Applications of a Planar Separator Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Dynamic Data Structure for Planar Graph Embedding
October 1987 UILU-ENG-87-2265 ACT-83 COORDINATED SCIENCE LABORATORY College of Engineering Applied Computation Theory A DYNAMIC DATA STRUCTURE FOR PLANAR GRAPH EMBEDDING Roberto Tamassia UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Approved for Public Release. Distribution Unlimited. UNCLASSIFIED___________ SEÒjrtlfy CLASSIFICATION OP THIS PAGE REPORT DOCUMENTATION PAGE 1 a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS Unclassified None 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) UILU-ENG-87-2265 ACT #83 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Coordinated Science Lab (If applicati!a) University of Illinois N/A National Science Foundation 6c ADDRESS (City, Statt, and ZIP Coda) 7b. ADDRESS (City, Stata, and ZIP Coda) 1101 W. Springfield Avenue 1800 G Street, N.W. Urbana, IL 61801 Washington, D.C. 20550 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicatila) National Science Foundation ECS-84-10902 8c. ADDRESS (City, Stata, and ZIP Coda) 10. SOURCE OF FUNDING NUMBERS 1800 G Street, N.W. PROGRAM PROJECT TASK WORK UNIT Washington, D.C. 20550 ELEMENT NO. NO. NO. ACCESSION NO. A Dynamic Data Structure for Planar Graph Embedding 12. PERSONAL AUTHOR(S) Tamassia, Roberto 13a. TYPE OF REPORT 13b. TIME COVERED 14-^ A T E OP REPORT (Year, Month, Day) 5. PAGE COUNT Technical FROM______ TO 1987, October 26 ? 41 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continua on ravarsa if nacassary and identify by block number) FIELD GROUP SUB-GROUP planar graph, planar embedding, dynamic data structure, on-line algorithm, analysis of algorithms present a dynamic data structure that allows for incrementally constructing a planar embedding of a planar graph. -
Planar Graph Theory We Say That a Graph Is Planar If It Can Be Drawn in the Plane Without Edges Crossing
Planar Graph Theory We say that a graph is planar if it can be drawn in the plane without edges crossing. We use the term plane graph to refer to a planar depiction of a planar graph. e.g. K4 is a planar graph Q1: The following is also planar. Find a plane graph version of the graph. A B F E D C A Method that sometimes works for drawing the plane graph for a planar graph: 1. Find the largest cycle in the graph. 2. The remaining edges must be drawn inside/outside the cycle so that they do not cross each other. Q2: Using the method above, find a plane graph version of the graph below. A B C D E F G H non e.g. K3,3: K5 Here are three (plane graph) depictions of the same planar graph: J N M J K J N I M K K I N M I O O L O L L A face of a plane graph is a region enclosed by the edges of the graph. There is also an unbounded face, which is the outside of the graph. Q3: For each of the plane graphs we have drawn, find: V = # of vertices of the graph E = # of edges of the graph F = # of faces of the graph Q4: Do you have a conjecture for an equation relating V, E and F for any plane graph G? Q5: Can you name the 5 Platonic Solids (i.e. regular polyhedra)? (This is a geometry question.) Q6: Find the # of vertices, # of edges and # of faces for each Platonic Solid. -
Partial Duality and Closed 2-Cell Embeddings
Partial duality and closed 2-cell embeddings To Adrian Bondy on his 70th birthday M. N. Ellingham1;3 Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, Tennessee 37240, U.S.A. [email protected] Xiaoya Zha2;3 Department of Mathematical Sciences, Box 34 Middle Tennessee State University Murfreesboro, Tennessee 37132, U.S.A. [email protected] April 28, 2016; to appear in Journal of Combinatorics Abstract In 2009 Chmutov introduced the idea of partial duality for embeddings of graphs in surfaces. We discuss some alternative descriptions of partial duality, which demonstrate the symmetry between vertices and faces. One is in terms of band decompositions, and the other is in terms of the gem (graph-encoded map) representation of an embedding. We then use these to investigate when a partial dual is a closed 2-cell embedding, in which every face is bounded by a cycle in the graph. We obtain a necessary and sufficient condition for a partial dual to be closed 2-cell, and also a sufficient condition for no partial dual to be closed 2-cell. 1 Introduction In this paper a surface Σ means a connected compact 2-manifold without boundary. By an open or closed disk in Σ we mean a subset of the surface homeomorphic to such a subset of R2. By a simple closed curve or circle in Σ we mean an image of a circle in R2 under a continuous injective map; a simple arc is a similar image of [0; 1]. The closure of a set S is denoted S, and the boundary is denoted @S. -
Lecture 20 — March 20, 2013 1 the Maximum Cut Problem 2 a Spectral
UBC CPSC 536N: Sparse Approximations Winter 2013 Lecture 20 | March 20, 2013 Prof. Nick Harvey Scribe: Alexandre Fr´echette We study the Maximum Cut Problem with approximation in mind, and naturally we provide a spectral graph theoretic approach. 1 The Maximum Cut Problem Definition 1.1. Given a (undirected) graph G = (V; E), the maximum cut δ(U) for U ⊆ V is the cut with maximal value jδ(U)j. The Maximum Cut Problem consists of finding a maximal cut. We let MaxCut(G) = maxfjδ(U)j : U ⊆ V g be the value of the maximum cut in G, and 0 MaxCut(G) MaxCut = jEj be the normalized version (note that both normalized and unnormalized maximum cut values are induced by the same set of nodes | so we can interchange them in our search for an actual maximum cut). The Maximum Cut Problem is NP-hard. For a long time, the randomized algorithm 1 1 consisting of uniformly choosing a cut was state-of-the-art with its 2 -approximation factor The simplicity of the algorithm and our inability to find a better solution were unsettling. Linear pro- gramming unfortunately didn't seem to help. However, a (novel) technique called semi-definite programming provided a 0:878-approximation algorithm [Goemans-Williamson '94], which is optimal assuming the Unique Games Conjecture. 2 A Spectral Approximation Algorithm Today, we study a result of [Trevison '09] giving a spectral approach to the Maximum Cut Problem with a 0:531-approximation factor. We will present a slightly simplified result with 0:5292-approximation factor. -
Bandwidth, Expansion, Treewidth, Separators and Universality for Bounded-Degree Graphs$
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector European Journal of Combinatorics 31 (2010) 1217–1227 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphsI Julia Böttcher a, Klaas P. Pruessmann b, Anusch Taraz a, Andreas Würfl a a Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3, D-85747 Garching bei München, Germany b Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zürich, Switzerland article info a b s t r a c t Article history: We establish relations between the bandwidth and the treewidth Received 3 March 2009 of bounded degree graphs G, and relate these parameters to the size Accepted 13 October 2009 of a separator of G as well as the size of an expanding subgraph of Available online 24 October 2009 G. Our results imply that if one of these parameters is sublinear in the number of vertices of G then so are all the others. This implies for example that graphs of fixed genus have sublinear bandwidth or, more generally, a corresponding result for graphs with any fixed forbidden minor. As a consequence we establish a simple criterion for universality for such classes of graphs and show for example that for each γ > 0 every n-vertex graph with minimum degree 3 C . 4 γ /n contains a copy of every bounded-degree planar graph on n vertices if n is sufficiently large. ' 2009 Elsevier Ltd. -
A Study of Solution Strategies for Some Graph
A STUDY OF SOLUTION STRATEGIES FOR SOME GRAPH EMBEDDING PROBLEMS A Synopsis Submitted in the partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics Submitted by Aditi Khandelwal Prof. Gur Saran Prof. Kamal Srivastava Supervisor Co-supervisor Department of Mathematics Department of Mathematics Prof. Ravinder Kumar Prof. G.S. Tyagi Head, Department of Head, Department of Physics Mathematics Dean, Faculty of Science Department of Mathematics Faculty of Science, Dayalbagh Educational Institute (Deemed University) Dayalbagh, Agra-282005 March, 2017. A STUDY OF SOLUTION STRATEGIES FOR SOME GRAPH EMBEDDING PROBLEMS 1. Introduction Many problems of practical interest can easily be represented in the form of graph theoretical optimization problems like the Travelling Salesman Problem, Time Table Scheduling Problem etc. Recently, the application of metaheuristics and development of algorithms for problem solving has gained particular importance in the field of Computer Science and specially Graph Theory. Although various problems are polynomial time solvable, there are large number of problems which are NP-hard. Such problems can be dealt with using metaheuristics. Metaheuristics are a successful alternative to classical ways of solving optimization problems, to provide satisfactory solutions to large and complex problems. Although they are alternative methods to address optimization problems, there is no theoretical guarantee on results [JJM] but usually provide near optimal solutions in practice. Using heuristic -
Networkx Reference Release 1.9.1
NetworkX Reference Release 1.9.1 Aric Hagberg, Dan Schult, Pieter Swart September 20, 2014 CONTENTS 1 Overview 1 1.1 Who uses NetworkX?..........................................1 1.2 Goals...................................................1 1.3 The Python programming language...................................1 1.4 Free software...............................................2 1.5 History..................................................2 2 Introduction 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 127 4.1 Approximation.............................................. 127 4.2 Assortativity............................................... 132 4.3 Bipartite................................................. 141 4.4 Blockmodeling.............................................. 161 4.5 Boundary................................................. 162 4.6 Centrality................................................. 163 4.7 Chordal.................................................. 184 4.8 Clique.................................................. 187 4.9 Clustering................................................ 190 4.10 Communities............................................... 193 4.11 Components............................................... 194 4.12 Connectivity.............................................. -
Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges
Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges J. Joseph Fowler1, Michael J¨unger2, Stephen Kobourov1, and Michael Schulz2 1 University of Arizona, USA {jfowler,kobourov}@cs.arizona.edu ⋆ 2 University of Cologne, Germany {mjuenger,schulz}@informatik.uni-koeln.de ⋆⋆ Abstract. A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the Euclidean plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same simple curve in the simultaneous drawing. Determining in polynomial time which pairs of graphs share a simultaneous embedding with fixed edges (SEFE) has been open. We give a necessary and sufficient condition for when a pair of graphs whose union is homeomorphic to K5 or K3,3 can have an SEFE. This allows us to determine which (outer)planar graphs always an SEFE with any other (outer)planar graphs. In both cases, we provide efficient al- gorithms to compute the simultaneous drawings. Finally, we provide an linear-time decision algorithm for deciding whether a pair of biconnected outerplanar graphs has an SEFE. 1 Introduction In many practical applications including the visualization of large graphs and very-large-scale integration (VLSI) of circuits on the same chip, edge crossings are undesirable. A single vertex set can be used with multiple edge sets that each correspond to different edge colors or circuit layers. While the pairwise union of all edge sets may be nonplanar, a planar drawing of each layer may be possible, as crossings between edges of distinct edge sets are permitted. -
A Note on Soenergy of Stars, Bi-Stars and Double Star Graphs
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 6(2016), 105-113 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p) A NOTE ON soENERGY OF STARS, BISTAR AND DOUBLE STAR GRAPHS S. P. Jeyakokila and P. Sumathi Abstract. Let G be a finite non trivial connected graph.In the earlier paper idegree, odegree, oidegree of a minimal dominating set of G were introduced, oEnergy of a graph with respect to the minimal dominating set was calculated in terms of idegree and odegree. Algorithm to get the soEnergy was also introduced and soEnergy was calculated for some standard graphs in the earlier papers. In this paper soEnergy of stars, bistars and double stars with respect to the given dominating set are found out. 1. INTRODUCTION Let G = (V; E) be a finite non trivial connected graph. A set D ⊂ V is a dominating set of G if every vertex in V − D is adjacent to some vertex in D.A dominating set D of G is called a minimal dominating set if no proper subset of D is a dominating set. Star graph is a tree consisting of one vertex adjacent to all the others. Bistar is a graph obtained from K2 by joining n pendent edges to both the ends of K2. Double star is the graph obtained from K2 by joining m pendent edges to one end and n pendent edges to the other end of K2. -
Total Chromatic Number of Star and Bistargraphs 1D
International Journal of Pure and Applied Mathematics Volume 117 No. 21 2017, 699-708 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu Total Chromatic Number of Star and BistarGraphs 1D. Muthuramakrishnanand 2G. Jayaraman 1Department of Mathematics, National College, Trichy, Tamil Nadu, India. [email protected] 2Research Scholar, National College, Trichy, Tamil Nadu, India. [email protected] Abstract A total coloring of a graph G is an assignment of colors to both the vertices and edges of G, such that no two adjacent or incident vertices and edges of G are assigned the same colors. In this paper, we have discussed 2 the total coloring of 푀 퐾1,푛 , 푇 퐾1,푛 , 퐿 퐾1,푛 and 퐵푛,푛and we obtained the 2 total chromatic number of 푀 퐾1,푛 , 푇 퐾1,푛 , 퐿 퐾1,푛 and 퐵푛,푛. AMS Subject Classification: 05C15 Keywords and Phrases:Middle graph, line graph, total graph, star graph, square graph, total coloring and total chromatic number. 699 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction In this paper, we have chosen finite, simple and undirected graphs. Let퐺 = (푉 퐺 , 퐸 퐺 ) be a graph with the vertex set 푉(퐺) and the edge set E(퐺), respectively. In 1965, the concept of total coloring was introduced by Behzad [1] and in 1967 he [2] came out new ideology that, the total chromatic number of complete graph and complete bi-partite graph. A total coloring of퐺, is a function 푓: 푆 → 퐶, where 푆 = 푉 퐺 ∪ 퐸 퐺 and C is a set of colors to satisfies the given conditions. -
Achromatic Coloring on Double Star Graph Families
International J.Math. Combin. Vol.3 (2009), 71-81 Achromatic Coloring on Double Star Graph Families Vernold Vivin J. Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India. E-mail: vernold [email protected], [email protected] Venkatachalam M. Department of Mathematics, SSK College of Engineering and Technology, Coimbatore - 641 105, Tamil Nadu, India. E-mail: [email protected] Akbar Ali M.M. Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India. E-mail: um [email protected] Abstract: The purpose of this article is to find the achromatic number, i.e., Smarandachely achromatic 1-coloring for the central graph, middle graph, total graph and line graph of double star graph K1,n,n denoted by C(K1,n,n), M(K1,n,n), T (K1,n,n) and L(K1,n,n) re- spectively. Keywords: Smarandachely achromatic k-coloring, Smarandachely achromatic number, central graph, middle graph, total graph, line graph and achromatic coloring. AMS(2000): 05C15 §1. Preliminaries For a given graph G = (V, E) we do an operation on G, by subdividing each edge exactly once and joining all the non adjacent vertices of G. The graph obtained by this process is called central graph [10] of G denoted by C(G). Let G be a graph with vertex set V (G) and edge set E(G). The middle graph [4] of G, denoted by M(G) is defined as follows. The vertex set of M(G) is V (G) E(G). Two vertices ∪ x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G. -
Separator Theorems and Turán-Type Results for Planar Intersection Graphs
SEPARATOR THEOREMS AND TURAN-TYPE¶ RESULTS FOR PLANAR INTERSECTION GRAPHS JACOB FOX AND JANOS PACH Abstract. We establish several geometric extensions of the Lipton-Tarjan separator theorem for planar graphs. For instance, we show that any collection C of Jordan curves in the plane with a total of m p 2 crossings has a partition into three parts C = S [ C1 [ C2 such that jSj = O( m); maxfjC1j; jC2jg · 3 jCj; and no element of C1 has a point in common with any element of C2. These results are used to obtain various properties of intersection patterns of geometric objects in the plane. In particular, we prove that if a graph G can be obtained as the intersection graph of n convex sets in the plane and it contains no complete bipartite graph Kt;t as a subgraph, then the number of edges of G cannot exceed ctn, for a suitable constant ct. 1. Introduction Given a collection C = fγ1; : : : ; γng of compact simply connected sets in the plane, their intersection graph G = G(C) is a graph on the vertex set C, where γi and γj (i 6= j) are connected by an edge if and only if γi \ γj 6= ;. For any graph H, a graph G is called H-free if it does not have a subgraph isomorphic to H. Pach and Sharir [13] started investigating the maximum number of edges an H-free intersection graph G(C) on n vertices can have. If H is not bipartite, then the assumption that G is an intersection graph of compact convex sets in the plane does not signi¯cantly e®ect the answer.