Volume 2, Chapter 11-11: Aquatic Insects: Holometabola-Trichoptera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Species and Records of Chimarra (Trichoptera, Philopotamidae) from Northeastern Brazil, and an Updated Key to Subgenus Ch
A peer-reviewed open-access journal ZooKeys 491: 119–142 (2015) New species of Chimarra from Northeastern Brazil 119 doi: 10.3897/zookeys.491.8553 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New species and records of Chimarra (Trichoptera, Philopotamidae) from Northeastern Brazil, and an updated key to subgenus Chimarra (Chimarrita) Albane Vilarino1, Adolfo Ricardo Calor1 1 Universidade Federal da Bahia, Instituto de Biologia, Departamento de Zoologia, PPG Diversidade Animal, Laboratório de Entomologia Aquática - LEAq. Rua Barão de Jeremoabo, 147, campus Ondina, Ondina, CEP 40170-115, Salvador, Bahia, Brazil Corresponding authors: Albane Vilarino ([email protected]); Adolfo Ricardo Calor ([email protected]) Academic editor: R. Holzenthal | Received 4 September 2014 | Accepted 12 February 2015 | Published 26 March 2015 http://zoobank.org/E6E62707-9A0F-477D-ACE9-B02553171FBD Citation: Vilarino A, Calor AR (2015) New species and records of Chimarra (Trichoptera, Philopotamidae) from Northeastern Brazil, and an updated key to subgenus Chimarra (Chimarrita). ZooKeys 491: 119–142. doi: 10.3897/ zookeys.491.8553 Abstract Two new species of Chimarra (Chimarrita) are described and illustrated, Chimarra (Chimarrita) mesodonta sp. n. and Chimarra (Chimarrita) anticheira sp. n. from the Chimarra (Chimarrita) rosalesi and Chimarra (Chimarrita) simpliciforma species groups, respectively. The morphological variation ofChimarra (Curgia) morio is also illustrated. Chimarra (Otarrha) odonta and Chimarra (Chimarrita) kontilos are reported to occur in the northeast region of Brazil for the first time. An updated key is provided for males and females of the all species in the subgenus Chimarrita. Keywords Biodiversity, caddisflies, Curgia, description, Neotropics, phylogenetic relationships, taxonomy Introduction Philopotamidae Stephens, 1829 is a cosmopolitan family with approximately 1,270 de- scribed species in 19 extant genera. -
Species Fact Sheet for Homoplectra Schuhi
SPECIES FACT SHEET Common Name: Schuh’s Homoplectran Caddisfly Scientific Name: Homoplectra schuhi Denning 1965 Phylum: Mandibulata Class: Insecta Order: Trichoptera Suborder: Annulipalpia Family: Hydropsychidae Subfamily: Diplectroninae Conservation Status Global Status (2005): G3Q – Vulnerable, but taxonomic questions persist (last reviewed 25 Mar 2005) National Status (United States): N3 - Vulnerable (23 Feb 2005) State Status (Oregon): S3 - Vulnerable (NatureServe 2015) Oregon Biodiversity Information Center: List 3 IUCN Red List: NE – Not evaluated Taxonomic Note This species has been given a global status of G3Q due to the limited number of specimens that have been reviewed to date, and the variability of diagnostic characteristics (NatureServe 2015). This genus is in need of additional collecting and taxonomic review, which may lead to synonymization with older described species (Wisseman 2015, Ruiter 2015). For example, specimens identified as H. luchia Denning 1966 may in fact be synonyms of H. schuhi (Ruiter 2015). Technical Description A microscope is required to identify Homoplectra schuhi, as identifications are based on genitalia anatomy. The advice of a Trichoptera expert is suggested. See Denning (1965) for lateral view drawings of the male and female genitalia. Adult: The adults of this species are small, moth-like insects in the caddisfly family Hydropsychidae. Homoplectra males are recognized by the complexity of the phallic apparatus, which can be complicated by very strong development of several sclerotized branches (Schmid 1998). Holotype male: Length 6 mm. General color of head, thorax and abdomen dark brown, wings tan with no pattern, legs and antennae varying shades of brownish. Pubescence of head, thorax and legs aureous. Fifth sternite with a dorsal filament enlarged distally and curved dorso-caudad. -
Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively. -
( ) Hydropsychidae (Insecta: Trichoptera) As Bio-Indicators Of
ว.วิทย. มข. 40(3) 654-666 (2555) KKU Sci. J. 40(3) 654-666 (2012) แมลงน้ําวงศ!ไฮดรอบไซคิดี้ (อันดับไทรคอบเทอร-า) เพื่อเป2นตัวบ-งชี้ทางชีวภาพของคุณภาพน้ํา Hydropsychidae (Insecta: Trichoptera) as Bio-indicators of Water QuaLity แตงออน พรหมมิ1 บทคัดยอ การประเมินคุณภาพน้ําในแมน้ําและลําธารควรที่จะมีการใชปจจัยทางกายภาพ เคมีและชีวภาพควบคูกัน ไป ปจจัยทางชีวภาพที่มีศักยภาพในการประเมินคุณภาพน้ําในแหลงน้ําคือกลุมสัตว+ไมมีกระดูกสันหลังขนาดใหญที่ อาศัยอยูตามพื้นทองน้ํา โดยเฉพาะแมลงน้ําอันดับไทรคอบเทอรา ซึ่งเป3นกลุมสัตว+ที่มีความหลากหลายมากกลุม หนึ่งในแหลงน้ํา ระยะตัวออนของแมลงกลุมนี้ทุกชนิดอาศัยอยูในแหลงน้ํา เป3นองค+ประกอบหลักในแหลงน้ําและ เป3นตัวหมุนเวียนสารอาหารในแหลงน้ํา ระยะตัวออนของแมลงน้ํากลุมนี้จะตอบสนองตอปจจัยของสภาพแวดลอม ในแหลงน้ําทุกรูปแบบ ระยะตัวเต็มวัยอาศัยอยูบนบกบริเวณตนไมซึ่งไมไกลจากแหลงน้ํามากนัก หากินเวลา กลางคืน ความรูทางดานอนุกรมวิธานและชีววิทยาไมวาจะเป3นระยะตัวออนหรือตัวเต็มวัยของแมลงน้ําอันดับไทร คอบเทอราในประเทศแถบยุโรปตะวันตกและอเมริกาเหนือสามารถวินิจฉัยไดถึงระดับชนิด โดยเฉพาะแมลงน้ํา วงศ+ไฮดรอบไซคิดี้ มีการประยุกต+ใชในการติดตามตรวจสอบทางชีวภาพของคุณภาพน้ํา เนื่องจากชนิดของตัวออน แมลงน้ําวงศ+นี้มีความทนทานตอมลพิษในชวงกวางมากกวาแมลงน้ําชนิดอื่น ๆ 1สายวิชาวิทยาศาสตร+ คณะศิลปศาสตร+และวิทยาศาสตร+ มหาวิทยาลัยเกษตรศาสตร+ วิทยาเขตกําแพงแสน จ.นครปฐม 73140 E-mail: [email protected] บทความ วารสารวิทยาศาสตร+ มข. ปQที่ 40 ฉบับที่ 3 655 ABSTRACT Assessment on rivers and streams water quality should incorporate aspects of chemical, physical, and biological. Of all the potential groups of freshwater organisms that have been considered for -
CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut
CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut Seventh Edition Spring 2013 Authors and Acknowledgements Michael Beauchene produced the First Edition and revised the Second and Third Editions. Christopher Sullivan revised the Fourth and Fifth Editions. Erin McCollum developed the Sixth Edition with editorial assistance from Michael Beauchene. The First through Sixth Editions were developed and revised for use with Project SEARCH, a program formerly coordinated by CTDEEP but presently inactive. This Seventh Edition has been slightly modified for use by Connecticut high school students participating in the Connecticut Envirothon Aquatic Ecology workshop. Original drawings provided by Michael Beauchene and by the Volunteer Stream Monitoring Partnership at the University of Minnesota’s Water Resources Center. This page intentionally left blank. About the Key Scope of the Key This key is intended to assist Connecticut Envirothon students in the identification of aquatic benthic macroinvertebrates. As such, it is targeted toward organisms that are most commonly found in the riffle microhabitats of Connecticut streams. When conducting an actual field study of riffle dwelling macroinvertebrates, there may be an organism collected at a site in Connecticut that will not be found in this key. In this case, you should utilize another reference guide to identify the organism. Several useful guides are listed below. AQUATIC ENTOMOLOGY by Patrick McCafferty A GUIDE TO COMMON FRESHWATER INVERTEBRATES OF NORTH AMERICA by J. Reese Voshell, Jr. AN INTRODUCTION TO THE AQUATIC INSECTS OF NORTH AMERICA by R.W. Merritt and K.W. Cummins Most organisms will be keyed to the family level, however several will not be identified beyond the Kingdom Animalia phylum, class, or order. -
Biologiezentrum Linz/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 1993 Band/Volume: 0025_2 Autor(en)/Author(s): Malicky Hans Artikel/Article: Neue asiatische Köcherfliegen (Trichoptera: Philopotamidae, Polycentropodidae, Psychomyidae, Ecnomidae, Hydropsychidae, Leptoceridae). 1099-1136 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 25/2 1099-1136 31.12.1993 Neue asiatische Köcherfliegen (Trichoptera: Philopotamidae, Polycentropodidae, Psychomyidae, Ecnomidae, Hydropsychidae, Leptoceridae) H. MALICKY Abstract. New species of caddisflies are described and figured which were found in Pakistan, India, Burma, Nepal, China, Malaysia, Sumatra, Sulawesi, Brunei, the Philippines (Luzon, Palawan, Sibuyan, Tawi Tawi), Western New Guinea and the Bismarck Islands, and which belong to the genera Chimarra (16 species), Doloclanes (1), Pseudoneureclipsis (4), Plectrocnemia (2), Nyctiophylax (6), Polyplectropus (7), Psychomyia (9), Padangpsyche nov.gen.(l), Tinodes (1), Ecnomus (4), Hydromanicus (4) and Leptocerus (5). The male genitalia of Plectrocnemia tortosa BANKS, Polyplectropus javanicus ULMER, Psychomyia fulmeki (ULMER), P. thienemanni (ULMER), Ecnomus tagalensis (BANKS), E. pseudotenellus ULMER and E. robustior ULMER are figured for comparison. Hier lege ich wieder einige Neubeschreibungen nach Material verschiede- ner Herkunft vor. Wenn nicht extra anders angegeben, habe ich es selber -
Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute
Clemson University TigerPrints Publications Biological Sciences 3-2010 Defining the Genus Hydropsyche (Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute Xin Zhou University of Guelph John C. Morse Clemson University, [email protected] Karl M. Kjer Rutgers University - New Brunswick/Piscataway Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. J. N. Am. Benthol. Soc., 2010, 29(3):918–933 ’ 2010 by The North American Benthological Society DOI: 10.1899/09-031.1 Published online: 29 June 2010 Defining the genus Hydropsyche (Trichoptera:Hydropsychidae) based on DNA and morphological evidence Christy Jo Geraci1 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012 USA Xin Zhou2 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1 Canada John C. Morse3 Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, South Carolina 29634 USA Karl M. Kjer4 Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901 USA Abstract. In this paper, we review the history of Hydropsychinae genus-level classification and nomenclature and present new molecular evidence from mitochondrial cytochrome c oxidase subunit I (COI) and nuclear large subunit ribosomal ribonucleic acid (28S) markers supporting the monophyly of the genus Hydropsyche. -
Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760
Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest. -
Biological Monitoring of Surface Waters in New York State, 2019
NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect. -
How Does Urban Pollution Influence Macroinvertebrate Traits In
water Article How does Urban Pollution Influence Macroinvertebrate Traits in Forested Riverine Systems? Augustine O. Edegbene 1,* , Francis O. Arimoro 2 and Oghenekaro N. Odume 1 1 Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda (Grahamstown) 6140, South Africa; [email protected] 2 Department of Animal Biology (Applied Hydrobiology Unit), Federal University of Technology, P.M.B. 65, Minna, Nigeria; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 29 October 2020; Published: 5 November 2020 Abstract: The influence of urbanization on macroinvertebrate traits was explored in forested rivers in the Niger Delta area of Nigeria. Physico-chemical variables were sampled on a monthly basis alongside macroinvertebrates in 20 sites of 11 rivers spanning 2008–2012. Physico-chemical variables were used to classify the 20 sites into three ecological classes, namely: least impacted sites (LIS), moderately impacted sites (MIS) and highly impacted sites (HIS) using principal component analysis. Our results based on RLQ (R = physico-chemical variables, L = macroinvertebrate taxa and Q = macroinvertebrate traits) and fourth-corner analyses revealed that large body size, grazing and hardshell were positively significantly associated with LIS on the RLQ. They were also either negatively correlated with any two of water temperature, nutrients, BOD5 and flow velocity or positively significantly correlated with increasing DO. Thus, these traits were considered sensitive to urban pollution in forested rivers. Burrowing, predation and pupa aquatic stage, which were positively associated with HIS, were also significantly negatively correlated with increasing DO, and were deemed tolerant of urban pollution in forested rivers. -
Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me. -
Trichoptera: Hydropsychidae) in the Carpathians
Eur. J. Entomol. 112(1): 106–113, 2015 doi: 10.14411/eje.2015.006 ISSN 1210-5759 (print), 1802-8829 (online) Spatial ecology of Hydropsyche incognita (Trichoptera: Hydropsychidae) in the Carpathians MÃLINA PÎRVU 1, 2, CLAUDIA ZAHARIA3, ALINA SATMARI 4 and LUCIAN PÂRVULESCU 1 1 Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timișoara, Timișoara, Romania; e-mails: [email protected]; [email protected] 2 Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania 3 Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timișoara, Timișoara, Romania; e-mail: [email protected] 4 Department of Geography, Faculty of Chemistry, Biology, Geography, West University of Timișoara, Timișoara, Romania; e-mail: [email protected] Key words. Trichoptera, Hydropsychidae, Hydropsyche incognita, ecological preferences, spatial analysis, species distribution modelling Abstract. Caddisflies are often used in studies on freshwater ecosystem ecology because of their aquatic-dependent larvae. The pre- sent study addresses the ecological affinities of larvae of Hydropsyche incognita in terms of the pattern of distribution of this species in the Romanian Carpathians using a boosted regression trees (BRT) model. A population cluster located in the western Romanian Carpathians was identified by the spatial analysis. The statistical model revealed that this species prefers a neutral to low-alkaline pH, high levels of dissolved oxygen, low conductivity, fast flowing water, moderate sized rivers at an altitude below 600 m a.s.l. and low concentrations of organic pollutants. An eastward decrease in the frequency of H.