Targeted Mutation at Cytosine-Containing Pyrimidine Dimers

Total Page:16

File Type:pdf, Size:1020Kb

Targeted Mutation at Cytosine-Containing Pyrimidine Dimers Proc. NatL Acad. Sci. USA Vol. 80, pp. 4446-4449, July 1983 Genetics Targeted mutation at cytosine-containing pyrimidine dimers: Studies of Escherichia coli B/r with acetophenone and 313-nm light (suppressor mutation/sensitized irradiation/SOS induction/transdimer synthesis) DOUGLAS FIX AND RICHARD BOCKRATH Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46223 Communicated by Richard B. Setlow, April 7, 1983 ABSTRACT We have tested the two-event model for UV mu- dexing signal and a premutational photoproduct that targets the tagenesis producing class 2 suppressor mutations at glutamine tRNA mutation (12-14). While the first of these could be any lesion genes in Escherichia coli. In the model used, the induction/in- that disrupts DNA synthesis to stimulate SOS induction or in- dexing lesion is any type of pyrimidine dimer and the premuta- dex critical overlapping daughter-strand gaps (15), the targeting tional photoproduct at the target site is a cytosine-containing di- photoproduct could be unique. For example, the transitions mer. Specific mutation-frequency responses were analyzed under accounting for the three examples of class 2 suppressor mu- conditions in which the ratio of thymine-thymine dimers to cy- tation affect cytosine residues to the 3' side of thymine residues tosine-containing dimers was modified by using 313-nm light and in the DNA target sequences. Therefore, the possibility of mu- 0.0%, 0.1%, or 0.2% acetophenone. Changes observed in the pro- duction of class 2 suppressor mutations were consistent with the tation at a thymine-cytosine (TC) pyrimidine dimer as the pre- model and suggested that the G-C -- AT transitions responsible mutational photoproduct has been proposed (16-18). This was for class 2 suppressor mutations are targeted by cytosine-con- supported by results showing cytosine-containing dimers to be taining pyrimidine dimers at the mutational sites. a likely premutational photoproduct for class 2 suppressor mu- tations (19). Cells mutagenized with 254-nm light were held in Mutagenesis in bacteria is now known to have considerable buffer at an elevated temperature and irradiated with 405-nm specificity. This is seen in distinct nonrandom or contrasting light to cause photoenzymatic monomerization of pyrimidine patterns of induced DNA alterations by mutagenic agents and dimers. This irradiation eliminated revertants except in cells suggests targeted phenomena (1, 2). With UV mutagenesis of lacking uracil-DNA glycosylase activity. When repair of uracil the lad gene, a major portion of the data is consistent with tar- residues in DNA was absent, class 2 suppressor mutations spe- geting at cytosine-containing pyrimidine dimers or pyrimidine- cifically became refractory to the 405-nm irradiation. This im- pyrimidine (64) photoproducts (3), but additional features are plicated a TC premutational photoproduct that could degrade clearly important to explain the "hot spots" preferred for these to a thymine-uracil dimer and be repaired by photoenzymatic mutations among all possible sites (4). Reversion mutation also monomerization to establish the cytosine to thymine (uracil) may be used to study specific DNA alterations if nonsense-de- transition responsible for class 2 suppressor mutation. fective auxotrophs are mutagenized. When UV-induced re- We tested the two-event mutagenesis model by assuming vertants of a nonsense-defective strain are selected on semi-en- that there is a qualitative difference in the type of photoproduct riched medium, a pronounced preference for the production of required for the two separate events. Irradiation with 313-nm suppressor mutations at glutamine tRNA genes is observed (5, light alone produces approximately two cytosine-containing di- 6). These class 2 suppressor mutations (7) indicate specific base- mers for every one thymine-thymine (TT) pyrimidine dimer [in pair changes and large numbers are easily distinguished. E. coli (20) or animal cells (R. B. Setlow, personal communi- Therefore, it is possible to associate the frequency of these spe- cation)]. However, in the presence of the photosensitizer ace- cific alterations quantitatively with different mutagenizing ex- tophenone, which transfers triplet state energy to thymine suf- periences. ficient only for the formation of TT dimers (21), the distri- Reversion of nonsense-defective auxotrophic cells can occur bution of pyrimidine dimers can be sharply altered to favor the at several sites in the bacterial genome-e.g., suppressor mu- formation of TT dimers (22, 23). We used this procedure to tations at different tRNA loci and back mutation in the non- introduce various distributions of pyrimidine dimers and de- sense-defective gene (7). The two species of glutamine tRNA termined specific mutation-frequency responses. For the three in Escherichia coli recognize the codons CAA and CAG and are examples of class 2 suppressor mutation, the responses changed encoded by tandem duplicates of the genes glnl and gln2, re- in a manner consistent with the model that induction/indexing spectively (8). Class 2 suppressor mutations result from G'C is by any type of dimer but the premutational photoproduct at A-T transitions at the distal or proximal ends of the anticodon the target site is specifically a cytosine-containing pyrimidine sites in these genes producing de novo ochre suppressor mu- dimer. tations (glnl -- glnl°) and de novo amber suppressor mutations (gln2 -- gln2a) (9, 10) or converted amber-to-ochre suppressor MATERUILS AND METHODS mutations (gln2a gln20) (11). The process by which these suppressor mutations arise may Excision-repair-defective strains of E. coli B/r, WU-11 and WU, require two types of DNA damaging events, an induction/in- were used (24). Cells were grown and irradiated with 313-nm radiation (2.5 W/m2) from a 1,000-W Hg/Xe lamp (19) filtered The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertise- Abbreviations: TT, thymine-thymine pyrimidine dimer; TC, thymine- ment" in accordance with 18 U.S.C. §1734 solely to indicate this fact. cytosine pyrimidine dimer. 4446 Downloaded by guest on September 24, 2021 Genetics: Fix and Bockrath Proc. Natl. Acad. Sci. USA 80 (1983) 4447 through redistilled pyridine (25% in toluene) and by broad and mutations. All responses displayed fluence-squared increases narrow band pass filters (Oriel 5180 and G-521-3130). Just be- and were clearly enhanced by the addition of 0.1% or 0.2% ace- fore irradiation, a 10% (vol/vol) solution of acetophenone (East- tophenone to the irradiation buffer. An example is shown in man Kodak) in dimethyl sulfoxide (22) was diluted into the cell Fig. 2 for the conversion of class 2 suppressor mutations in WU- suspensions to the final concentrations indicated. After irra- 11 in the absence or presence of 0.1% acetophenone. Again, a diation, survival and mutagenesis were assayed on semi-en- dose-adjustment factor could be used to superimpose the data riched media (Difco nutrient broth, 0.2 mg/ml) as described (filled symbols labeled 1.4 in Fig. 2) but the dose-adjustment (24). Specific types of revertants were distinguished by their factor for mutation was not the same as that for survival. ability to propagate nonsense mutants of bacteriophage T4 (NG A selective increase in particular types of dimers by aceto- 75, NG 273, and PS 205) (18, 19). Tyr' reversion mutations pro- phenone could be expected to enhance inactivation and mu- duced by UV in WU-11 are primarily either back mutations of tation differently if survival were a function of any type of di- the UAA codon in the tyrosine gene (tyr- tyr') or class 2 mer and mutation depended, at least in part, on a particular ochre suppressor mutations. Since this strain carries a class 2 type of dimer. All of the data suggested dissimilar dose-ad- amber suppressor mutation (supE or gln2a) that suppresses a leu justment factors for survival and for mutation and thus that in- (UAG) mutation, the induced class 2 ochre suppressor muta- activation and mutagenesis resulted from different sets of pho- tions are either de novo suppressor mutations (glnl -- glnlI) toproducts. To determine whether the differential responses or converted suppressor mutations (gln2a -4 gln20). Strain WU might be consistent with distinct models, simple mathematical does not carry the class 2 amber suppressor mutation and this functions for survival and mutation-frequency responses were allows Leu+ reversion to be studied in addition to Tyr' rever- considered and tested with the data. sion. Leu+ revertants are primarily either back mutations (leu- -* leu+) or de novo class 2 amber suppressor mutations (gln2 ANALYSIS gln2a). Lethality and mutagenesis produced by 313-nm light with or RESULTS without acetophenone are approximately 95% or greater photo- Colony-forming ability of E. coli WU and WU-11 was more ef- reversible (22, 23). This indicates that pyrimidine dimers are ficiently inactivated by 313-nm light in the presence of 0.1% the principal cause of lethality by this irradiation. For mutation or 0.2% acetophenone. The survival curves were superimpos- involving two types of damaging events, photoreversibility in- able if dose-adjustment factors were used (2.2 for 0.1%, 3.3 for dicates only that at least one type is a pyrimidine dimer (15). 0.2%). These factors were derived from the exponential por- Nevertheless, in the following models, survival and mutation tions of the inactivation curves and were the numerical values frequencies are described in terms of pyrimidine dimers. This by which the fluence scales (abscissae) could be adjusted so that is considered further in the Discussion. survival data without acetophenone became congruent with We assume survival after 313-nm irradiation follows some survival data in the presence of acetophenone. An example is function S of the occurrence of dimers (t + c), where t rep- shown in Fig.
Recommended publications
  • Biological Activity of Pyrimidine Derivativies: a Review
    Organic and Medicinal Chemistry International Journal ISSN 2474-7610 Review Article Organic & Medicinal Chem IJ Volume 2 Issue 2 - April 2017 Copyright © All rights are reserved by Ajmal R Bhat DOI: 10.19080/OMCIJ.2017.02.555581 Biological Activity of Pyrimidine Derivativies: A Review Ajmal R. Bhat* Department of Chemistry, S. B. B.S. University, India Submission: March 20, 2017; Published: April 03, 2017 *Corresponding author: Ajmal R Bhat, Department of Chemistry, S. B. B.S. University, Jalandhar Punjab-144030, India, Tel: Email: Abstract The Pyrimidine derivativies in the chemistry of biological systems has attracted much attention due to availability in the substructures of therapeutic natural products. As a result of their prominent and remarkable pharmacological activity, pyrimidine derivatives has been found the most prominent structures in nucleic acid. The present review gives brief information about biological activity of annulated pyrimidine derivatives. Keywords: Pyrimidine derivativies; Anti-inflammatory drugs; anticancer activity; Anti-HIV agents; Antihypertensive drugs Introduction moieties which also impart pharmacological properties (Figures 1-6). The wide applicability associated with these heterocycles pharmaceutical chemistry is having most important focus for Progressive and prospective research in the field of and its novel compounds encouraged the chemists to contribute the design and formulation of new and effective drugs and their and synthesis large number of biologically active novel drugs every research work is to develop and prepare pharmaceutical successful application in applied field. The main concern to substances and preparation, which are new, effective and and introduce some efficient methods. original and to overcome with more accuracy over a drug already known.
    [Show full text]
  • Lethality of Adenosine for Cultured Mammalian Cells by Interference with Pyrimidine Biosynthesis
    J. Cell Set. 13, 429-439 (i973) 429 Printed in Great Britain LETHALITY OF ADENOSINE FOR CULTURED MAMMALIAN CELLS BY INTERFERENCE WITH PYRIMIDINE BIOSYNTHESIS K. ISHII* AND H. GREEN Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, U.S.A. SUMMARY Adenosine at low concentration is toxic to mammalian cells in culture. This may escape notice because some sera (such as calf or human) commonly used in culture media, contain adenosine deaminase. In the absence of serum deaminase, adenosine produced inhibition of growth of a number of established cell lines at concentrations as low as 5 x io~* M, and killed at 2 x io~5 M. This effect required the presence of cellular adenosine kinase, since a mutant line deficient in this enzyme was 70-fold less sensitive to adenosine. The toxic substance is therefore derived from adenosine by phosphorylation, and is probably one of the adenosine nucleotides. The toxic effect of adenosine in concentrations up to 2 x io~* M was completely prevented by the addition of uridine or of pyrimidines potentially convertible to uridine, suggesting that the adenosine was interfering with endogenous synthesis of uridylate. In the presence of adenosine, the conversion of labelled aspartate to uridine nucleotides was reduced by 80-85 %> and labelled orotate accumulated in both the cells and in the culture medium. The lethality of adenosine results from inhibition by one of its nucleotide products of the synthesis of uridylate at the stage of phosphoribosylation of orotate. INTRODUCTION Though adenosine is not an intermediate on the endogenous pathway of purine biosynthesis, it can be efficiently utilized through the purine salvage pathways as the sole purine source in cultured mammalian cells whose endogenous purine synthesis is blocked by aminopterin (Green & Ishii, 1972).
    [Show full text]
  • A Previously Undescribed Pathway for Pyrimidine Catabolism
    A previously undescribed pathway for pyrimidine catabolism Kevin D. Loh*†, Prasad Gyaneshwar*‡, Eirene Markenscoff Papadimitriou*§, Rebecca Fong*, Kwang-Seo Kim*, Rebecca Parales¶, Zhongrui Zhouʈ, William Inwood*, and Sydney Kustu*,** *Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102; ¶Section of Microbiology, 1 Shields Avenue, University of California, Davis, CA 95616; and ʈCollege of Chemistry, 8 Lewis Hall, University of California, Berkeley, CA 94720-1460 Contributed by Sydney Kustu, January 19, 2006 The b1012 operon of Escherichia coli K-12, which is composed of tive N sources. Here we present evidence that the b1012 operon seven unidentified ORFs, is one of the most highly expressed codes for proteins that constitute a previously undescribed operons under control of nitrogen regulatory protein C. Examina- pathway for pyrimidine degradation and thereby confirm the tion of strains with lesions in this operon on Biolog Phenotype view of Simaga and Kos (8, 9) that E. coli K-12 does not use either MicroArray (PM3) plates and subsequent growth tests indicated of the known pathways. that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature Results but not at 37°C. A strain carrying an ntrB(Con) mutation, which Behavior on Biolog Phenotype MicroArray Plates. We tested our elevates transcription of genes under nitrogen regulatory protein parental strain NCM3722 and strains with mini Tn5 insertions in C control, could also grow on thymidine as the sole nitrogen several genes of the b1012 operon on Biolog (Hayward, CA) source, whereas strains with lesions in the b1012 operon could not.
    [Show full text]
  • Effect of Uridine on Response of 5-Azacytidine-Resistant Human Leukemic Cells to Inhibitors of De Novo Pyrimidine Synthesis1
    [CANCER RESEARCH 44, 5505-5510, December 1984] Effect of Uridine on Response of 5-Azacytidine-resistant Human Leukemic Cells to Inhibitors of de Novo Pyrimidine Synthesis1 S. Grant,2 K. Bhalla,3 and M. Gleyzer Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032 ABSTRACT activity is the most commonly encountered mode of resistance in animal systems (28). A uridine-cytidine kinase-deficient human promyelocytic leu- We have recently isolated a uridine-cytidine kinase-deficient, kemic subline (HL-60-5-aza-Cyd) has been isolated which is highly 5-aza-Cyd-resistant human promyelocytic leukemic sub- highly resistant to the antileukemic agent 5-azacytidine. Resist line (HL-60-5-aza-Cyd) (8) which is capable of surviving 5-aza- ant cells exposed to 10~5 M 5-azacytidine for 2 hr exhibit a Cyd concentrations (10~4 M) that exceed peak plasma levels in marked reduction in both the total ¡ntracellularaccumulation of humans (27). The purpose of the present studies was to assess 5-azacytidine (11.9 versus 156.0 pmol/106 cells) as well as its the metabolism of 5-aza-Cyd in these resistant cells and to incorporation into RNA (3.1 versus 43.4 pmol//ig o-ribose) com examine their response to a variety of clinically available inhibitors pared to the parent line. These biochemical changes are asso of de novo pyrimidine synthesis. Of the latter agents, PALA, an ciated with nearly a 100-fold decrease in sensitivity to the growth inhibitor of aspártele transcarbamylase (26), and pyrazofurin, an inhibitory effects of 5-azacytidine (concentration of drug associ ated with a 50% reduction in cell growth, 3.5 x 10~5 versus 5.0 inhibitor of orotidylate decarboxylase (5), are of particular inter x 10"7 M).
    [Show full text]
  • Abiotic Synthesis of Purine and Pyrimidine Ribonucleosides in Aqueous Microdroplets
    Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets Inho Nama,b, Hong Gil Nama,c,1, and Richard N. Zareb,1 aCenter for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; bDepartment of Chemistry, Stanford University, Stanford, CA 94305; and cDepartment of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea Contributed by Richard N. Zare, November 27, 2017 (sent for review October 24, 2017; reviewed by Bengt J. F. Nordén and Veronica Vaida) Aqueous microdroplets (<1.3 μm in diameter on average) containing In a recent study, we showed a synthetic pathway for the 15 mM D-ribose, 15 mM phosphoric acid, and 5 mM of a nucleobase formation of Rib-1-P using aqueous, high–surface-area micro- (uracil, adenine, cytosine, or hypoxanthine) are electrosprayed from a droplets. This surface or near-surface reaction circumvents the capillary at +5 kV into a mass spectrometer at room temperature and fundamental thermodynamic problem of the condensation re- 2+ 1 atm pressure with 3 mM divalent magnesium ion (Mg )asacat- action (12). It has been suggested that the air–water interface alyst. Mass spectra show the formation of ribonucleosides that com- provides a favorable environment for the prebiotic synthesis of prise a four-letter alphabet of RNA with a yield of 2.5% of uridine (U), biomolecules (12–17). Using the Rib-1-P made in the above 2.5% of adenosine (A), 0.7% of cytidine (C), and 1.7% of inosine (I) during the flight time of ∼50 μs.
    [Show full text]
  • Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11601–11606, October 1997 Medical Sciences Developmental disorder associated with increased cellular nucleotidase activity (purine-pyrimidine metabolismyuridineybrain diseases) THEODORE PAGE*†,ALICE YU‡,JOHN FONTANESI‡, AND WILLIAM L. NYHAN‡ Departments of *Neurosciences and ‡Pediatrics, University of California at San Diego, La Jolla, CA 92093 Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, August 7, 1997 (received for review June 26, 1997) ABSTRACT Four unrelated patients are described with a represent defects of purine metabolism, although no specific syndrome that included developmental delay, seizures, ataxia, enzyme abnormality has been identified in these cases (6). In recurrent infections, severe language deficit, and an unusual none of these disorders has it been possible to delineate the behavioral phenotype characterized by hyperactivity, short mechanism through which the enzyme deficiency produces the attention span, and poor social interaction. These manifesta- neurological or behavioral abnormalities. Therapeutic strate- tions appeared within the first few years of life. Each patient gies designed to treat the behavioral and neurological abnor- displayed abnormalities on EEG. No unusual metabolites were malities of these disorders by replacing the supposed deficient found in plasma or urine, and metabolic testing was normal metabolites have not been successful in any case. except for persistent hypouricosuria. Investigation of purine This report describes four unrelated patients in whom and pyrimidine metabolism in cultured fibroblasts derived developmental delay, seizures, ataxia, recurrent infections, from these patients showed normal incorporation of purine speech deficit, and an unusual behavioral phenotype were bases into nucleotides but decreased incorporation of uridine.
    [Show full text]
  • The De Novo Biosynthesis of Uridine Monophosphate (UMP) Involves Six Enzymatic Reactions and Appears to Be Encoded by Only Three Structural Genes in Animals
    J. Nutr. Sci. Vitaminol., 37, 517-528, 1991 Effect of Dietary Protein on Pyrimidine-Metabolizing Enzymes in Rats Masae KANEKO, Shigeko FUJIMOTO, Mariko KIKUGAWA, Yasuhide KONTANI, and Nanaya TAMAKI* Laboratory of Nutritional Chemistry, Faculty of Nutrition, Kobe-Gakuin University, Nishi-ku, Kobe 651-21, Japan (Received February 25, 1991) Summary The effect of dietary protein on pyrimidine-metabolizing enzymes was studied in the rat. The activities of dihydropyrimidine dehydrogenase and ƒÀ-ureidopropionase in the livers of rats fed a protein free diet were significantly decreased, while the activity of dihydropyrim idinase was unaffected. Protein deficiency (5%) also decreased the activity of ƒÀ-ureidopropionase. On the other hand, a high-protein diet (60%) increased the level of ƒÀ-ureidopropionase. The activities of ƒÀ- alanine-oxoglutarate aminotransferase (aminobutyrate aminotransferase) and D-3-aminoisobutyrate-pyruvate aminotransferase ((R)-3-amino-2- methylpropionate-pyruvate aminotransferase), which are present in mi tochondria, depended on the amount of protein in the diet. Ammonium ions supplemented in the diet and given by injection did not affect the activities of rat liver pyrimidine-metabolizing enzymes (dihydropyrimi dine dehydrogenase, dihydropyrimidinase, ƒÀ-ureidopropionase, ƒÀ-alanine - oxoglutarate aminotransferase and D-3-aminoisobutyrate-pyruvate ami notransferase). Dietary uridine resulted in the accumulation of uracil in the liver, but did not affect the activities of pyrimidine-metabolizing enzymes. Key Words dihydropyrimidine dehydrogenase, dihydropyrimidinase, ƒÀ- ureidopropionase, ƒÀ-alanine-oxoglutarate aminotransferase, D-3-amino isobutyrate-pyruvate aminotransferase, pyrimidine The de novo biosynthesis of uridine monophosphate (UMP) involves six enzymatic reactions and appears to be encoded by only three structural genes in animals. The active sites of the first three enzymes, carbamoyl-phosphate synthase, aspartate transcarbamylase, and dihydroorotase, are on a single large polypeptide * To whom correspondence should be addressed .
    [Show full text]
  • Purine and Pyrimidine Metabolism in Human Epidermis* Jean De Bersaques, Md
    THE JOURNAL OP INVESTIGATIVE DERMATOLOGY Vol. 4s, No. Z Copyright 1957 by The Williams & Wilkins Co. Fri nte,1 in U.S.A. PURINE AND PYRIMIDINE METABOLISM IN HUMAN EPIDERMIS* JEAN DE BERSAQUES, MD. The continuous cellular renewal occurring inthine, which contained 5% impurity, and for uric the epidermis requires a very active synthesisacid, which consisted of 3 main components. The reaction was stopped after 1—2 hours in- and breakdown of nuclear and cytoplasmiecubation at 37° and the products were spotted on nucleic acids. Data on the enzyme systemsWhatman 1 filter paper sheets. According to the participating in these metabolic processes arereaction products expected, a choice was made of rather fragmentary (1—9) and some are, inat least 2 among the following solvents, all used terms of biochemical time, in need of up- in ascending direction: 1. isoamyl alcohol—5% Na2HPO4 (1:1), dating. In some other publications (10—18), 2. water-saturated n-butanol, the presence and concentration of various in- 3. distilled water, termediate products is given. 4. 80% formic acid—n-hutanol——n-propanol— In this paper, we tried to collect and supple- acetone—30% trichloro-aeetic acid (5:8:4: ment these data by investigating the presence 5:3), 5. n-butanol——4% boric acid (43:7), or absence in epidermis of enzyme systems 6. isobutyrie acid—water—ammonia 0.880—ver- that have been described in other tissues. sene 0.1M(500:279:21:8), This first investigation was a qualitative one, 7. upper phase of ethyl acetate—water—formic and some limitations were set by practical acid (12:7:1), 8.
    [Show full text]
  • Identification of the Enzymatic Pathways of Nucleotide Metabolism in Human Lymphocytes and Leukemia Cells'
    [CANCER RESEARCH 33, 94-103, January 1973] Identification of the Enzymatic Pathways of Nucleotide Metabolism in Human Lymphocytes and Leukemia Cells' E. M. Scholar and P. Calabresi Department of Medicine, The Roger Williams General Hospital, Providence, Rhode Island 02908, and The Division of Biological and Medical Sciences,Brown University, Providence,Rhode Island 02912 SUMMARY monocytes, and lymphocytes, it is difficult to know in what particular fraction an enzyme activity is present. It would therefore be advantageous to separate out the different Extracts of lymphocytes from normal donors and from components of the leukocyte fraction before investigating patients with chronic lymphocytic leukemia (CLL) and acute their enzymatic activities. All previously reported work on the lymphoblastic leukemia were examined for a variety of enzymes of purine nucleotide metabolism was done at best in enzymes with activity for purine nucleotide biosynthesis, the whole white blood cell fraction. Those enzymes found to interconversion, and catabolism as well as for a selected be present included adenine and guanine phosphoribosyltrans number of enzymes involved in pyrimidine nucleotide ferase (2, 32), PNPase2 (7), deoxyadenosine deaminase (7), metabolism. Lymphocytes from all three donor types (normal, ATPase (4), and inosine kinase (21). CLL, acute lymphocytic leukemia) contained the following A detailed knowledge of the enzymatic pathways of purine enzymatic activities: adenine and guanine phosphoribosyl and pyrimidine nucleotide metabolism in normal lymphocytes transferase , adenosine kinase , nucieoside diphosphate kinase, and leukemia cells is important in elucidating any biochemical adenylate kinase, guanylate kinase, cytidylate kinase, uridylate differences that may exist. Such differences may be exploited kinase, adenosine deaminase, purine nucleoside phosphorylase, in chemotherapy and in gaining and understanding of the and adenylate deaminase (with ATP).
    [Show full text]
  • Purine Metabolism in Adenosine Deaminase Deficiency* (Immunodeficiency/Pyrimidines/Adenine Nucleotides/Adenine) GORDON C
    Proc. Nati. Acad. Sci. USA Vol. 73, No. 8, pp. 2867-2871, August 1976 Immunology Purine metabolism in adenosine deaminase deficiency* (immunodeficiency/pyrimidines/adenine nucleotides/adenine) GORDON C. MILLS, FRANK C. SCHMALSTIEG, K. BRYAN TRIMMER, ARMOND S. GOLDMAN, AND RANDALL M. GOLDBLUM Departments of Human Biological Chemistry and Genetics and Pediatrics, The University of Texas Medical Branch and Shriners Burns Institute, Galveston, Texas 77550 Communicated by J. Edwin Seegmiller, June 1, 1976 ABSTRACT Purine and pyrimidine metabolites were MATERIALS AND METHODS measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, Subject. A 5-month-old boy born on December 5, 1974 with EC 3.5.4.4) deficiency. Adenosine and adenine were measured severe combined immunodeficiency was investigated. Physical using newly devised ion exchange separation techniques and examination revealed enlarged costochondral junctions and a sensitive fluorescence assay. Plasma adenosine levels were sparse lymphoid tissue (5). The serum IgG (normal values in increased, whereas adenosine was normal in erythrocytes and parentheses) was 31 mg/dl (263-713); IgM, 8 mg/dl not detectable in urine. Increased amounts of adenine were (34-138); found in erythrocytes and urine as well as in the plasma. and IgA was less than 3 mg/dl (13-71). Clq was not detectable Erythrocyte adenosine 5'-monophosphate and adenosine di- by double immunodiffusion. The blood lymphocyte count was phosphate concentrations were normal, but adenosine tri- 200-400/mm3 with 2-4% sheep erythrocyte (E)-rosettes, 12% phosphate content was greatly elevated. Because of the possi- sheep erythrocyte-antibody-complement (EAC)-rosettes, 10% bility of pyrimidine starvation, pyrimidine nucleotides (py- IgG bearing cells, and no detectable IgA or IgM bearing cells.
    [Show full text]
  • Separation of Nucleic Acid Constituents Nucleic Acids Do Exist in Nuclei and Protoplasm of Biological Cells and Control the Growth and Heredity
    Separation of Nucleic acid constituents Nucleic acids do exist in nuclei and protoplasm of biological cells and control the growth and heredity. There are two kinds of nucleic acids; DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). There are six kinds of nucleotides formed of sugar, phosphoric acid and purine base or pyrimidine base, and four kinds of such nucleotides bond each other in various orders and constitute large molecules; poly-nucleotides or nucleic acids. Fig.VIII-7-1 illustrates such bond-structures of DNA and RNA and six kinds of bases that constitute them. Whereas DNA consists of four kinds of deoxy nucleotides the sugar component of that is 2-deoxy-D-ribose, deoxyadenylic acid (d-AMP), deoxyguanylic acid (d-GMP), deoxycytidylic acid (d-CMP) and deoxythymidylic acid (d-TMP), RNA consists of four kinds of ribo-nucleotides the sugar component of that is D-ribose, adenylic acid (AMP), guanylic acid (GMP), cytidylic acid (CMP) and uridylic acid (UMP). Another difference between DNA and RNA is that RNA holds uracil (Ura) instead of thymine (Thy) as pyrimidine base. DNA: Most of the bases are Ade, Gua, Cyt, Thy RNA: Bases are Ade, Gua, Cyt, Ura [Fig.VIII-7-1] Structures of nucleic acids Nucleic acids are used as written below: Firstly, taste nucleotides that are produced by enzymatic hydrolysis of RNA extracted from yeasts with NaCl or NaOH solutions are used as nucleic seasonings. Secondly, nucleotides are used as pharmaceuticals, e.g. anticancer agents, antiviral agents, blood circulation insufficiency and erebrovascular disease therapeutic agents. Yeast RNA produces, with yeast 5’-phosphodiesterase produced by Penicillium citrinum or Streptmyces aures, 5'-adenylic acid (5'-AMP), 5'-guanylic acid (5'-GMP), 5'-cytidylic acid (5'-CMP) and 5'-uridylic acid (5'-UMP), and 5'-AMP is then converted into 5'-inosinic acid (5'-IMP).
    [Show full text]
  • An All-Purine Precursor of Nucleic Acids
    Proc. NatI. Acad. Sci. USA Vol. 85, pp. 1134-1135, February 1988 Evolution An all-purine precursor of nucleic acids (evolution/metabolism/bases/coenzymes) GUNTER WACHTERSHAUSER 8000 Munich 2, Tal 29, Federal Republic of Germany Communicated by Karl R. Popper, October 26, 1987 ABSTRACT The theory is proposed that the pyrimidines in extant nucleic acids are postenzymatic substitutes for their isoelectronic and isogeometric position 3-bonded purine ana- logs xanthine and isoguanine, which were sibling products in a preenzymatic de novo purine pathway. Orgel's suggestion (1) that, in the evolution of life, the emergence of protein enzymes was preceded by the emer- gence of nucleic acids seems promising. Experimental at- tempts to demonstrate the possibility of an enzyme-free self-organization of RNA from prebiotic components have run into difficulties, however. Thus, Orgel concludes that RNA must have been preceded by a simpler ancestral nucleic acid (2). Such a precursor is proposed here. H The experimental difficulties appear to be due to the FIG. 1. Proposed base pairs. The upper base pair consists of a requirement of a pyrimidine base, since in the absence of a standard N9-bonded adenine and a proposed N3-bonded xanthine. polymerase, pyrimidine nucleotides do not oligomerize onto The lower base pair consists of a standard N9-bonded guanine and a complementary template. But purine nucleotides do so a proposed N3-bonded isoguanine. R represents a backbone moiety oligomerize (3). derived from ribose, deoxyribose, or a ribose precursor. To circumvent these difficulties, the all-purine precursor base pairs shown in Fig. 1 are postulated.
    [Show full text]