TurkJMedSci 31(2001)283-290 ©TÜB‹TAK

N.NurayULUSU ColdShockProteins E.FerhanTEZCAN

Received:October25,2000 Abstract: Fromprokaryotestoeukaryotesor celldivision.Thedownshift frominvertebratestovertebrates,all resultsinagrowthlag.Duringthelagphase organismshavedevelopedvariousadaptive theorganismchangesthecompositionofthe mechanismstosurvivewithinawiderangeof cytoplasmicmembraneandsynthesissetsof growth.Animportantpartof specificproteinscalledcoldshockproteinsor thecoldadaptationmechanismoccursatthe coldinducedproteins. levelofthecytoplasmicmembrane.Cold DepartmentofBiochemistry,Facultyof shockaffectsthemembranecompositionand KeyWords: Antifreezeglycoproteins,cold Medicine,HacettepeUniversity,06100 organisationtomaintaintheoptimum shockproteins,membranefluidity Ankara-TURKEY membranefunction.Coldshockalsoaffects

Introduction bythepresenceofproline,andcontainapproximate Alllivingorganismsmustadapttochangesinthe proportionsof(Ala):7(Thr):2(Pro):1(7).Arginine environment.Adaptationtoenvironmentalstressis containingantifreezeglycoproteinwasalsoisolatedand essentialforthesurvivaloforganismssincedramatic characterizedfrom Eleginusgracilis (11).Themolecular changessuchascoldshock,heatshock,acidshock, oftheseglycoproteinsare2600-33000Da andosmoticstressarelethalformostorganisms (4,9). (1). ItisthoughtthatAFGPsdecreasethefreezing Thestudyoftheadaptationtocoldbeganattheend temperatureofwaterbybindingtoice,presumably ofthe1960’s(2).Itisknownthatahighlyregulated throughthehydrogenbondsinvolvedinthehydroxyl sequenceofphysiologicaleventsbeginsforallliving groupsofcarbohydrates,andinhibitthegrowthofice organismsforadaptationtowinter(3).Forexample, (8,12).Inacrystallographicstudy,itwasdemonstrated certainspeciesoffishcanliveatthefreezingpointof thatanantifreezepolypeptidefromthewinterflounderis ∝ seawater,whichisabout–1.9ºC(2,4,5).Thefreezing asingle helixwhichinteractswithicecrystalplanesand pointsofbloodfromAntarcticfishesarebetween–2.0 retardsboth‘a’and‘c’axisgrowth(4). and2.1˚C(6).Theseunusuallowfreezingpointsarethe Inrecentyears,themostextensivestudieshavebeen resultpartlyofthepresenceofhighsodiumchloride doneaboutcoldadaptationinbothprocaryotesand andpartlyofsomeglycoproteinsalso eukaryotes.Insomebacteria,agroupofproteinswhich knownasAFGP(antifreezeglycoproteins)foundinblood canbeinducedatlowtemperatureswerechemically (2,4-9).Somebeetlesandpineneedlesarealsoableto identifiedandcalledCIPs(cold-inducedproteins)orCSPs withstandtemperaturesaslowas–3.0˚C.Inaddition,to (coldshockproteins)(13-18). synthesizepolyolsthatactastrueantifreeze,such Coldshockandmembranecomposition organismsgainadditionalprotectionfromAFGP macromolecules(10). Temperatureplaysaveryimportantroleinthe composition,organizationandfunctionofbiological Thestructureofantifreezeglycoproteins membranes.Membranesadjusttheirunsaturatedfatty Theglycoproteinsisolatedfromserumsofthe acidcompositionaccordingtothechangesinthe Antarcticfishes Trematomusborchgreviki,Trematomus environmentaltemperature.Ifthetemperature bernacchi and Dissostichhusmawsoni havearepeating decreases,theratioofunsaturatedfattyacidsincreases tripeptide(Ala-Ala-Thr) n andN-acetylgalactosamine,and asafunctionoftemperature(19,20).Mostofthedata galactoseunitsattachedtothreonineresidues(5,6).It forunderstandingthemolecularmechanismofthe wasalsostatedthattheglycoproteinsof Trematomus organizationandthermaladaptationofmembrane borchgrevinki differfromthoseantifreezeglycoproteins havebeenobtainedbyusingthethermotolerantstrain

283 ColdShockProteins

Tetrahymenapyriformis NT-1,whichisaciliated to34ºC,thedesaturasesynthesizingsystemimmediately protozoan(21-23).Thiseukaryoticcellcangrowwellat beginstodecayataratewhichfollowszeroorder 39.5ºCandadaptquicklytosuddenchangesin kinetics(20). temperaturebyalteringitscompositionand Bacillussubtilis grownathightemperatures membranefluidityfortheoptimalfunctions(21,24). synthesizessaturatedfattyacids,because ∆5-desaturase Tetrahymenapyriformis NT-1hadvaryinglipid ispoorlyfunctional.Itwasalsoshownthat,whenthe compositionwhengrownat39.5ºCor15ºC.At39.5ºC, cultureistransferredto20ºC,thesynthesisof thecellscontained25% γ-linoleicacid,butat15ºC,they unsaturatedfattyacidsisinduced(28).Thereis contained31%(24).Inanotherstudy,thecellswere considerableevidencethatafamilyofdesaturasesexists, grownat28ºC,andthenchilledto10ºC.Atthebeginning eachhavingitsownsubstratespecificity(19). oftheexperiment,23.9%saturatedfattyacidswere WhenBacillusmegaterium culturesaretransferredto obtainedandtherewere163doublebonds.After16h, alowtemperature(20ºC)fromahightemperature theamountofsaturatedfattyacidshadfallento13.4%, (35ºC),thelevelofunsaturatedfattyacidsincreasesin butthedoublebondshadincreasedto180.Itisthought themembranesincebacteriadonotexhibitany that,thisprocessisaccomplishedbytheactivityofan desaturaseactivityat35ºC.Thisprocessoccursinavery enzymecalledfattyaciddesaturase(24-26).When shorttime.Synthesisofdesaturasebeginswithin5min Tetrahymenapyriformis NT-1wasgrowninamediumat andreachesitsmaximumrateatabout15min,and 39.5ºC,andthentransferredintoamediumat15ºC,an continuesatthishighrateforupto90minaftertheshift increaseinpalmitoyl-CoAdesaturaseactivitywasalso to20ºC.This“hyperinduction”process(socalledbecause observed.However,Tetrahymenapyriformis wasunable therateofdesaturasesynthesisafterthetransferof togroworliveat5ºC.Palmitoyl-CoAdesaturaseactivity culturefrom35ºCto20ºCfarexceededtheratefoundin localizedinmicrosomalmembranesin Tetrahymena cells comparableculturesgrowingfrominoculumat20ºC) wasfirstcharacterizedin1977anditwasdocumented wasdependentonproteinsynthesisandRNAsynthesis thatthecellscanquicklyadapttolowertemperaturesby initiatedafterthetransfer.Experimentalevidence increasingthepalmitoleicacid(27).Thedesaturase suggeststhattheturn-offofhyperinductionat20ºC,was activitymayberegulatedbythedegreeofmembrane theresultofatemperature-sensitivemodulatorprotein fluidity(26). whichwasabsentat35ºCbutwasproducedat20ºC InBacillusmegaterium ATCC14581,therearethree (29). controlmechanismswhichregulatethelevelof ∆5- Coldshockandcelldivision desaturase: Inadditiontotheeffectsonmembranecomposition a)Onecontrolprocessmediatedbytemperatureis andfunction,coldshockalsoaffectscelldivision.In thatofdesaturaseinduction.Aculturegrowingat35ºC experiments,studieshavebeencarriedoutattwo doesnotsynthesizeunsaturatedfattyacids.Whenthe extremetemperaturesingeneral. cultureistransferredto20ºC,thesynthesisofdesaturase When Tetrahymenapyriformis NT-1culturesgrown beginsandcontinuesatanacceleratingrateforatleast at15ºCforseveraldaysweretransferredto39.5ºC, onehour. theirgrowthrateincreasedtothatof39.5ºCandalag b)Asecondcontrolprocessistheirreversible periodwasnotseen.However,therewasalagperiodof inactivationoftheenzyme.Therateofinactivationof about7hiftheculturesweretransferredto15ºCfrom desaturaseisextremelysensitivetoslightchangesin 35ºC(24).Inanotherstudy,firstculturesweregrownat temperature.Theenzymeisinactivatedover20ºC. 28ºC,andthentemperaturewasdecreased10ºCandit However,attemperaturesnear20ºC,adecreaseofless wasdemonstratedthatcelldivisionwasinhibitedfor than2ºCinthetemperatureoftheincubationmedium approximately16h(21). resultsinamorethan2-foldincreaseinthehalf-lifeof Prokaryoticmicroorganismshavedifferentoptimal theenzyme. growthtemperaturesandcanbeclassifiedaccordingto c)Athirdprocessisthedecayofthedesaturase theirrangeofgrowthtemperatures.Thermophilesgrow synthesizingsystem.Whenacultureistransferredback between4and100ºC;mesophiles10-50ºC; psychrophiles15-20ºC;andpsychrotrophs,15-40ºC(1).

284 N.N.ULUSU,E.F.TEZCAN

Escherichiacoli hasawidegrowthtemperaturerange cspA transcriptandconstitutiveproductionofCS7.4was andcanmaintainitsgrowthbetween10ºCand49ºC observed(15).Whenkanamycin,anantibioticthat (12).In Escherichiacoli ,therearenophysiological inducestheheatshockresponsebutnotthecoldshock changesbetween20ºCand37ºC.However,atextreme response(33)wasused,theresultsshowednoinduction temperaturesbelow20ºCandabove40ºC,some of cspA expression.Whenrifamycinwasadded30min physiologicalchangesareseen(28).Thecoldshock afterthecoldshocktreatment,andtheamountof cspA responseofthisbacteriawasfirstreportedin1987(12). mRNAwasmeasuredat15,30and60minafterthe WhenacultureofEscherichiacoli ML30growingat37ºC addition,itwasdemonstratedthatthe cspA mRNA wasshiftedto10ºC,growthdecreasedforabout4.5h inducedbycoldshockwasdegradedwithahalf-lifeof andtherewasnonetsynthesisofDNA,RNAorprotein. approximately15minat15ºC(15). Whentheculturesweregrownat10ºC,proteinsynthesis Inanotherstudy,itwasalsodemonstratedthatCS7.4 startedat4handsynchronousdivisionoccurredatabout isregulatedatthetranscriptionlevelin Escherichiacoli, 11haftershiftingto10ºC(31). anditsgene cspA isregulatedandinducedonlyatlow Coldshockandproteinsynthesis temperatures.SynthesisofCS7.4wasverylowat37ºC, In Escherichiacoli ithasbeenreportedthat,during sincethemRNAofcspA wasunstableatthetemperature thegrowthlag,thenumberofproteinssynthesizedwere mentionedabove.Ithasnotbeenshownifanyprotein dramaticallyreducedandonly28proteinsweredetected factor(s)isrequiredforthestabilizationofthismajor fromtwo-dimensionalgelautoradiograms.These coldshockmRNAatlowtemperatures(17). proteinsweregroupedaccordingtotherateofsynthesis: IthasbeenestablishedthatCS7.4wasproducedata thosewhosedifferentialrateofsynthesisdecreased, levelof13%oftotalcellularproteinsynthesisupona thosewhosedifferentialrateofsynthesisstayedthesame temperatureshiftfrom37ºCto10ºC(32). Escherichia andthosewhosedifferentialrateofsynthesisincreased. coli hasfiveadditionalgenesbesidescspA, eachencoding Atotalof15proteinswerecalledCSPs.Duringthe aproteinhighlysimilartoCspA.Therefore,these fourthhour,shortlybeforetheresumptionofgrowth, proteinsweregroupedunderthenameoftheCspA synthesisofanadditional50polypeptideswasdetected. family.Ontheotherhand, cspG encodesacoldshock OneoftheCSPssynthesized,F10.6,wasdetectableonly inducibleanalogofCspAandCspB.Thisgeneislocatedat duringgrowthatlowtemperatures(13,17).Thisprotein 22minonthe Escherichiacoli geneticmap,apartfrom wasdramaticallyinducedwithinthefirst2hafterbeing theothercspA familygenes.Itsgeneproduct(70amino shiftedfrom37ºCto15ºCanditwasalsonamedCS7.4 acids)is73%and77%identicaltoCspA(70aminoacids) orCspAprotein.Itisa7400Dacytoplasmicprotein.Itis andCspB(71aminoacids),respectively(30).TheCspA reportedthatwhentemperaturedecreased,mRNAof familyconsistsofnineproteins(CspAtoCspI),ofwhich CspAincreased.Thisindicatesthat,thesynthesisofthis CspA,CspBandCspGhavebeenshowntobecoldshock proteinisregulatedattheleveloftranscription(32). inducible(16).CspDisinducedinstationary-phaseand Ribosomescanactassensorsofthecoldshock starvation.Ithasalsobeenthoughtthatthisproteinplays responsein Escherichiacoli onthebasisofthe aroleinthenutrition-stressresponse(34).ThecspI gene observationthatthecoldshockresponsecanbeinduced islocatedat35.2minontheEscherichiacoli chromosome byagroupofantibioticswhichincludeschloramphenicol, map,andCspIshows70%,70%and79%identityto tetracycline,erythromycin,spiramycinandfusidicacid CspA,CspBandCspG,respectively.The cspI mRNAis (33).Apulse-labellingexperimentwascarriedoutto veryunstableat37ºCbutisstabilizeduponcoldshock investigatethecoldshockresponseinducedby andCspIproductionismaximalatorbelow15ºC(16). chloramphenicol.Intheabsenceofchloramphenicol, Whentheeffectsofkanamycinandchloramphenicol CS7.4couldnotbedetectedat37ºC,sincemRNAofcspA (inhibitorsofproteinsynthesis)oncoldshockinducibility (geneofCS7.4)wasunstable(32).Aftertemperature ofCspA,CspBandCspGwereexamined,itwasobserved downshiftsto15ºC,CS7.4wasinducedduringthefirst2 thatcellgrowthwascompletelyblockedat37ºCinthe h,whichcorrespondedtothelagtimeofthecellgrowth presenceofkanamycin(100µg/ml)orchloramphenicol causedbycoldshock.However,inthepresenceof (200µg/ml).After10minofincubationwiththe chloramphenicol,aconstitutiveincreaseinthelevelof antibioticsat37ºC,cellswerecoldshockedat15ºC.

285 ColdShockProteins

Surprisingly,thesynthesisofallthesecoldshockproteins amongpro-andeukaryotes.CspBbindstothepentamer wasinducedatasignificantlyhighlevel,virtuallyinthe sequencesCCAATwithhigheraffinityinsinglestranded absenceofanyotherproteins,indicatingthatthecold DNAandcanactasatranscriptionalactivatorofcold shockproteinsareabletobypasstheinhibitoryeffectsof shockgenesbyrecognizingputativeATTGG-boxelements theantibiotics(17). showntobepresentinpromotorregionsofgenesand Thecoldshockproteinsof Escherichiacoli canbe theyareinducedundercoldshockconditions(39-41). categorizedintotwogroups.ClassIproteinsare In Bacillussubtilis ,afterashiftfrom37to15˚C,a expressedatanextremlylowlevelat37ºCandare totalof38proteinswerereproduciblyexpressedata dramaticallyinducedtoveryhighlevelsafterashifttoa highlevel.TheseCIPscanbegroupedintothree lowertemperature.Incontrast,ClassIIcoldshock categories.Twenty-oneproteinswereinducedonlyafter proteinsarepresentatacertainlevelat37ºCandare acoldshock,notinresponsetoheatshockorsalt-stress, inducedafew-foldfromtheirsteady-statelevelsaftera andthusrepresenttruecoldshockandcoldstress- downshiftintemperature.ThemRNAsofClassIproteins inducedproteins.Sixproteinswereinducedinresponse havealong5’untranslatedregionwhichplaysan tocoldaswellasheatshock(48˚C)andweretherefore importantroleinstabilityandtranscriptionattenuation namedtemperature-inducedproteins.Anenhanced (1). expressionofsevenproteinswasdetectedaftercold Theminimumtemperatureforgrowthof Escherichia shockandsalt-stress(1MNaCl)butnotafterheatshock. coli isinthevicinityof7.8ºC(35).Anumberofscientists Theseproteinswerenamedstressandcoldshock havestudiedtheeffectsoflowtemperatureon invivo proteins(42). and invitro proteinsynthesisby Escherichiacoli (a Thegrowthtemperatureof Bacilluscereus (a mesophile),andby Pseudomonasfluorescens (a psychrotrophicbacterium)isbetween7˚Cand30˚C.It psychrotroph).Aftershiftingto5ºC,proteinswere hasbeendescribedthat Bacilluscereus hasfivesmall synthesizedataslowlydecreasingratefor1hbyboth proteinswhichhaveRNAandDNAbindingmotifs.Itwas organisms.However, Pseudomonasfluorescens shownthattheaminoacidsequenceof Bacilluscereus synthesizedproteinsataratecorrespondingtoits5ºC CspAissimilartothecoldshockproteinsof Escherichia growthrateincontrasttoEscherichiacoli, whichdidnot coli CspA(63%), Bacillussubtilis CspB(71%)and synthesizeatameasurablerate.Itispossiblethatthere Streptomycesclavuligerus SC7.0(58%)(43). wasaninitiationproblemin Escherichiacoli relatedto Aquifexaeolicus isoneoftheearliestdiverging energylevels(ATPorGTP)inthecell(36). thermophilicbacteriaknown.Thisorganismcangrowat Bacillussubtilis havewidegrowthrangetemperatures 95˚C.Completegenomesequencesofthisorganismhave andithasbeenidentifiedthatthisclassof beendeterminedandageneforacoldshockproteinhas microorganismssynthesizesasubsetofproteinwhen beenfound(44). heatshocked(37). Bacillussubtilis haveacoldshock Thecoldshockresponseandtheheatshock induciblegene,cspB,whichisinduceduponashiftfrom responsemayhaveaninverserelationship.Aftercold 37ºCto10ºC.CspBisanacidicproteinandhas67amino shock,thecoldshockproteinsynthesisincreases,but acidresidueswithamolecularof7365Da.CspB heatshockproteinsynthesisdecreases(45). shows61%sequenceidentitytotheCspAof Escherichia coli.Thisresultindicatesthattherearehighlevelsof Coldshockproteinsfrommesophilesand conservationattheDNAandaminoacidsequence(38). thermophilesdifferwidelyintheirstabilities,butshow CspBconsistsofanantiparallelfive-stranded β-barrel closestructuralsimilarity. Thermotogamaritima isa withstrandsconnectedbyturnsandloops(39).The hyperthermophilicbacterium,andTmCspshows76% nucleicacidbindingpropertiesofCspBandalsoCspA homology(61%identity)toCspfrommesophilicBacillus havebeencharacterizedin Escherichiacoli (40).Both subtilis (CspB),anditsthermalstability(Tm:87ºC) proteinsshow40%identitywiththenucleicacid-binding exceedsthatofCspBby35ºC(46). domainoftheY-boxfactors,whichisreferredtoasCSD CspA-likeproteinshavealsobeenidentifiedin (coldshockdomain)(38,41).Therefore,CspBandCspA psychrotrophicorganisms: Bacilluscereus WSBC10201 arethemembersoftheCSDfamily,whichiswidespread (43),Pseudomonasfragi (47),Arthrobacterglobiformis

286 N.N.ULUSU,E.F.TEZCAN

SI55(48)andinapsychrotolerantpathogen Yersinia ThecoldshockdomainproteinzfY1inzebrafishhas enterocolitica (49). beenidentifiedandcharacterized.Thisproteincontainsa Alfacaseinseemstohavesomecharacteristicsofa sequenceof68aminoacidsandsharessubstantial coldshockprotein,anditschaperon-likeactivityincreases similarity(55%)to Escherichiacoli coldshockproteins, withadecreaseoftemperature(50). CspAandCspB(52).InTable1,themajorpropertiesof someAFGPsandCSPsaregiven. BetacrystallinisexpressedendogenouslyinN1E-115 cells(fromamouseneuroblastomacellline)uponheat shockat43˚Cor55˚C,orcoldshockat30˚C(51).

Table1. AntifreezeGlycoproteinsandColdShockProteins.

Organism ColdShockProtein BiochemicalCharacteristics References

Escherichiacoli CspA β-barrelstructureandfiveantiparallel β-strands 1,13,15,30 Polynucleotidephosphorylase MW:~7kDa NusA 15coldinducedproteins Initiationfactor2α Initiationfactor2β RecA Dihydrolipoamideacetyltransferase Pyruvatedehydrogenase F14.7 F84.0 G41.2 G55 G74

Bacillussubtilis CspB MW:7.365kDa.CspBconsistsofanantiparallel 14,29,39 five-strandedβ-barrel,pI4.31 CspC MW:8kDa CspD MW:13kDa 16cold-inducedproteins

Bacilluscereus WSBC CspAof Bacilluscereus MW:7.5kDa,pI4.9 43 10201 Othercoldstressproteins MW:30kDa,pI5.1 MW:35kDa,pI4.7 5cold-inducedproteins Pseudomonasfragi C7.0 MW:7kDa 47 C8.0 MW:8kDa Theroleoftheseproteinsisnotknown.

Arthrobacterglobiformis A9 CS7.4-likeproteinMW:9kDa,pI4.5 48 S155

Trematomusborchgrevinki Therearethreedistinctgroupsof TheyarecomposedprimarilyofThr(16%), 7 freezingpoint-depressingglycoproteins Ala(23%),N-acetylgalactosamine(29%),and galactose(28%). MW:10.5,17and21.5kDa Aproline-containingglycopeptidehas Theapproximateproportionsofaminoacids: 8 beendeterminedinthebloodofthis Ala:7,Thr:2,Pro:1 Antarcticfish.

287 ColdShockProteins

Table1. (Comtinued)

Dissostichusmawsoni Therearethreedistinctgroupsoffreezing Thr(16%),Ala(23%),N-acetylgalactosamine 7 pointdepressingglycoproteins. (29%),andgalactose(28%).

Winterflounder Asingleα-helixpolypeptide 4

Marinefish Fourdistinctmacromolecularantifreezes Theglycoproteinantifreezes 9

havebeenisolated. MW:2.5-33kDa,(Ala-Ala-Thr) n,disaccharide attachedtothethreonylresidues. TypeIisAla-richamphiphilic, α-helixMW:3-5kDa TypeIIMW:14kDawithahighcontentofreverse turnsandfivedisulfidebridges TypeIIIMW:6-7kDawithnodistinguishingfeatures ofsecondarystructureoraminoacidcomposition.

Eleginusgracilis Argcontainingantifreezeglycoprotein MW:30kDa 11 (EgAF2) EgAF8R MW:3kDa

Pagotheniaborchgrevinki Antifreezeglycoprotein4 MW:17.5kDa 11 Antifreezeglycoprotein8 MW:2.6kDa

Tetrahymenapyriformis Membrane-associatedfattyaciddesaturase Fattyaciddesaturaseactivityregulatesmembrane 25-27 fluidityatadaptationtocold.

Bacillusmegaterium Hyperinductionofdesaturase 29 ATCC14581

Conclusion Correspondenceauthor: Temperatureisanimportantenvironmentalstress E.FerhanTEZCAN andrequiresadaptiveresponses,suchastosynthesize DepartmentofBiochemistry AFGPsorCSPs.ThecellularcontentsofCSPsand FacultyofMedicine membranefluiditychangeduetothegrowthtemperature HacettepeUniversity ofmanyorganisms.However,cellularresponsestoa 06100Ankara,TURKEY decreaseintemperaturearenotwellknown.Therefore, thisareaisopentonewinvestigations.

References 1. ThieringerHA,JonesPG,InouyeM. 4. YangDSC,SaxM,ChakrabarttyA,Hew 7. MorrisHR,ThompsonMR,OsugaDT, ColdShockandAdaptation.BioEssays CL.CrystalStructureofanAntifreeze AhmedAI,ChanSM,Vandenheede, 20:49-57,1998. PolypeptideandItsMechanistic FeeneyRE.AntifreezeGlycoproteins Implications.Nature333:232-7,1988. fromtheBloodofanAntarcticFish.J 2. DeVriesAL,WohlschlagDE.Freezing BiolChem253:5155-62,1978. ResistanceinSomeAntarcticFishes. 5. DeVriesAL.GlycoproteinsasBiological Science163:1073-5,1969. AntifreezeAgentsinAntarcticFishes. 8. ChakrabarttyA,YangDSC,HewCL. Science172:1152-5,1971. Structure-FunctionRelationshipina 3. BoyerBB,BarnesBM.Molecularand WinterFlounderAntifreezePolypeptide. MetabolicAspectsofMammalian 6. DeVriesAL,KomatsuSK,FeeneyRE. JBiolChem264:11313-6,1989. Hibernation.Bioscience49:713-24, ChemicalandPhysicalPropertiesof 1999. FreezingPoint-Depressing 9. DaviesPL,HewCL.BiochemistryofFish GlycoproteinsfromAntarcticFishes.J AntifreezeProteins.FASEBJ4:2460- BiolChem245:2901-8,1970. 7,1990.

288 N.N.ULUSU,E.F.TEZCAN

10. PainRH.HelicesofAntifreeze.Nature 22. ThompsonGA,NozawaY. 31. ShawMK,IngrahamJL.Synthesisof 333:207-8,1998. Tetrahymena:ASystemforStudying Macromoleculesby Escherichiacoli DynamicMembraneAlterationswithin 11. BurchamTS,OsugaDT,YehY,Feeney neartheMinimalTemperaturefor theEukaryoticCell.BiochimBiophys RE.AKineticDescriptionofAntifreeze Growth.JBacteriol94:157-64,1967. Acta472:55-92,1977. GlycoproteinActivity.JBiolChem261: 32. TanabeH,GoldsteinJ,YangM,Inouye 6390-7,1986. 23. NozawaY,KasaiR.Mechanismof M.IdentificationofthePromoterRegion ThermalAdaptationofMembraneLipids 12. TomimatsuY,SchererJR.Raman oftheEscherichiacoli MajorColdShock in Tetrahymenapyriformis NT-1 SpectraofaSolidAntifreeze Gene, cspA.JBacteriol174:3867-73, PossibleEvidenceforTemperature- GlycoproteinandItsLiquidandFrozen 1992. MediatedInductionofPalmitoyl-CoA Aqueous.JBiolChem251: Desaturase.BiochimBiophysActa529: 33. VanBogelenRA,NeidhardtFC. 2290-8,1976. 54-66,1978. RibosomesasSensorsofHeatandCold 13. JonesPG,VanBogelenRA,Neidhardt Shockin Escherichiacoli .ProcNatl 24. FukushimaH,MartinCE,IidaH, FC.InductionofProteinsinResponseto AcadSciUSA87:5589-93,1990. KitajimaY,ThompsonGA,NozawaY. LowTemperaturein Escheichiacoli .J ChangesinMembraneLipid 34. YamanakaK,InouyeM.Growth-Phase- Bacteriol169:2092-5,1987. CompositionDuringTemperature DependentExpresionofcspD,Encoding 14. SchindelinH,MarahielMA,Heinemann AdaptationbyaThermotolerantStrain aMemberoftheCspAFamilyin U.UniversalNucleicAcid-Binding of Tetrahymenapyriformis .Biochim Escherichiacoli.JBacteriol179:5126- DomainRevealedbyCrystalStructureof BiophysActa431:165-79,1976. 30,1997. the B.subtilis MajorCold-Shock 25. KasaiR,KitajimaY,MartinCE,Nozawa 35. ShawMK,MarrAG,IngahamJL. Protein.Nature364:164-8,1993. Y,SkriverL,ThompsonGA.Molecular DeterminationoftheMinimal 15. JiangW,JonesP,InouyeM. ControlofMembranePropertiesDuring TemperatureforGrowthof Escherichia ChloramphenicolInducesthe TemperatureAcclimation.Membrane coli.JBacteriol105:683-4,1971. TranscriptionoftheMajorColdShock FluidityRegulationofFattyAcid Geneof Escherichiacoli , cspA. J DesaturaseAction?Biochemistry15: 36. BroezeRJ,SolomonCJ,PopeDH. Bacteriol175:5824-8,1993. 5228-33,1976. EffectsofLowTemperatureoninvivo andinvitroProteinSynthesisin 16. WangN,YamanakaK,InouyeM.CspI, 26. MartinCE,HiramatsuK,KitajimaY, Escherichiacoli and Pseudomonas theNinthMemberoftheCspAFamilyof NozamwaY,SkriverL,ThompsonGA. fluorecens.JBacteriol134:861-74, Escherichiacoli ,isInduceduponCold MolecularControlofMembrane 1978. Shock.JBacteriol181:1603-9,1999. PropertiesDuringTemperature Acclimation.FattyAcidDesaturase 37. StreipsUN,PolioFW.HeatShock 17. EtchegarayJP,InouyeM.CspA,CspB, RegulationofMembraneFluidityin ProteinsinBacilli.JBacteriol162:434- CspG,MajorColdShockProteinsof Acclimating Tetrahymena Cells. 7,1985. Escherichiacoli ,areInducedatLow Biochemistry15:52218-27,1976. TemperatureunderConditionsthat 38. WillimskyG,BangH,FischerG, CompletelyBlockProteinSynthesis.J 27. FukushimaH,SeijiN,OkanoY,Nozawa MarahielMA.CharacterizationofcspB, Bacteriol181:1827-30,1999. Y.StudiesonTetrahymenaMembranes BacillussubtilisInducibleColdShock Palmitoyl-CoenzymeADesaturase,a 18. SchindlerT,GraumannPL,PerlD,Ma GeneAffectingCellViabilityatLow PossibleKeyEnzymeforTemperature S,SchmidFX,MarahielA.TheFamilyof Temperatures.JBacteriol174:6326- AdaptationinTetrahymena Microsomes. ColdShockProteinsof Bacillussubtilis 35,1992. BiochimBiophysActa488:442-53, StabilityandDynamicsinvitroandin 1977. 39. SchnuchelA,WiltscheckR,CzischM, vivo.JBiolChem274:3407-13, HerrierM,WillimskyG,GraumannP, 28. AguilarPS,CronanJE,DeMendozaD. 1999. MarahielMA,HolakTA.Structurein ABacillussubtilis GeneInducedbyCold 19. FulcoAJ.MetabolicAlterationsofFatty oftheMajorCold-Shock ShockEncodesaMembrane Acids.AnnuRevBiochem43:215-48, Proteinfrom Bacillussubtilis .Nature PhospholipidDesaturase.JBacteriol 1974. 180:2194-200,1998. 364:169-71,1993. 20. FulcoAJ.TheBiosynthesisof 29. FujiiDK,FulcoA.Biosynthesisof 40. GraumannP,MarahielMA.TheMajor UnsaturatedFattyAcidsbyBacilli.JBiol UnsaturatedFattyAcidsbyBacilli ColdShockProteinof Bacillussubtilis Chem247:3511-9,1972. HyperinductionandModulationof CspBBindswithHighAffinitytothe 21. WunderlichF,SpethV,BatzW,Kleinig DesaturaseSynthesis.JBiolChem252: ATTGG-andCCAATSequencesinSingle H.Membranesof Tetrahymena III.The 3660-70,1977. StrandedOligonucleotides.FEBSLetters 338:157-60,1994. EffectofTemperatureonMembrane 30. NakashimaK,KanamaruK,MizunoT, CoreStructuresandFattyAcid HorikoshiK.ANovelMemberofthe 41. SommervilleJ,LadomeryM.Maskingof CompositionofTetrahymenaCells. cspA FamilyofGenesthatisInducedby mRNAbyY-boxProteins.FASEBJ10: BiochimBiophysActa298:39-49, ColdShockin Escherichiacoli .J 435-43,1996. 1973. Bacteriol178:2994-7,1996.

289 ColdShockProteins

42. GraumannP,SchröderK,SchidR, 45. JonesPG,CashelM,GlaserG,Neidhart 49. NeuhausK,RappschS,FrancisKP, Marahiel.ColdShockStress-Induced FC.FunctionofaRelaxed-LikedState SchererS.RestartofExponential Proteinsin Bacillussubtilis.JBacteriol followingTemperatureDownshiftsin GrowthofCold-Shocked Yersinia 178:4611-9,1996. Escherichiacoli.JBacteriol174:3903- enterocolitica OccursafterDown- 14,1992. Regulationof cspA1/A2mRNA.J 43. MayrB,KaplanT,LechnerS,Scherer. Bacteriol182:3285-8,2000. IdentificationandPurificationofa 46. FrankenbergN,WelkerC,JaenickeR. FamillyofDimericMajorColdShock DoestheEliminationofIonPairsAffect 50. BhattacharyyaJ,DasKP.Molecular ProteinHomologsfromthe theThermalStabilityofColdShock Chaperone-likePropertiesofan Psychrotrophic Bacilluscereus WSBC ProteinfromtheHyperthermophilic UnfoldedProtein, αs-Casein.JBiol 10201.JBacteriol178:2916-25, BacteriumThermotogamaritima?FEBS Chem274:15505-9,1999. 1996. Letters454:299-302,1999. 51. CoopA,WiesmannKEH,CrabbeMJC. 44. DeckertG,WarrenPV,GaasterlandT, 47. HebraudM,DuboisE,PotierP,Labadie Translocationof β CrystallininNeural YoungWG,LenoxAL,GrahamDE, J.EffectsofTemperaturesonthe CellsinResponsetoStress.FEBSLetters OverbeekR,SneadMA,KellerM,Aujay ProteinLevelsinaPsychrotropic 431:319-21,1998. M,HuberR,FeldmanRA,ShortJM, Bacterium, Pseudomonasfragi .J 52. ChangB,LinC,KuoC.Molecular OlsenGJ,SwansonRV.TheComplete Bacteriol176:4017-24,1994. CloningofaCold-ShockDomain GenomeoftheHyperthermophilic 48. BergerF,MorelletN,MenuF,PotierP. Protein,zfY1,inZebrafishEmbryo. Bacterium Aquifexaeolicus .Nature ColdShockandColdAcclimation BiochimBiophysActa1433:343-9, 392:353-8,1998. ProteinsinthePsychrotropicBacterium 1999. Arthrobacterglobiformis SI55.J Bacteriol178:2999-3007,1996.

290