S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation

Total Page:16

File Type:pdf, Size:1020Kb

S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation Article S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation Ivan V. Chebotarev 1, Vladislav A. Guskov 1, Stanislav L. Ogarkov 1,2,* and Matthew Bernard 1,* 1 Moscow Institute of Physics and Technology (MIPT), Institutskiy Pereulok 9, 141701 Dolgoprudny, Russia; [email protected] (I.V.C.); [email protected] (V.A.G.) 2 Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya 22, 127055 Moscow, Russia * Correspondence: [email protected] (S.L.O.); [email protected] (M.B.) Received: 18 December 2018; Accepted: 12 February 2019; Published: 19 February 2019 Abstract: Nonlocal quantum theory of a one-component scalar field in D-dimensional Euclidean spacetime is studied in representations of S-matrix theory for both polynomial and nonpolynomial interaction Lagrangians. The theory is formulated on coupling constant g in the form of an infrared smooth function of argument x for space without boundary. Nonlocality is given by the evolution of a Gaussian propagator for the local free theory with ultraviolet form factors depending on ultraviolet length parameter l. By representation of the S-matrix in terms of abstract functional integral over a primary scalar field, the S form of a grand canonical partition function is found. By expression of S-matrix in terms of the partition function, representation for S in terms of basis functions is obtained. Derivations are given for a discrete case where basis functions are Hermite functions, and for a continuous case where basis functions are trigonometric functions. The obtained expressions for the S-matrix are investigated within the framework of variational principle based on Jensen inequality. Through the latter, the majorant of S (more precisely, of − ln S) is constructed. Equations with separable kernels satisfied by variational function q are found and solved, yielding results for both polynomial theory j4 (with suggestions for j6) and nonpolynomial sine-Gordon theory. A new definition of the S-matrix is proposed to solve additional divergences which arise in application of Jensen inequality for the continuous case. Analytical results are obtained and numerically illustrated, with plots of variational functions q and corresponding majorants for the S-matrices of the theory. For simplicity of numerical calculation, the D = 1 case is considered, and propagator for free theory G is in the form of Gaussian function typically in the Virton–Quark model, although the obtained analytical inferences are not, in principle, limited to these particular choices. Formulation for nonlocal QFT in momentum k space of extra dimensions with subsequent compactification into physical spacetime is discussed, alongside the compactification process. Keywords: quantum field theory (QFT); scalar QFT; nonlocal QFT; nonpolynomial QFT; Euclidean QFT; S-matrix; form factor; generating functional; abstract functional integral; Gaussian measure; grand canonical partition function; basis functions representation; renormalization group; compactification process 1. Introduction The timeline of Quantum Field Theory (QFT) offers events that are quite asymmetric to each other. Brilliant triumphs, on the one hand, in explanations and predictions of different processes at low-energy Quantum Electrodynamics (QED), high-energy Quantum Chromodynamics (QCD), Theory of Critical Phenomena, and several other branches of the modern science; but catastrophe, on the other hand, in various attempts to describe high-energy physics in scalar theory and QED levels as well as low-energy QCD physics. Identically, in discoveries of renormalizable field theories, Particles 2019, 2, 103–139; doi:10.3390/particles2010009 www.mdpi.com/journal/particles Particles 2019, 2 104 the conjecture that only those make sense is opposing to conjecture that there are any and all theories. Nonetheless, robust indeterminacy is fueled by nonspeculative mathematical theory. In non-Abelian Gauge QFT, unifying electromagnetic and weak interactions into a general model, weak interaction processes are consistently described. In another triumph of non-Abelian QFT, the Standard Model (SM), high-energy problem of QED vanishes in chromodynamic reaction channels, because QCD consistently in a high-energy region has the quintessential property of asymptotic freedom. Recently, the discovery of the Higgs boson, the last SM element in the energy domain, where existence is most natural, occurred. Notably, by the remarkable event confirming validity of SM, a quantum-trivial local scalar field quantum theory is, after all, not quantum-trivial if the SM is a sector of a non-Abelian gauge theory; this is analogous to a QED event. Supersymmetric non-Abelian QFTs as well as Integrable QFTs [1–9] in earnest search for gravity quantum theory and naturally complement superstring theory. Under such sophistication for superstring theory, which is almost surely the strongest pick for the fundamental theory of nature, the ultimate truth, it is not impossible to view all QFTs as effective (low-energy) theory given by renormalizable and nonrenormalizable QFTs, respectively. In other words, every field theory is a limit in superstring theory. Hypothetically, bosonic strings are given consideration if tachyon degrees of freedom form a condensate that is consistently separable by physical expressions; if a perfect factorization, not known to date, is found [10,11]. QFT, symmetrical and fundamental, is nevertheless consistent in the framework; superstring theory is field theory. A Euclidean nonlocal QFT with nonpolynomial interaction Lagrangian is robust theory, mathematically rigorous and logically closed [12–18], dual to statistical physics models, encouraging, among other things, further study [19–25] by a statistical physics analogy that in the reverse direction, informs every structure of nonlocality form factors. Under a robust QFT, the existence of nonlocality, be it fundamental or a phenomenon, in the special case of interest of a four-dimensional spacetime, is undeniable by all uncertainties. The question of how analytical continuation in the Minkowski spacetime is arranged is, however, open due to the lack of existence of the no-go theorem [13,14]. At the auspicious moment, nonlocal QFT is really a self-consistent theory to ensure whether observed processes can or cannot be explained. The nonlocal form factor introduced from physical point of view accounts for meaningful physical processes at too small distances, but is an oversight of experiment design. A QFT problem is considered solved if the mathematical apparatus is created for calculus of the S-matrix of the theory, which is the set of all probability amplitudes of possible transitions between the physical system states under consideration. In hadronic interaction (light hadrons) low-energy physics, nonlocal QFT is called nonlocal quark theory; the Virton–Quark model [14,26–30] is considered effective theory for describing quark confinement field due to no additional field, typically a gluon field, required to ensure quark confinement. With first-principle QCD, it is impossible to obtain satisfactory description of low-energy hadronic interactions. Studies use the robust, original hypothesis that quarks do not exist as arbitrary physical particles, but exist only in a virtual quasiparticle state. The Virton field, in the QFT framework, satisfies two conditions: the free state field is identically zero, and the causal Green function, the field propagator, is nonzero. That is, nonobservability (or nonexistence) simply means identical zero free Virtons field; a free Virton does not exist, and Virtons only exist in a virtual state. In the framework of a functional integral, there is nontrivial generating, functional for the theory, in particular for S-matrix of the theory. Further generalizations of nonlocal QFT, and nonlocal quark theory in particular, include the interaction of electromagnetic field with Virtons. Moreover, nonlocal QFT also arises in a functional (nonperturbative, exact) renormalization group (FRG) [31–34]. Ultraviolet form factors are functions of differential operators (in coordinate representation) and they correspond to FRG regulators, which are the regulators of the FRG flow of different generating functionals in QFT and statistical physics. Particles 2019, 2 105 While FRG regulators are not always chosen for entire analytic functions, they are the most preferred for equations of FRG flow with the best analytical properties. Fundamental contributions to formation and development of nonlocal QFT were made, thanks to Gariy Vladimirovich Efimov, in his earlier papers devoted to local QFT with nonpolynomial interaction Lagrangians [13,35,36], and later papers devoted to nonlocal QFT [12,37–39]. His earlier study was developed in parallel but independently in papers of Efim Samoylovich Fradkin [40–42]; hence, the Efimov–Fradkin Theory, which today in its own right is a subject of study by several authors [43–53]. Furthermore, alternatives of the nonlocality were studied by several authors [54–60]. The idea of nonlocality also was developed in a series of papers by J.W. Moffat and co-authors in the early 90s [61–65], as well as in the 2010s [66–68], in particular, in the context of quantum gravity. Since the study of nonlocal theories is motivated, in particular, by attempts to construct the quantum theory of gravity and QFT in curved spacetime, let us briefly discuss papers of J.W. Moffat [66,68] and possible generalizations. In these papers, a modification of the interaction action
Recommended publications
  • Calcium: Computing in Exact Real and Complex Fields Fredrik Johansson
    Calcium: computing in exact real and complex fields Fredrik Johansson To cite this version: Fredrik Johansson. Calcium: computing in exact real and complex fields. ISSAC ’21, Jul 2021, Virtual Event, Russia. 10.1145/3452143.3465513. hal-02986375v2 HAL Id: hal-02986375 https://hal.inria.fr/hal-02986375v2 Submitted on 15 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Calcium: computing in exact real and complex fields Fredrik Johansson [email protected] Inria Bordeaux and Institut Math. Bordeaux 33400 Talence, France ABSTRACT This paper presents Calcium,1 a C library for exact computa- Calcium is a C library for real and complex numbers in a form tion in R and C. Numbers are represented as elements of fields suitable for exact algebraic and symbolic computation. Numbers Q¹a1;:::; anº where the extension numbers ak are defined symbol- ically. The system constructs fields and discovers algebraic relations are represented as elements of fields Q¹a1;:::; anº where the exten- automatically, handling algebraic and transcendental number fields sion numbers ak may be algebraic or transcendental. The system combines efficient field operations with automatic discovery and in a unified way.
    [Show full text]
  • Variable Planck's Constant
    Variable Planck’s Constant: Treated As A Dynamical Field And Path Integral Rand Dannenberg Ventura College, Physics and Astronomy Department, Ventura CA [email protected] [email protected] January 28, 2021 Abstract. The constant ħ is elevated to a dynamical field, coupling to other fields, and itself, through the Lagrangian density derivative terms. The spatial and temporal dependence of ħ falls directly out of the field equations themselves. Three solutions are found: a free field with a tadpole term; a standing-wave non-propagating mode; a non-oscillating non-propagating mode. The first two could be quantized. The third corresponds to a zero-momentum classical field that naturally decays spatially to a constant with no ad-hoc terms added to the Lagrangian. An attempt is made to calibrate the constants in the third solution based on experimental data. The three fields are referred to as actons. It is tentatively concluded that the acton origin coincides with a massive body, or point of infinite density, though is not mass dependent. An expression for the positional dependence of Planck’s constant is derived from a field theory in this work that matches in functional form that of one derived from considerations of Local Position Invariance violation in GR in another paper by this author. Astrophysical and Cosmological interpretations are provided. A derivation is shown for how the integrand in the path integral exponent becomes Lc/ħ(r), where Lc is the classical action. The path that makes stationary the integral in the exponent is termed the “dominant” path, and deviates from the classical path systematically due to the position dependence of ħ.
    [Show full text]
  • Semiclassical Unimodular Gravity
    Preprint typeset in JHEP style - PAPER VERSION Semiclassical Unimodular Gravity Bartomeu Fiol and Jaume Garriga Departament de F´ısica Fonamental i Institut de Ci`encies del Cosmos, Universitat de Barcelona, Mart´ıi Franqu`es 1, 08028 Barcelona, Spain [email protected], [email protected] Abstract: Classically, unimodular gravity is known to be equivalent to General Rel- ativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimod- ular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we cal- culate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the arXiv:0809.1371v3 [hep-th] 29 Jul 2010 above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ”generalized” version of unimodular gravity, one recovers the full set of Einstein’s equations in the classical limit, including the trace, so Λ is no longer an integration constant.
    [Show full text]
  • Monodromies and Functional Determinants in the CFT Driven Quantum Cosmology
    Monodromies and functional determinants in the CFT driven quantum cosmology A.O.Barvinsky and D.V.Nesterov Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, Moscow 119991, Russia Abstract We discuss the calculation of the reduced functional determinant of a special second order differential operator F = −d2/dτ 2 + g¨=g, g¨ ≡ d2g/dτ 2, with a generic function g(τ), subject to periodic boundary conditions. This implies the gauge-fixed path integral representation of this determinant and the monodromy method of its calculation. Motivations for this particular problem, coming from applications in quantum cosmology, are also briefly discussed. They include the problem of microcanonical initial conditions in cosmology driven by a conformal field theory, cosmological constant and cosmic microwave background problems. 1. Introduction Here we consider the class of problems involving the differential operator of the form d2 g¨ F = − + ; : (1.1) dτ 2 g where g = g(τ) is a rather generic function of its variable τ. From calculational viewpoint, the virtue of this operator is that g(τ) represents its explicit basis function { the solution of the homogeneous equation, F g(τ) = 0; (1.2) which immediately allows one to construct its second linearly independent solution τ dy Ψ(τ) = g(τ) (1.3) g2(y) τZ∗ and explicitly build the Green's function of F with appropriate boundary conditions. On the other hand, from physical viewpoint this operator is interesting because it describes long-wavelength per- turbations in early Universe, including the formation of observable CMB spectra [1, 2], statistical ensembles in quantum cosmology [3], etc.
    [Show full text]
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Theoretical Computer Science 394 (2008) 159–174 www.elsevier.com/locate/tcs Physical constraints on hypercomputation$ Paul Cockshotta,∗, Lewis Mackenziea, Greg Michaelsonb a Department of Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ, United Kingdom b School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom Abstract Many attempts to transcend the fundamental limitations to computability implied by the Halting Problem for Turing Machines depend on the use of forms of hypercomputation that draw on notions of infinite or continuous, as opposed to bounded or discrete, computation. Thus, such schemes may include the deployment of actualised rather than potential infinities of physical resources, or of physical representations of real numbers to arbitrary precision. Here, we argue that such bases for hypercomputation are not materially realisable and so cannot constitute new forms of effective calculability. c 2007 Elsevier B.V. All rights reserved.
    [Show full text]
  • The Cosmological Constant Problem 1 Introduction
    The Cosmological Constant Problem and (no) solutions to it by Wolfgang G. Hollik 7/11/2017 Talk given at the Workshop Seminar Series on Vacuum Energy @ DESY. “Physics thrives on crisis. [... ] Unfortunately, we have run short on crisis lately.” (Steven Weinberg, 1989 [1]) 1 Introduction: the Cosmological Constant Besides the fact, that we are still running short on severe crises in physics also about 30 years after Weinberg’s statement, there is still yet no solution to what is called the “Cosmological Constant problem”. Neither is there any clue what the Cosmological Constant (CC) is made of and if the problem is indeed an outstanding problem. Weinberg defines and proves in his review on the Cosmological Constant [1] a “no-go” theorem. This no-go theorem is actually not a theorem on the smallness of the CC in the sense of a Vacuum Energy,1 it is rather a theorem prohibiting any kind of adjustment mechanisms that lead effectively to a universe with a flat and static (i.e. Minkowski) space-time metric in the presence of a CC. In other words: with a CC there is no Minkowski universe possible. An old crisis When Einstein first formulated his field equations for General Relativity, he was neither aware of a possible Cosmological Constant nor of an expanding universe solution to them. Originally, the proposed equations are 1 R g R = 8πG T , (1) µν − 2 µν − µν using Weinberg’s ( + ++)-metric. The matter content is given by the energy-stress tensor − Tµν, where the geometry of space-time is encoded in the Ricci tensor Rµν and the scalar µν curvature R = g Rµν of the metric gµν.
    [Show full text]
  • Arxiv:2001.00578V2 [Math.HO] 3 Aug 2021
    Errata and Addenda to Mathematical Constants Steven Finch August 3, 2021 Abstract. We humbly and briefly offer corrections and supplements to Mathematical Constants (2003) and Mathematical Constants II (2019), both published by Cambridge University Press. Comments are always welcome. 1. First Volume 1.1. Pythagoras’ Constant. A geometric irrationality proof of √2 appears in [1]; the transcendence of the numbers √2 √2 i π √2 , ii , ie would follow from a proof of Schanuel’s conjecture [2]. A curious recursion in [3, 4] gives the nth digit in the binary expansion of √2. Catalan [5] proved the Wallis-like infinite product for 1/√2. More references on radical denestings include [6, 7, 8, 9]. 1.2. The Golden Mean. The cubic irrational ψ =1.3247179572... is connected to a sequence 3 ψ1 =1, ψn = 1+ ψn 1 for n 2 − ≥ which experimentally gives rise to [10] p n 1 lim (ψ ψn) 3(1 + ) =1.8168834242.... n − ψ →∞ The cubic irrational χ =1.8392867552... is mentioned elsewhere in the literature with arXiv:2001.00578v2 [math.HO] 3 Aug 2021 regard to iterative functions [11, 12, 13] (the four-numbers game is a special case of what are known as Ducci sequences), geometric constructions [14, 15] and numerical analysis [16]. Infinite radical expressions are further covered in [17, 18, 19]; more gen- eralized continued fractions appear in [20, 21]. See [22] for an interesting optimality property of the logarithmic spiral. A mean-value analog C of Viswanath’s constant 1.13198824... (the latter applies for almost every random Fibonacci sequence) was dis- covered by Rittaud [23]: C =1.2055694304..
    [Show full text]
  • The Maximum Modulus of a Trigonometric Trinomial
    The maximum modulus of a trigonometric trinomial Stefan Neuwirth Abstract Let Λ be a set of three integers and let CΛ be the space of 2π-periodic functions with spectrum in Λ endowed with the maximum modulus norm. We isolate the maximum modulus points x of trigonometric trinomials T ∈ CΛ and prove that x is unique unless |T | has an axis of symmetry. This enables us to compute the exposed and the extreme points of the unit ball of CΛ, to describe how the maximum modulus of T varies with respect to the arguments of its Fourier coefficients and to compute the norm of unimodular relative Fourier multipliers on CΛ. We obtain in particular the Sidon constant of Λ. 1 Introduction Let λ1, λ2 and λ3 be three pairwise distinct integers. Let r1, r2 and r3 be three positive real numbers. Given three real numbers t1, t2 and t3, let us consider the trigonometric trinomial i(t1+λ1x) i(t2+λ2x) i(t3+λ3x) T (x)= r1 e + r2 e + r3 e (1) for x R. The λ’s are the frequencies of the trigonometric trinomial T , the r’s are the moduli or ∈ it1 it2 it3 intensities and the t’s the arguments or phases of its Fourier coefficients r1 e , r2 e and r3 e . −1 −e iπ/3 Figure 1: The unit circle, the hypotrochoid H with equation z =4e −i2x +e ix, the segment from 1 to the unique point on H at maximum distance and the segments from e iπ/3 to the two points− on H at maximum distance.
    [Show full text]
  • What Can We Do with a Solution?
    Electronic Notes in Theoretical Computer Science 66 No. 1 (2002) URL: http://www.elsevier.nl/locate/entcs/volume66.html 14 pages What can we do with a Solution? Simon Langley 1 School of Computer Science University of the West of England Bristol, UK Daniel Richardson 2 Department of Computer Science University of Bath Bath, UK Abstract If S =0isasystemofn equations and unknowns over C and S(α) = 0 to what extent can we compute with the point α? In particular, can we decide whether or not a polynomial expressions in the components of α with integral coefficients is zero? This question is considered for both algebraic and elementary systems of equations. 1 Introduction In this article, a system of equations is of the form S =0,whereS = n n (p1,...,pn):C → C ,andeachpi is analytic. Asolution to such a sys- tem is a point α ∈ Cn so that S(α) = 0. ANewton point is a point α∗,and ∗ an associated number >0sothatifX0 is any point within distance of α , the Newton sequence defined by −1 Xi+1 = Xi − JS (Xi)S(Xi) where JS is the Jacobian matrix of S, converges to a solution α, and has the −2i property that |Xi − α| < 10 . Thus the precision of the approximation to the solution doubles at each iteration. We can specify α∗ and as intervals with rational endpoints. 1 Email: [email protected] 2 Email: [email protected] c 2002 Published by Elsevier Science B. V. 113 Langley and Richardson Agreat deal of effort is directed to finding such solutions.
    [Show full text]
  • Weierstrass Theorem
    University of Bath PHD Use of algebraically independent numbers in computation Elsonbaty, Ahmed Award date: 2004 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Use of algebraically independent numbers in computation submitted by Ahmed Elsonbaty for the degree of Doctor of Philosophy of the University of Bath 2004 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • A Simplified Method of Recognizing Zero Among Elementary Constants
    A simplified method of recognizing zero among elementary constants Daniel Richardson, Department of Mathematics, University of Bath, Bath BA2, England. [email protected]. maths Abstract unique non singular solution in N, (r). The question of how such a proof can be given will be discussed later. In ISSAC ’94, a method was given for deciding whether or A basic problem about the elementary numbers is how not an elementary constant, given as a polynomial image of to decide, given a description, as above, of an elementary a solution of a system of exponential polynomial equations, number, whether or not the number is zero. This is called represents the famous object zero. the element ary constant problem [see Richardson, 1992]. In this article the technique is considerably simplified The solution given below is an improved version of the and speeded up. The main improvement has been to in- solution given in the 1994 ISSAC [Richardson and Fitch]. tegrate the numerical and symbolic computations in such a Both solutions rely upon not stumbling over a counterex- way that unnecessary branches of the symbolic computation ample to the following conjecture. are avoided. Schanuel’s Conjecture If ZI, ..., Zk are ~ comPlex num- bers which are linearly independent over the rationals, then 1 The elementary numbers the transcendence rank of An exponential system is a system of equations (S = O,E = zk,l,l, ezk}ezk} O), where S is a finite set of polynomials in QIx1, Y1, ..., xn> Yn], {.2,,..., and E is a subset of {ul —ezl, . ,Y~ —e“ } is at least k We will write (S., E~ ) for an exponential system with r polynomials and k exponential terms.
    [Show full text]
  • Symbolic Integration: the Stormy Decade Joel Moses* Project MAC, MIT, Cambridge, Massachusetts
    Symbolic Integration: The Stormy Decade Joel Moses* Project MAC, MIT, Cambridge, Massachusetts Three approaches to symbolic integration in the Introduction 1960's are described. The first, from artificial intelligence, led to Slagle's SAINT and to a large degree Symbolic integration led a stormy life in the 1960's. to Moses' SIN. The second, from algebraic manipulation, In the beginning of the decade only humans could led to Manove's implementation and to Horowitz' and determine the indefinite integral to all but the most Tobey's reexamination of the Hermite algorithm for trivial problems. The techniques used had not changed integrating rational functions. The third, from materially in 200 years. People were satisfied in con- mathematics, led to Richardson's proof of the sidering the problem as requiring heuristic solutions unsolvability of the problem for a class of functions and and a good deal of resourcefulness and intelligence. for Risch's decision procedure for the elementary There was no hint of the tremendous changes that were functions. Generalizations of Risch's algorithm to a to take place in the decade to come. By the end of the class of special functions and programs for solving decade computer programs were faster and sometimes differential equations and for finding the definite integral more powerful than humans, while using techniques are also described. similar to theirs. Advances in the theory of integration Key Words and Phrases: integration, symbolic yielded procedures which in a strong sense completely integration, definite integrals, rational functions solved the integration problem for the usual elementary CR Categories: 3.1, 3.2, 3.6, 4.9, 5.2, 5.9 functions.
    [Show full text]