Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration *Hansen, Lyle D.1, Dipple, Gregory M.1, Gordon, Terry, M.2 and Kellett, Dawn. A.1 13669 Stores Road, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4. 22500 University Drive, Northwest, Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4. *
[email protected] Abstract Listwanite, a carbonate altered serpentinite, is commonly associated with gold and mercury mineralization. It also represents a natural analogue to CO2 sequestration via in situ mineral carbonation. The reaction pathways and permeability structure controlling listwanite formation are preserved and exposed at Atlin, British Columbia, where listwanite is structurally controlled by a fracture permeability system and extends tens of meters into surrounding intact rock. The overall mineralogical transformation is the same as that being considered for industrial carbon sequestration by the process of mineral carbonation. In nature this reaction proceeds via sub-reactions that are fossilized as spatially distinct zones. Serpentine + olivine + brucite reacted with CO2 to form serpentine + magnesite, then magnesite + talc and finally magnesite + quartz. These mineralogical transformations are achieved isochemically, except for the volatile species H2O and CO2. Although the first reaction stage only accounts for about 5 – 15 % the carbonation potential for serpentinite, it is very widespread and therefore may have sequestered a significant portion of the total bound CO2. Moreover, within intact bedrock, the progress of the magnesite + talc reaction generates fracture permeability, which appears to have locally enhanced reaction. The first two reactions combined account for about half of the carbonation potential for serpentinite and have a small associated increase in the volume of solids which limits porosity loss.