.2 Permutation Derived G raphs ..................................................... 61 2.4 Perfect 2-Matchings ................................................................................. 66 2.4.1 Matchings of G2 ............................................................................ 67 2.4.2 A Mean Value Theorem for Perfect Matchings of 2-Covering Graphs ......................................................................... 68 2.5 Conclusions and C o m m en ts ..................................................................... 73 APPENDIX A ................................................................................................................ 81 APPENDIX B ................................................................................................................... 100 LIST OF REFERENCES .............................................................................................. 112 ix I _ ______ __ ______ Reproduced with permission
Recommended publications
  • From Tiling Problems to Random Matrices
    From tiling problems to random matrices Tom Claeys Brussels Summer School of Mathematics September 4, 2018 Outline Tiling problems 1. Some fun to start with 2. Large random tilings Non-intersecting random walks and Brownian bridges 1. From hexagon tilings to non­intersecting paths 2. From non­intersecting paths to Brownian bridges Random matrices 1. From non­intersecting Brownian bridges to random matrix eigenvalues 2. Asymptotic properties of random matrix eigenvalues Tiling problems Given a two­dimensional domain and a collection of (shapes of) tiles, we try to cover the domain with the tiles. Tiling problems Rules ✓ Allowed: translations of tiles ✓ Forbidden: rotations, intersections, cutting tiles, crossing the border of the domain Questions ✓ Solvability? Can the domain be covered with tiles? ✓ What is the number of possible tilings? ✓ Do different tilings share certain properties? Tiling problems A possible tiling Tiling problems A possible tiling Tiling problems A possible tiling Tiling problems A possible tiling Tiling problems A possible tiling Tiling problems A possible tiling Tilings of a 2 × n rectangle We speak of a domino tiling if the tiles or 1 × 2 and 2 × 1 rectangles. First training example: tiling of a rectangle of height 2 Tilings of a 2 × n rectangle Number of tilings 1 2 3 5 8 13 Number of tilings of a 2 × n rectangle The Fibonacci sequence! Checkerboard tilings Second training example: tiling a square of size 8 × 8 Checkerboard tilings One tiling of the checkerboard Checkerboard tilings And another one ... Number of tilings of a checkerboard? ✓ 12 988 816 Tilings of the mutilated checkerboard Third training example: two boxes removed Number of tilings of the mutilated checkerboard? Tilings of the mutilated checkerboard Third training example: two boxes removed Number of tilings of the mutilated checkerboard? ✓ None ! Tilings of the mutilated checkerboard Third training example: two boxes removed Theorem (GOMORY 1973) If we remove a white and a black box from the checkerboard, there exists always a tiling.
    [Show full text]
  • Coverings of Cubic Graphs and 3-Edge Colorability
    Discussiones Mathematicae Graph Theory 41 (2021) 311–334 doi:10.7151/dmgt.2194 COVERINGS OF CUBIC GRAPHS AND 3-EDGE COLORABILITY Leonid Plachta AGH University of Science and Technology Krak´ow, Poland e-mail: [email protected] Abstract Let h: G˜ → G be a finite covering of 2-connected cubic (multi)graphs where G is 3-edge uncolorable. In this paper, we describe conditions under which G˜ is 3-edge uncolorable. As particular cases, we have constructed regular and irregular 5-fold coverings f : G˜ → G of uncolorable cyclically 4-edge connected cubic graphs and an irregular 5-fold covering g : H˜ → H of uncolorable cyclically 6-edge connected cubic graphs. In [13], Steffen introduced the resistance of a subcubic graph, a char- acteristic that measures how far is this graph from being 3-edge colorable. In this paper, we also study the relation between the resistance of the base cubic graph and the covering cubic graph. Keywords: uncolorable cubic graph, covering of graphs, voltage permuta- tion graph, resistance, nowhere-zero 4-flow. 2010 Mathematics Subject Classification: 05C15, 05C10. 1. Introduction 1.1. Motivation and statement of results We will consider proper edge colorings of G. Let ∆(G) be the maximum degree of vertices in a graph G. Denote by χ′(G) the minimum number of colors needed for (proper) edge coloring of G and call it the chromatic index of G. Recall that according to Vizing’s theorem (see [14]), either χ′(G) = ∆(G), or χ′(G) = ∆(G)+1. In this paper, we shall consider only subcubic graphs i.e., graphs G such that ∆(G) ≤ 3.
    [Show full text]
  • Asymptotics of Multivariate Sequences, Part III: Quadratic Points
    Asymptotics of multivariate sequences, part III: quadratic points Yuliy Baryshnikov 1 Robin Pemantle 2,3 ABSTRACT: We consider a number of combinatorial problems in which rational generating func- tions may be obtained, whose denominators have factors with certain singularities. Specifically, there exist points near which one of the factors is asymptotic to a nondegenerate quadratic. We compute the asymptotics of the coefficients of such a generating function. The computation requires some topological deformations as well as Fourier-Laplace transforms of generalized functions. We apply the results of the theory to specific combinatorial problems, such as Aztec diamond tilings, cube groves, and multi-set permutations. Keywords: generalized function, Fourier transform, Fourier-Laplace, lacuna, multivariate generating function, hyperbolic polynomial, amoeba, Aztec diamond, quantum random walk, random tiling, cube grove. Subject classification: Primary: 05A16 ; Secondary: 83B20, 35L99. 1Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974-0636, [email protected] labs.com 2Research supported in part by National Science Foundation grant # DMS 0603821 3University of Pennsylvania, Department of Mathematics, 209 S. 33rd Street, Philadelphia, PA 19104 USA, pe- [email protected] Contents 1 Introduction 1 1.1 Background and motivation . 1 1.2 Methods and organization . 4 1.3 Comparison with other techniques . 7 2 Notation and preliminaries 8 2.1 The Log map and amoebas . 9 2.2 Dual cones, tangent cones and normal cones . 10 2.3 Hyperbolicity for homogeneous polynomials . 11 2.4 Hyperbolicity and semi-continuity for log-Laurent polynomials on the amoeba boundary 14 2.5 Critical points . 20 2.6 Quadratic forms and their duals .
    [Show full text]
  • Not Every Bipartite Double Cover Is Canonical
    Volume 82 BULLETIN of the February 2018 INSTITUTE of COMBINATORICS and its APPLICATIONS Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung Boca Raton, FL, U.S.A. ISSN1182-1278 BULLETIN OF THE ICA Volume 82 (2018), Pages 51{55 Not every bipartite double cover is canonical Tomaˇz Pisanski University of Primorska, FAMNIT, Koper, Slovenia and IMFM, Ljubljana, Slovenia. [email protected]. Abstract: It is explained why the term bipartite double cover should not be used to designate canonical double cover alias Kronecker cover of graphs. Keywords: Kronecker cover, canonical double cover, bipartite double cover, covering graphs. Math. Subj. Class. (2010): 05C76, 05C10. It is not uncommon to use different terminology or notation for the same mathematical concept. There are several reasons for such a phenomenon. Authors independently discover the same object and have to name it. It is• quite natural that they choose different names. Sometimes the same concept appears in different mathematical schools or in• different disciplines. By using particular terminology in a given context makes understanding of such a concept much easier. Sometimes original terminology is not well-chosen, not intuitive and it is difficult• to relate the name of the object to its meaning. A name that is more appropriate for a given concept is preferred. One would expect terminology to be as simple as possible, and as easy to connect it to the concept as possible. However, it should not be too simple. Received: 8 October 2018 51 Accepted: 21 January 2018 In other words it should not introduce ambiguity. Unfortunately, the term bipartite double cover that has been used lately in several places to replace an older term canonical double cover, also known as the Kronecker cover, [1,4], is ambiguous.
    [Show full text]
  • Free Groups and Graphs: the Hanna Neumann Theorem
    FREE GROUPS AND GRAPHS: THE HANNA NEUMANN THEOREM LAUREN COTE Abstract. The relationship between free groups and graphs is one of the many examples of the interaction between seemingly foreign branches of math- ematics. After defining and proving elementary relations between graphs and groups, this paper will present a result of Hanna Neumann on the intersection of free subgroups. Although Neumann's orginal upper bound on the rank of the intersection has been improved upon, her conjecture, that the upper bound is half of the one she originally proved, remains an open question. Contents 1. Groups 1 2. Graphs 3 3. Hanna Neumann Theorem 9 References 11 1. Groups Definition 1.1. Recall that a group G is a set S and a binary operation · with the properties that G is closed under ·, · is associative, there exists an identity e such that for all g 2 (G); g · e = e · g = g, and there exist inverses such that for each g 2 G; there exists g−1 2 G such that g · g−1 = g−1 · g = e. When working with groups, it is helpful to review the definitions of homomor- phism, an operation perserving map. For groups G1 = (S1; ·), G2 = (S2;?), the homomorphism φ : G1 ! G2 has the property that φ(x · y) = φ(x) ? φ(y). An isomorphism is a bijective homomorphism. Definition 1.2. This paper will focus on a particular kind of group, those which have the least possible amount of restriction: free groups. Let i : S ! F . A group F is free on a set S if for all groups G and for all f : S ! G, there exists a unique homomorphism : F ! G so that i ◦ = f.
    [Show full text]
  • Aztec Diamond Theorem by Combing Lattice Paths
    A BIJECTION PROVING THE AZTEC DIAMOND THEOREM BY COMBING LATTICE PATHS FRÉDÉRIC BOSIO AND MARC VAN LEEUWEN Abstract. We give a bijective proof of the Aztec diamond theorem, stating that there are 2n(n+1)/2 domino tilings of the Aztec diamond of order n. The proof in fact establishes a similar result for non-intersecting families of n + 1 Schröder paths, with horizontal, diagonal or vertical steps, linking the grid points of two adjacent sides of an n × n square grid; these families are well known to be in bijection with tilings of the Aztec diamond. Our bijection is produced by an invertible “combing” algorithm, operating on families of paths without non-intersection condition, but instead with the requirement that any vertical steps come at the end of a path, and which are clearly 2n(n+1)/2 in number; it transforms them into non-intersecting families. 1. Introduction The term “Aztec diamond”, introduced by Elkies, Kuperberg, Larsen and Propp [EKLP92], refers to a diamond-shaped set of squares in the plane, ob- tained by taking a triangular array of squares aligned against two perpendicular axes, and completing it with its mirror images in those two axes; the order of the diamond is the number of squares along each of the sides of the triangular array. Their main result concerns counting the number of domino tilings (i.e., partitions into subsets of two adjacent squares) of the Aztec diamond. n+1 Theorem 1 (Aztec diamond theorem). There are exactly 2( 2 ) domino tilings of the Aztec diamond of order n.
    [Show full text]
  • Enumerating Branched Orientable Surface Coverings Over a Non-Orientable Surface Ian P
    Discrete Mathematics 303 (2005) 42–55 www.elsevier.com/locate/disc Enumerating branched orientable surface coverings over a non-orientable surface Ian P. Gouldena, Jin Ho Kwakb,1, Jaeun Leec,2 aDepartment of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 bCombinatorial and Computational Mathematics Center, Pohang University of Science and Technology, Pohang 790–784, Korea cMathematics, Yeungnam University, Kyongsan 712–749, Korea Received 21 November 2002; received in revised form 13 October 2003; accepted 29 October 2003 Available online 10 October 2005 Abstract The isomorphism classes ofseveral types ofgraph coverings ofa graph have been enumerated by many authors [M. Hofmeister, Graph covering projections arising from finite vector space over finite fields, Discrete Math. 143 (1995) 87–97; S. Hong, J.H. Kwak, J. Lee, Regular graph cover- ings whose covering transformation groups have the isomorphism extention property, Discrete Math. 148 (1996) 85–105; J.H. Kwak, J.H. Chun, J.Lee, Enumeration ofregular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11 (1998) 273–285; J.H. Kwak, J. Lee, Isomorphism classes ofgraph bundles, Canad. J. Math. XLII (1990) 747–761; J.H. Kwak, J. Lee, Enumeration ofconnected graph coverings, J. Graph Theory 23 (1996) 105–109]. Recently, Kwak et al [Balanced regular coverings ofa signed graph and regular branched orientable surface coverings over a non-orientable surface, Discrete Math. 275 (2004) 177–193] enumerated the isomorphism classes ofbalanced regular coverings ofa signed graph, as a continuation ofan enumeration work done by Archdeacon et al [Bipartite covering graphs, Discrete Math. 214 (2000) 51–63] the isomorphism classes ofbranched orientable regular surfacecoverings ofa non-orientable surface having a finite abelian covering transformation group.
    [Show full text]
  • Aztec Diamonds and Digraphs, and Hankel Determinants of Schröder
    Aztec Diamonds and Digraphs, and Hankel Determinants of Schr¨oder Numbers Richard A. Brualdi Stephen Kirkland Department of Mathematics Department of Mathematics University of Wisconsin University of Regina Madison, WI 53706 Regina, Sask., Canada S4S 082 [email protected] [email protected] June 2, 2003 Abstract The Aztec diamond of order n is a certain configuration of 2n(n + 1) unit squares. We give a new proof of the fact that the number Πn of tilings of the Aztec diamond of order n with dominoes equals 2n(n+1)/2. We determine a sign-nonsingular matrix of order n(n + 1) whose determinant gives Πn. We reduce the calculation of this determinant to that of a Hankel matrix of order n whose entries are large Schr¨oder numbers. To calculate that determinant we make use of the J-fraction expansion of the generating function of the Schr¨oder numbers. 1 Introduction Let n be a positive integer. The Aztec diamond of order n is the union ADn of all the unit squares with integral vertices (x, y) satisfying x + y n+1. The Aztec diamond of order | | | | ≤ 1 consists of the 4 unit squares which have the origin (0, 0) as one of their vertices. The Aztec diamonds of orders 2 and 4 are shown in Figure 1. Aztec diamonds are invariant under rotation by 90 degrees, and by reflections in the horizontal and vertical axes. The part of the Aztec diamond of order n that lies in the positive quadrant consists of a staircase pattern of n, n 1,..., 1 unit squares.
    [Show full text]
  • Intersection Graphs
    Annals of Pure and Applied Mathematics Annals of Vol. 4, No.1, 2013, 43-91 ISSN: 2279-087X (P), 2279-0888(online) Published on 1October 2013 www.researchmathsci.org Intersection Graphs: An Introduction Madhumangal Pal Department of Applied Mathematics with Oceanology and Computer Programming Vidyasagar University, Midnapore – 721102, India e-mail: [email protected] Received 1 September 2013; accepted 27 September 2013 Abstract. Intersection graphs are very important in both theoretical as well as application point of view. Depending on the geometrical representation, different type of intersection graphs are defined. Among them interval, circular-arc, permutation, trapezoid, chordal, disk, circle graphs are more important. In this article, a brief introduction of each of these intersection graphs is given. Some basic properties and algorithmic status of few problems on these graphs are cited. This article will help to the beginners to start work in this direction. Since the article contains a lot of information in a compact form it is also useful for the expert researchers too. Keywords: Design and analysis of algorithms, intersection graphs, interval graphs, circular-arc graphs, permutation graphs, trapezoid graphs, tolarence graphs, chordal graphs, circle graphs, string graphs, disk graphs AMS Mathematics Subject Classification (2010): 05C62, 68Q22, 68Q25, 68R10 1. Introduction It is well known that graph is a very useful tool to model problems originated in all most all areas of our life. The geometrical structure of any communication system including Internet is based on graph. The logical setup of a computer is designed with the help of graph. So graph theory is an old as well as young topic of research.
    [Show full text]
  • Zeta Functions of Finite Graphs and Coverings, Iii
    ZETA FUNCTIONS OF FINITE GRAPHS AND COVERINGS, III HAROLD M. STARK AND AUDREY A. TERRAS Abstract. A graph theoretical analogue of Brauer-Siegel theory for zeta func- tions of number …elds is developed using the theory of Artin L-functions for Galois coverings of graphs from parts I and II. In the process, we discuss possible versions of the Riemann hypothesis for the Ihara zeta function of an irregular graph. 1. Introduction August 15; 2005 In our previous two papers [12], [13] we developed the theory of zeta and L- functions of graphs and covering graphs. Here zeta and L-functions are reciprocals of polynomials which means these functions have poles not zeros. Just as number theorists are interested in the locations of the zeros of number theoretic zeta and L-functions, thanks to applications to the distribution of primes, we are interested in knowing the locations of the poles of graph-theoretic zeta and L-functions. We study an analog of Brauer-Siegel theory for the zeta functions of number …elds (see Stark [11] or Lang [6]). As explained below, this is a necessary step in the discussion of the distribution of primes. We will always assume that our graphs X are …nite, connected, rank 1 with no danglers (i.e., degree 1 vertices). Let us recall some of the de…nitions basic to Stark and Terras [12], [13]. If X is any connected …nite undirected graph with vertex set V and (undi- rected) edge set E, we orient its edges arbitrarily and obtain 2 E oriented edges j j 1 1 e1; e2; ; en; en+1 = e ; :::; e2n = e .“Primes”[C] in X are equivalence classes 1 n of closed backtrackless tailless primitive paths C.
    [Show full text]
  • A Simple Proof of the Aztec Diamond Theorem
    A Simple Proof of the Aztec Diamond Theorem Sen-Peng Eu1,∗ and Tung-Shan Fu2,† 1Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan [email protected] 2Mathematics Faculty, National Pingtung Institute of Commerce, Pingtung 900, Taiwan [email protected] Abstract Based on a bijection between domino tilings of an Aztec diamond and non- intersecting lattice paths, a simple proof of the Aztec diamond theorem is given in terms of Hankel determinants of the large and small Schr¨oder numbers. MSC2000: 05A15 Keywords: Aztec diamond, Hankel matrix, Schr¨oder numbers, lattice paths 1 Introduction The Aztec diamond of order n, denoted by Az(n), is defined as the union of all the unit squares with integral corners (x, y) satisfying |x| + |y| ≤ n +1. A domino is simply a 1-by-2 or 2-by-1 rectangles with integral corners. A domino tiling of a region R is a set of non-overlapping dominos the union of which is R. Figure 1 shows the Aztec diamond of order 3 and a domino tiling. The Aztec diamond theorem, which is first proved by Elkies arXiv:math/0412041v1 [math.CO] 2 Dec 2004 et al. in [4], indicates that the number an of domino tilings of the Aztec diamond of order n is 2n(n+1)/2. They gave four proofs by relating the tilings to alternating sign matrices, monotone triangles, representations of general linear groups, and domino shuffling. Other approaches to this theorem appeared in [2, 3, 6]. Ciucu [3] derived the recurrence relation n an = 2 an−1 by means of perfect matchings of celluar graphs.
    [Show full text]
  • Airy Point Process at the Liquid-Gas Boundary Vincent Beffara, Sunil Chhita, Kurt Johansson
    Airy point process at the liquid-gas boundary Vincent Beffara, Sunil Chhita, Kurt Johansson To cite this version: Vincent Beffara, Sunil Chhita, Kurt Johansson. Airy point process at the liquid-gas boundary. Annals of Probability, Institute of Mathematical Statistics, 2018, 46 (5), pp.2973 - 3013. 10.1214/17-aop1244. hal-01632943v2 HAL Id: hal-01632943 https://hal.archives-ouvertes.fr/hal-01632943v2 Submitted on 19 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Annals of Probability 2018, Vol. 46, No. 5, 2973–3013 https://doi.org/10.1214/17-AOP1244 © Institute of Mathematical Statistics, 2018 AIRY POINT PROCESS AT THE LIQUID-GAS BOUNDARY BY VINCENT BEFFARA1,SUNIL CHHITA1 AND KURT JOHANSSON2 Université Grenoble Alpes, Durham University and Royal Institute of Technology KTH Domino tilings of the two-periodic Aztec diamond feature all of the three possible types of phases of random tiling models. These phases are determined by the decay of correlations between dominoes and are generally known as solid, liquid and gas. The liquid-solid boundary is easy to define microscopically and is known in many models to be described by the Airy process in the limit of a large random tiling.
    [Show full text]