Section I – Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Section I – Introduction White Deer Watershed Act 167 Stormwater Management Plan June 2003 Prepared by Union County in conjunction with Union County Courthouse The preparation of the White Deer Stormwater Management Plan has been funded in part by a grant from the Pennsylvania Department of Environmental Protection Bureau of Watershed Conservation. WHITE DEER CREEK WATERSHED ACT 167 STORMWATER MANAGEMENT PLAN Prepared by Union County Planning Commission in Conjunction with Herbert, Rowland & Grubic, Inc. June 2003 369 East Park Drive Harrisburg, PA 17111 (717) 564-1121 www.hrg-inc.com ©Herbert, Rowland & Grubic, Inc., 2003 WHITE DEER CREEK WATERSHED ACT 167 STORMWATER MANAGEMENT PLAN JUNE 2003 H:\21\2189\007\rpts\plan\WD_plan.doc Table of Contents: Section 1 – Introduction 1 1.0 Introduction ................................................................................................................................. 1 1.1 Stormwater Runoff – Its Problems and Its Solutions .................................................................. 1 Section 2 – Act 167 Watershed Level Stormwater Management Planning & Implementation 2 2.0 The Pennsylvania Stormwater Management Act, Act 167 .......................................................... 2 2.1 Plan Preparation Strategy ............................................................................................................ 3 Stage A - Data Collection and Analysis ............................................................................................... 4 Stage B - Technical Analysis ............................................................................................................... 5 Stage C – Public/Municipal Participation ............................................................................................ 6 Stage D - Plan Preparation and Implementation .................................................................................. 7 Section 3 - White Deer Creek Watershed Characteristics 9 3.0 General Description ..................................................................................................................... 9 3.1 Political Features ......................................................................................................................... 9 3.2 Natural Features ......................................................................................................................... 10 3.3 Hydrology .................................................................................................................................. 11 3.4 Existing Stormwater Drainage Problem Areas .......................................................................... 11 3.5 Suggested Solutions ................................................................................................................... 12 3.6 Problem Area Remediation approach ........................................................................................ 12 3.7 Significant Obstructions ............................................................................................................ 13 3.8 Designation of Stormwater Hotspots ......................................................................................... 14 Section 4 – Watershed Technical Analysis – Modeling 16 4.0 Hydrologic Model ..................................................................................................................... 16 4.1 Modeling Results & Release Rates ........................................................................................... 16 4.2 Reservoir Modeling ................................................................................................................... 17 Section 5 – Technical Standards and Criteria for Control of Stormwater Runoff 19 5.0 Introduction ............................................................................................................................... 19 5.1 Water Quality Volume (WQv) ................................................................................................... 19 5.2 Recharge Volume Requirements (Rev) ...................................................................................... 22 5.3 Channel Protection Storage Volume Requirements (Cpv) ......................................................... 24 5.4 Overbank and Extreme Event Flood Protection Requirements (Release Rates) ....................... 28 5.5 Design Example: Computing Stormwater Storage Volumes .................................................... 29 Section 6 – Runoff Control Techniques and Their Efficiencies 34 6.0 Acceptable Urban Best Management Practices (BMP) Options ............................................... 34 Section 7 – Municipal Handbook 36 7.0 Introduction - Why Stormwater Matters.................................................................................... 36 7.1 Declining Water Quality ............................................................................................................ 37 7.2 Intent of the Act 167 Plan .......................................................................................................... 37 7.3 Suggested Best Management Practices ..................................................................................... 37 7.4 BMP Maintenance ..................................................................................................................... 38 7.4.1 Overview of BMP Maintenance ............................................................................................ 39 7.4.2 Routine Maintenance Needs.................................................................................................. 40 7.4.3 Nonroutine Maintenance ....................................................................................................... 41 7.4.4 Maintenance Responsibilities ................................................................................................ 43 7.4.5 Estimating Routine Costs ...................................................................................................... 44 7.4.6 Estimating Nonroutine Costs ................................................................................................ 44 7.4.7 Planning Ahead ..................................................................................................................... 44 7.4.8 Access for Maintenance ........................................................................................................ 44 7.4.9 Maintenance Agreements ...................................................................................................... 45 7.5 Effective Site Planning .............................................................................................................. 45 (i) 7.5.1 Some Important Principles of Effective Site Planning .......................................................... 45 7.5.2 Resources for Identifying and Mapping Sensitive Areas ...................................................... 46 7.5.3 Important Functions of Sensitive Areas and How They are Best Protected ......................... 47 7.5.4 Preserving Natural Hydrologic Conditions ........................................................................... 48 7.5.5 Reducing or Disconnecting Impervious Surface Areas ........................................................ 49 7.5.6 Preserving Natural Drainage Features ................................................................................... 50 7.5.7 Protecting Natural Depression Storage Areas ....................................................................... 50 7.6 Site Planning and Land-Use Techniques to Minimize Efforts of Development ....................... 50 7.6.1 Setbacks and Buffers ............................................................................................................. 51 7.6.2 Cluster Development ............................................................................................................. 52 7.6.3 Zoning Restrictions ............................................................................................................... 53 7.6.4 Conservation Easements ....................................................................................................... 53 7.6.5 Development Designed to Fit Site Topography .................................................................... 53 Section 8 – Plan Review Adoption and Updating Procedures 54 8.0 Plan Review and Adoption ........................................................................................................ 54 8.1 Procedure for Updating the Plan ............................................................................................... 55 Section 9 – Priorities for Implementation of Technical Standards and Criteria 57 9.0 Summary of Plan Conclusions and Recommendations ............................................................. 57 Section 10 - Model Act 167 Stormwater Management Ordinance 58 Tables: Table 2.0 - Existing Municipal Ordinance Matrix, White Deer Creek Watershed ....................................... 4 Table 2.1 - White Deer Creek Watershed Plan Advisory Committee (WPAC) ........................................... 6 Table 2.2 - White Deer Creek Watershed Municipal Engineer’s Committee (MEC) .................................. 7 Table 2.3 - White Deer Creek Watershed Legal Advisory Committee (LAC) ............................................. 7 Table 3.0 - Municipalities Lying Within The Watershed ............................................................................
Recommended publications
  • Maryland Darter Etheostoma Sellare
    U.S. Fish & Wildlife Service Maryland darter Etheostoma Sellare Introduction The Maryland darter is a small freshwater fish only known from a limited area in Harford County, Maryland. These areas, Swan Creek, Gashey’s Run (a tributary of Swan Creek) and Deer Creek, are part of the larger Susquehanna River drainage basin. Originally discovered in Swan Creek nymphs. Spawning is assumed to species of darters. Electrotrawling is in 1912, the Maryland darter has not occur during late April, based on other the method of towing a net from a boat been seen here since and only small species, but no Maryland darters have with electrodes attached to the net that numbers of individuals have been been observed during reproduction. send small, harmless pulses through found in Gashey’s Run and Deer the water to stir up fish. Electrofishing Creek. A Rare Species efforts in the Susquehanna are Some biologists suspect that the continuing. Due to its scarcity, the Maryland Maryland darter could be hiding darter was federally listed as in the deep, murky waters of the A lack of adequate surveying of endangered in 1967, and critical Susquehanna River. Others worry large rivers in the past due to limited habitat was designated in 1984. The that the decreased darter population technology leaves hope for finding darter is also state listed. The last is evidence that the desirable habitat Maryland darters in this area. The new known sighting of the darter was in for these fish has diminished, possibly studies would likely provide definitive 1988. due to water quality degradation and information on the population status effects of residential development of the Maryland darter and a basis for Characteristics in the watershed.
    [Show full text]
  • December 20, 2003 (Pages 6197-6396)
    Pennsylvania Bulletin Volume 33 (2003) Repository 12-20-2003 December 20, 2003 (Pages 6197-6396) Pennsylvania Legislative Reference Bureau Follow this and additional works at: https://digitalcommons.law.villanova.edu/pabulletin_2003 Recommended Citation Pennsylvania Legislative Reference Bureau, "December 20, 2003 (Pages 6197-6396)" (2003). Volume 33 (2003). 51. https://digitalcommons.law.villanova.edu/pabulletin_2003/51 This December is brought to you for free and open access by the Pennsylvania Bulletin Repository at Villanova University Charles Widger School of Law Digital Repository. It has been accepted for inclusion in Volume 33 (2003) by an authorized administrator of Villanova University Charles Widger School of Law Digital Repository. Volume 33 Number 51 Saturday, December 20, 2003 • Harrisburg, Pa. Pages 6197—6396 Agencies in this issue: The Governor The Courts Department of Aging Department of Agriculture Department of Banking Department of Education Department of Environmental Protection Department of General Services Department of Health Department of Labor and Industry Department of Revenue Fish and Boat Commission Independent Regulatory Review Commission Insurance Department Legislative Reference Bureau Pennsylvania Infrastructure Investment Authority Pennsylvania Municipal Retirement Board Pennsylvania Public Utility Commission Public School Employees’ Retirement Board State Board of Education State Board of Nursing State Employee’s Retirement Board State Police Detailed list of contents appears inside. PRINTED ON 100% RECYCLED PAPER Latest Pennsylvania Code Reporter (Master Transmittal Sheet): No. 349, December 2003 Commonwealth of Pennsylvania, Legislative Reference Bu- PENNSYLVANIA BULLETIN reau, 647 Main Capitol Building, State & Third Streets, (ISSN 0162-2137) Harrisburg, Pa. 17120, under the policy supervision and direction of the Joint Committee on Documents pursuant to Part II of Title 45 of the Pennsylvania Consolidated Statutes (relating to publication and effectiveness of Com- monwealth Documents).
    [Show full text]
  • Susquhanna River Fishing Brochure
    Fishing the Susquehanna River The Susquehanna Trophy-sized muskellunge (stocked by Pennsylvania) and hybrid tiger muskellunge The Susquehanna River flows through (stocked by New York until 2007) are Chenango, Broome, and Tioga counties for commonly caught in the river between nearly 86 miles, through both rural and urban Binghamton and Waverly. Local hot spots environments. Anglers can find a variety of fish include the Chenango River mouth, Murphy’s throughout the river. Island, Grippen Park, Hiawatha Island, the The Susquehanna River once supported large Smallmouth bass and walleye are the two Owego Creek mouth, and Baileys Eddy (near numbers of migratory fish, like the American gamefish most often pursued by anglers in Barton) shad. These stocks have been severely impacted Fishing the the Susquehanna River, but the river also Many anglers find that the most enjoyable by human activities, especially dam building. Susquehanna River supports thriving populations of northern pike, and productive way to fish the Susquehanna is The Susquehanna River Anadromous Fish Res- muskellunge, tiger muskellunge, channel catfish, by floating in a canoe or small boat. Using this rock bass, crappie, yellow perch, bullheads, and method, anglers drift cautiously towards their toration Cooperative (SRFARC) is an organiza- sunfish. preferred fishing spot, while casting ahead tion comprised of fishery agencies from three of the boat using the lures or bait mentioned basin states, the Susquehanna River Commission Tips and Hot Spots above. In many of the deep pool areas of the (SRBC), and the federal government working Susquehanna, trolling with deep running lures together to restore self-sustaining anadromous Fishing at the head or tail ends of pools is the is also effective.
    [Show full text]
  • Jjjn'iwi'li Jmliipii Ill ^ANGLER
    JJJn'IWi'li jMlIipii ill ^ANGLER/ Ran a Looks A Bulltrog SEPTEMBER 1936 7 OFFICIAL STATE September, 1936 PUBLICATION ^ANGLER Vol.5 No. 9 C'^IP-^ '" . : - ==«rs> PUBLISHED MONTHLY COMMONWEALTH OF PENNSYLVANIA by the BOARD OF FISH COMMISSIONERS PENNSYLVANIA BOARD OF FISH COMMISSIONERS HI Five cents a copy — 50 cents a year OLIVER M. DEIBLER Commissioner of Fisheries C. R. BULLER 1 1 f Chief Fish Culturist, Bellefonte ALEX P. SWEIGART, Editor 111 South Office Bldg., Harrisburg, Pa. MEMBERS OF BOARD OLIVER M. DEIBLER, Chairman Greensburg iii MILTON L. PEEK Devon NOTE CHARLES A. FRENCH Subscriptions to the PENNSYLVANIA ANGLER Elwood City should be addressed to the Editor. Submit fee either HARRY E. WEBER by check or money order payable to the Common­ Philipsburg wealth of Pennsylvania. Stamps not acceptable. SAMUEL J. TRUSCOTT Individuals sending cash do so at their own risk. Dalton DAN R. SCHNABEL 111 Johnstown EDGAR W. NICHOLSON PENNSYLVANIA ANGLER welcomes contribu­ Philadelphia tions and photos of catches from its readers. Pro­ KENNETH A. REID per credit will be given to contributors. Connellsville All contributors returned if accompanied by first H. R. STACKHOUSE class postage. Secretary to Board =*KT> IMPORTANT—The Editor should be notified immediately of change in subscriber's address Please give both old and new addresses Permission to reprint will be granted provided proper credit notice is given Vol. 5 No. 9 SEPTEMBER, 1936 *ANGLER7 WHAT IS BEING DONE ABOUT STREAM POLLUTION By GROVER C. LADNER Deputy Attorney General and President, Pennsylvania Federation of Sportsmen PORTSMEN need not be told that stream pollution is a long uphill fight.
    [Show full text]
  • Brook Trout Outcome Management Strategy
    Brook Trout Outcome Management Strategy Introduction Brook Trout symbolize healthy waters because they rely on clean, cold stream habitat and are sensitive to rising stream temperatures, thereby serving as an aquatic version of a “canary in a coal mine”. Brook Trout are also highly prized by recreational anglers and have been designated as the state fish in many eastern states. They are an essential part of the headwater stream ecosystem, an important part of the upper watershed’s natural heritage and a valuable recreational resource. Land trusts in West Virginia, New York and Virginia have found that the possibility of restoring Brook Trout to local streams can act as a motivator for private landowners to take conservation actions, whether it is installing a fence that will exclude livestock from a waterway or putting their land under a conservation easement. The decline of Brook Trout serves as a warning about the health of local waterways and the lands draining to them. More than a century of declining Brook Trout populations has led to lost economic revenue and recreational fishing opportunities in the Bay’s headwaters. Chesapeake Bay Management Strategy: Brook Trout March 16, 2015 - DRAFT I. Goal, Outcome and Baseline This management strategy identifies approaches for achieving the following goal and outcome: Vital Habitats Goal: Restore, enhance and protect a network of land and water habitats to support fish and wildlife, and to afford other public benefits, including water quality, recreational uses and scenic value across the watershed. Brook Trout Outcome: Restore and sustain naturally reproducing Brook Trout populations in Chesapeake Bay headwater streams, with an eight percent increase in occupied habitat by 2025.
    [Show full text]
  • Subdivisions Colorado C L E a R C R E E K CO
    Fire & Ambulance Districts Park County Subdivisions Colorado C L E A R C R E E K CO. NAME TWP_RNG NAME TWP_RNG R76W R75W R74W R73W ADVENTURE PLACER T9S,R78W ELKHORN RANCHES T10S,R75 R72W ALMA T9S,R78W ELKHORN SUBDIVISION T9S,R76W ALMA BUCKSKIN CREEK AMENDED T9S,R78W ESTATES OF COLORADO T14S,R75W Duck Creek Truesdell Creek Indian Creek ALMA FOREST T9S,R78W ESTATES OF COLORADO 2 AMEND T14S,R75W Yankee Creek Cub Creek ALMA GROSE AND TREWEEK SOUTH T9S,R78W ESTATES OF COLORADO AMENDED T14S,R75W ALMA MERCURY HILL SUB T9S,R78W FAIRPLAY T9S,R77W North Elk Creek ALMA MISC TRACTS T9S,R78W FAIRPLAY BEAVER MEADOWS T9S,R77W ALMA MOYNAHAN ADD SOUTH T9S,R78W FAIRPLAY BRISTLECONE T9S,R77W North Fork Tanglewood Creek ALMA NORTH RHODESIA SOUTH T9S,R78W FAIRPLAY BURGIN ADDITION T9S,R77W ALMA PARK ESTATES T9S,R78W FAIRPLAY BUSINESS PARK T9S,R77W North Elk Creek ALMA PLACER SUBDIVISION T9S,R78W FAIRPLAY BUTTERMILK T9S,R77W 1038 T Francis Creek Church Fork ALMA RHODES 2ND ADDITION T9S,R78W FAIRPLAY CLARK AND BOGUES T9S,R77W Produced by Park County GIS PLATTEPLATTE CANYONCANYON FPDFPD FAIRPLAY COLUMBINE PARK T9S,R77W Scott Gomer Creek ALMA RHODES 3RD ADDITION T9S,R78W June, 2011 Threemile Creek FAIRPLAY GOLD PAN MH VILL T9S,R77W 65 T6S ALMA RHODES ADDITION T9S,R78W Geneva Creek T North Fork South Platte River Elk Creek FAIRPLAY HEIGHTS T9S,R77W Deer Creek ALMA RIVERSIDE T9S,R78W FAIRPLAY JANES ADDITION T9S,R77W Burning Bear Creek T66 ALMA VIDMAR T9S,R78W Camp Creek FAIRPLAY JOHNSON ADDITION T9S,R77W 63 Elk Creek ANGELFIRE T9S,R78W Lamping Creek T 1184 FAIRPLAY
    [Show full text]
  • Shamokin Creek Site 48 Passive Treatment System SRI O&M TAG Project #5 Request #1 OSM PTS ID: PA-36
    Passive Treatment Operation & Maintenance Technical Assistance Program June 2015 Funded by PA DEP Growing Greener & Foundation for PA Watersheds 1113102 Stream Restoration Incorporated & BioMost, Inc. Shamokin Creek Site 48 Passive Treatment System SRI O&M TAG Project #5 Request #1 OSM PTS ID: PA-36 Requesting Organization: Northumberland County Conservation District & Shamokin Creek Restoration Alliance (in-kind partners) Receiving Stream: Unnamed tributary (Shamokin Creek Watershed) Hydrologic Order: Unnamed tributaryShamokin CreekSusquehanna River Municipality/County: Coal Township, Northumberland County Latitude / Longitude: 40°46'40.152"N / 76°34'39.558"W Construction Year: 2003 The Shamokin Creek Site 48 (SC48) Passive Treatment System was constructed in 2003 to treat an acidic, metal-bearing discharge in Coal Township, Northumberland County, PA. Stream Restoration Inc. was contacted by Jaci Harner, Watershed Specialist, Northumberland County Conservation District (NCCD), on behalf of the Shamokin Creek Restoration Alliance (SCRA) via email on 8/2/2011 regarding problems with the SC48 passive system. Cliff Denholm (SRI) conducted a site investigation on 9/19/2011 with Jaci Harner and SCRA members Jim Koharski, Leanne Bjorklund, and Mike Handerhan. According to the group, the system works well; however, they were experiencing problems with the SC48 system intake pipe. An AMD- impacted stream is treated by diverting water into a passive system via a small dam and intake pipe. During storm events and high-flow periods, however, erosion with sediment transport takes place which results in a large quantity of sediment including gravel-sized material being deposited in the area above the intake as well as within the first settling pond.
    [Show full text]
  • Assessing Wetland Condition on a Watershed Basis in the Mid-Atlantic Region Using Synoptic Land-Cover Maps
    ASSESSING WETLAND CONDITION ON A WATERSHED BASIS IN THE MID-ATLANTIC REGION USING SYNOPTIC LAND-COVER MAPS ROBERT P. BROOKS*, DENICE H. WARDROP, and JOSEPH A. BISHOP Penn State Cooperative Wetlands Center, 302 Walker Building, Pennsylvania State University, University Park, PA 16802 USA (*author for correspondence, phone: 814-863-1596, fax: 814-863-7943, e-mail:[email protected]) Abstract. We developed a series of tools to address three integrated tasks needed to effectively manage wetlands on a watershed basis: inventory, assessment, and restoration. Depending on the objectives of an assessment, availability of resources, and degree of confidence required in the results, there are three levels of effort available to address these three tasks. This paper describes the development and use of synoptic land-cover maps (Level 1) to assess wetland condition for a watershed. The other two levels are a rapid assessment using ground reconnaissance (Level 2) and intensive field assessment (Level 3). To illustrate the application of this method, seven watersheds in Pennsylvania were investigated representing a range of areas (89–777 km2), land uses, and ecoregions found in the Mid-Atlantic Region. Level 1 disturbance scores were based on land cover in 1-km radius circles centered on randomly-selected wetlands in each watershed. On a standardized, 100-point, human-disturbance scale, with 100 being severely degraded and 1 being the most ecologically intact, the range of scores for the seven watersheds was a relatively pristine score of 4 to a moderately degraded score of 66. This entire process can be conducted in a geographic information system (GIS)-capable office with readily available data and without engaging in extensive field investigations.
    [Show full text]
  • 2018 Pennsylvania Summary of Fishing Regulations and Laws PERMITS, MULTI-YEAR LICENSES, BUTTONS
    2018PENNSYLVANIA FISHING SUMMARY Summary of Fishing Regulations and Laws 2018 Fishing License BUTTON WHAT’s NeW FOR 2018 l Addition to Panfish Enhancement Waters–page 15 l Changes to Misc. Regulations–page 16 l Changes to Stocked Trout Waters–pages 22-29 www.PaBestFishing.com Multi-Year Fishing Licenses–page 5 18 Southeastern Regular Opening Day 2 TROUT OPENERS Counties March 31 AND April 14 for Trout Statewide www.GoneFishingPa.com Use the following contacts for answers to your questions or better yet, go onlinePFBC to the LOCATION PFBC S/TABLE OF CONTENTS website (www.fishandboat.com) for a wealth of information about fishing and boating. THANK YOU FOR MORE INFORMATION: for the purchase STATE HEADQUARTERS CENTRE REGION OFFICE FISHING LICENSES: 1601 Elmerton Avenue 595 East Rolling Ridge Drive Phone: (877) 707-4085 of your fishing P.O. Box 67000 Bellefonte, PA 16823 Harrisburg, PA 17106-7000 Phone: (814) 359-5110 BOAT REGISTRATION/TITLING: license! Phone: (866) 262-8734 Phone: (717) 705-7800 Hours: 8:00 a.m. – 4:00 p.m. The mission of the Pennsylvania Hours: 8:00 a.m. – 4:00 p.m. Monday through Friday PUBLICATIONS: Fish and Boat Commission is to Monday through Friday BOATING SAFETY Phone: (717) 705-7835 protect, conserve, and enhance the PFBC WEBSITE: Commonwealth’s aquatic resources EDUCATION COURSES FOLLOW US: www.fishandboat.com Phone: (888) 723-4741 and provide fishing and boating www.fishandboat.com/socialmedia opportunities. REGION OFFICES: LAW ENFORCEMENT/EDUCATION Contents Contact Law Enforcement for information about regulations and fishing and boating opportunities. Contact Education for information about fishing and boating programs and boating safety education.
    [Show full text]
  • West Branch Subbasin AMD Remediation Strategy
    Publication 254 West Branch Susquehanna Subbasin May 2008 AMD Remediation Strategy: West Branch Susquehanna Background, Data Assessment River Task Force and Method Development Despite the enormous legacy ■ INTRODUCTION Pristine setting along the West Branch Susquehanna River. of pollution from abandoned mine The West Branch Susquehanna drainage (AMD) in the West Subbasin, draining a 6,978-square-mile Branch Susquehanna Subbasin, area in northcentral Pennsylvania, is the there has been mounting support largest of the six major subbasins in and enthusiasm for a fully restored the Susquehanna River Basin (Figure 1). watershed. Under the leadership The West Branch Susquehanna of Governor Edward G. Rendell Subbasin is one of extreme contrasts. While and with support from it has some of the Commonwealth’s Trout Unlimited, Pennsylvania most pristine and treasured waterways, Department of Environmental including 1,249 miles of Exceptional Protection Secretary Kathleen Value streams and scenic forestlands and mountains, it also unfortunately M. Smith McGinty established the West bears the legacy of past Branch Susquehanna River Task unregulated mining. With Abandoned mine lands in Clearfield County. Force (Task Force) in 2004. 1,205 miles of waterways The goal of the Task Force is to impaired by AMD, it is the assist and advise the department and most AMD-impaired region its partners as they work toward of the entire Susquehanna the long-term goal to remediate the River Basin (Figure 2). At its most degraded region’s AMD. sites, the West Branch The Task Force is comprised Susquehanna River contains of state, federal, and regional acidity concentrations of agencies, Trout Unlimited, and nearly 200 milligrams per other conservation and watershed liter (mg/l), and iron and aluminum concentrations of organizations (members are identified A.
    [Show full text]
  • Public Votes Loyalsock As PA River of the Year Perkiomen TU Leads
    Winter 2018 Publication of the Pa. Council of Trout Unlimited www.patrout.org Perkiomen TU Students to leads restoration research brookies project on on Route 6 trek By Charlie Charlesworth namesake creek PATU President By Thomas W. Smith Perkiomen Valley TU President In summer 2018, six college students from our PATU 5 Rivers clubs will spend a The Perkiomen Valley Chapter of month trekking across Pennsylvania’s U.S. Trout Unlimited partnered with Sundance Route 6. Their purpose will be to explore, Creek Consulting, the Montgomery do research, collect data and still have time County Conservation District, Penn State do a little bit of fishing in the northern tier’s Master Watershed Stewards and Upper famed brook trout breeding grounds. Perkiomen High School for a stream They will be supported by the PA Fish restoration project on Perkiomen Creek, and Boat Commission, three colleges in- Contributed Photo which was carried out over five days in Volunteers work on a stream restora- cluding Mansfield, Keystone and hopefully See CREEK, page 7 tion project along Perkiomen Creek. See TREK, page 2 Public votes Loyalsock as PA River of the Year By Pennsylvania DCNR Home to legions of paddlers, anglers, and other outdoors enthusiasts in north central Pennsylvania, Loyalsock Creek has been voted the 2018 Pennsylvania River of the Year. The public was invited to vote online, choosing from among five waterways nominated across the state. Results were pariveroftheyear.org Photo See RIVER, page 2 Loyalsock Creek was voted 2018 Pennsylvania River of the Year. IN THIS ISSUE Keystone Coldwater Conference ..........................3 How to become a stream advocate.......................6 Headwaters .............................................................4 Minutes ....................................................................8 Treasurer’s Notes ...................................................5 Chapter Reports ..................................................
    [Show full text]
  • Summary of Nitrogen, Phosphorus, and Suspended-Sediment Loads and Trends Measured at the Chesapeake Bay Nontidal Network Stations for Water Years 2009–2018
    Summary of Nitrogen, Phosphorus, and Suspended-Sediment Loads and Trends Measured at the Chesapeake Bay Nontidal Network Stations for Water Years 2009–2018 Prepared by Douglas L. Moyer and Joel D. Blomquist, U.S. Geological Survey, March 2, 2020 The Chesapeake Bay nontidal network (NTN) currently consists of 123 stations throughout the Chesapeake Bay watershed. Stations are located near U.S. Geological Survey (USGS) stream-flow gages to permit estimates of nutrient and sediment loadings and trends in the amount of loadings delivered downstream. Routine samples are collected monthly, and 8 additional storm-event samples are also collected to obtain a total of 20 samples per year, representing a range of discharge and loading conditions (Chesapeake Bay Program, 2020). The Chesapeake Bay partnership uses results from this monitoring network to focus restoration strategies and track progress in restoring the Chesapeake Bay. Methods Changes in nitrogen, phosphorus, and suspended-sediment loads in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from 123 NTN stations (Moyer and Langland, 2020). Constituent loads are calculated with at least 5 years of monitoring data, and trends are reported after at least 10 years of data collection. Additional information for each monitoring station is available through the USGS website “Water-Quality Loads and Trends at Nontidal Monitoring Stations in the Chesapeake Bay Watershed” (https://cbrim.er.usgs.gov/). This website provides State, Federal, and local partners as well as the general public ready access to a wide range of data for nutrient and sediment conditions across the Chesapeake Bay watershed. In this summary, results are reported for the 10-year period from 2009 through 2018.
    [Show full text]