Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 978253, 10 pages doi:10.1155/2011/978253

Research Article Identification of Marine in China with DNA Barcoding

Junbin Zhang

College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China

Correspondence should be addressed to Junbin Zhang, [email protected]

Received 10 December 2010; Accepted 27 February 2011 Copyright © 2011 Junbin Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DNA barcoding is a molecular method that uses a short standardized DNA sequence as a species identification tool. In this study, the standard 652 base-pair region of the mitochondrial cytochrome oxidase subunit I gene (COI) was sequenced in marine fish specimens captured in China. The average genetic distance was 50-fold higher between species than within species, as Kimura two parameter (K2P) genetic distances averaged 15.742% among congeners and only 0.319% for intraspecific individuals. There are no overlaps of pairwise genetic variations between conspecific and interspecific comparisons apart from the genera Pampus in which the introgressive hybridization was detected. High efficiency of species identification was demonstrated in the present study by DNA barcoding. Due to the incidence of cryptic species, an assumed threshold is suggested to expedite discovering of new species and biodiversity, especially involving biotas of few studies.

1. Introduction across phylogenetically distant groups [12, 13]. To date, some published papers explicitly address that COI bar- Fishes are important animal protein sources for human codes effectively discriminate different species for a variety beings, and they are frequently used in complementary and of organisms [14–23]. However, several scientists express alternative medicine/traditional medicine (CAM/TM). The concerns that species identification based on variations of delimitation and recognition of fish species is not only of single mitochondrial gene fragment may remain incorrect interest for and systematics, but also a requirement or ambiguous assignments, particularly in cases of possible in management of fisheries, authentication of food products, mitochondrial polyphyly or paraphyly [24, 25]. In the and identification of CAM/TM materials [1–3]. current study, we test the efficacy of DNA barcoding in Due to the complexity and limitations of morphological marine fishes of China. The sea area of China is part of the characters used in traditional taxonomy, several PCR-based Indo-West Pacific Ocean, which is regarded as the center methods of genotype analysis have been developed for the of the world’s marine biodiversity [26]. Highly species-rich identification of fish species, particularly for eggs, larvae, and biotas are particularly attractive to test the reliability and commercial products. Sequence analysis of species-specific efficiency of DNA barcoding. DNA fragments (often mitochondrial or ribosomal genes) and multiplex PCR of species-conserved DNA fragments 2. Material and Methods are efficient for fish species identification [4–10]. However, these molecular methods are limited to particular known The majority of fish specimens were captured with the drawl species and are not easily applicable to a wide range of net at 20 localities along the coast of China (collection taxa. Therefore, Hebert et al. advocated using a standard information available at http://www.barcodinglife.org/). A DNA sequence that is DNA barcoding to identify species total of 329 specimens from one hundred species of fish and uncover biological diversity [11, 12]. For many animal were collected. Vouchers were deposited in the South China taxa, sequence divergences within the 5 region of the Sea Institute of Oceanography, Chinese Academy of Sciences, mitochondrial cytochrome oxidase subunit I (COI) gene and all specimens were preserved in 70% ethanol. Tissue were much greater between species than within them, and samples were dissected from the dorsal muscle, and genomic this in turn suggests that the approach is widely applicable DNA was extracted according to the standard Barcode of Life 2 Evidence-Based Complementary and Alternative Medicine protocol [27]. Firstly, fragments of the 5 region of the mito- VR1d t1: ∗∗5-CAGGAAACAGCTATGACTAGACT- chondrial COI gene were PCR-amplified using C FishF1t1/ TCTGGGTGGCCAAAGAATCA-3. C FishR1t1 primer cocktails [28]. The cocktail C FishF1t1 LepR1 t1: ∗∗5-CAGGAAACAGCTATGACTAAAC- contained two primers (FishF2 t1/VF2 t1), and C FishR1t1 TTCTGGATGTCCAAAAAATCA-3. also contained two primers (FishR2 t1/ FR1d t1). All PCR ∗∗ primers were tailed with M13 sequences to facilitate sequenc- VRli t1: 5 -CAGGAAACAGCTATGACTAGACT- ing of products. The nucleotide sequences of the primers TCTGGGTGICCIAAIAAICA-3 . were ∗TheM13Fprimersequenceisunderlined;∗∗the FishF2 t1: ∗5-TGTAAAACGACGGCCAGTCGACT- M13R primer sequence is underlined. AATCATAAAGATATCGGCAC-3 . The thermocycling protocol used was 1 min at 95◦Cand VF2 t1: ∗5-TGTAAAACGACGGCCAGTCAACCA- 35 cycles of 30 sec at 94◦C, 40 sec at 50◦C, and 1 min at 72◦C, ACCACAAAGACATTGGCAC-3. with a final extension at 72◦C for 10 min. Sequecing PCR and FishR2 t1: ∗∗5-CAGGAAACAGCTATGACACTTC- sequencing followed above procedure. AGGGTGACCGAAGAATCAGAA-3. DNA sequences were aligned with SEQSCAPE v.2.5 software (Applied Biosystems, Inc.). Sequence divergences FR1d t1: ∗∗5-CAGGAAACAGCTATGACACCTCA- were calculated using the Kimura two parameter (K2P) GGGTGTCCGAARAAYCARAA-3 . distance model [29],andunrootedNJtreesbasedonK2P ∗TheM13Fprimersequenceisunderlined;∗∗the distances were created in MEGA software [30]. In the chosen M13R primer sequence is underlined. taxonomic group, phylogenetic analysis was carried out in PAUP 4.010b using the maximum parsimony (MP) method, PCR reactions were carried out in 96-well plates using with 1,000 replications of the full heuristic search. Mastercycler Eppendorf gradient thermal cyclers (Brink- The following categories of K2P distances were calcu- mann Instruments, Inc.). The reaction mixture of 825 µl lated: intraspecific distances (S), interspecies within the con- µ × ff µ µ water, 125 l10 bu er, 62.5 lMgCl2 (25 mM), 6.25 l gener (G), and interspecies from different but within dNTP (10 mM), 6.25 µleachprimer(0.01mM),and6.25µl intrafamily (F). These values were plotted using the boxplot Taq DNA polymerase (5 U/µl) was prepared for 96 wells of representation of R. Boxplots [31] in SPSS 11.5 software each plate, in which each well contained 10.5 µlmixtureand (SPSS Inc., Chicago, IL, USA). Only for families containing 2 µl genomic DNA. Thermocycling comprised an initial step 2 or more genera, separate boxplot was constructed for the ◦ ◦ of 2 min at 95 C and 35 cycles of 30 sec at 94 C, 40 sec at sake of comparisons among taxonomic categories. Boxplots ◦ ◦ ◦ 52 C, and 1 min at 72 C, with a final extension at 72 Cfor describe median (central bar), interquartile range (IQR: 10 min. Amplicons were visualized on 2% agarose E-Gel 96- between upper (Q3) and low (Q1) quartile), values lying well system (Invitrogen). PCR products were amplified again within 1.5× IQR beneath Q1 or 1.5× above Q3 (“whiskers”), with the primers M13F (5 -TGTAAAACGACGGCCAGT-3 ) and extreme values (outliers). Mann-Whitney tests were and M13R (5 -CAGGAAACAGCTATGAC-3 ), respectively, performed between S, G, and F distributions to estimate the using the BigDye Terminator v.3.1 Cycle Sequencing Kit overlap among taxonomic ranks. (Applied Biosystems, Inc.). Thermocycling conditions were ◦ as follows: an initial step of 2 min at 96 Cand35cyclesof 3. Results 30 sec at 96◦C, 15 sec at 55◦C, and 4 min at 60◦C. Sequencing was performed on an ABI 3730 capillary sequencer according A total of 329 specimens were analyzed, from which 321 to manufacturer’s instructions. sequences (all >500 bp) belonging to 121 species (another For specimens that failed to yield sequences using the species was identified to the genus level) were ultimately obt- primer combinations above, a second round of PCR using ained (GenBank accession numbers: EF607296-EF607616). the alternative C VF1LFt1/ C VR1LRt1 primer combination These species cover the majority of fishes living in the coast- was carried out. C VF1LFt1 consisted of four primers (VF1 line of the South China Sea. All sequences were aligned with t1/VF1d t1/LepF1 t1/VFli t1), and C VR1LRt1 also compri- a consensus length of 652 bp, and no insertions, deletions, sed four primers (VR1 t1/VR1d t1/LepR1 t1/VRli t1) [28]. or stop codons were observed in any sequence. However, multiple haplotypes were detected for some species. VF1 t1: ∗5-TGTAAAACGACGGCCAGTTCTCAA- Except for Acentrogobius caninus, Scomber japonicus, CCAACCACAAAGACATTGG-3. jarbua, Upeneus sulphureus, Elops hawaiensis, Gym- VF1d t1: ∗5-TGTAAAACGACGGCCAGTTCTCA- nothorax pseudothyrsoideus, Dendrophysa russelii, and Pen- ACCAACCACAARGAYATYGG-3. nahia anea (which reached the maximum value of 2.02%), LepF1 t1: ∗5-TGTAAAACGACGGCCAGTATTCA- intraspecific genetic distances were generally below 1%, and ACCAATCATAAAGATATTGG-3. some decreased to zero (between some intraspecific individ- uals of Thryssa setirostris, Parapercis ommatura, Scatophagus VFli t1: ∗5-TGTAAAACGACGGCCAGTTCTCAA- argus, etc.). CCAACCAIAAIGAIATIGG-3 . The mean intraspecies K2P (Kimura two-parameter) VR1 t1: ∗∗5 -CAGGAAACAGCTATGACTAGACT- distance was 0.319%; the distance increased sharply to TCTGGGTGGCCRAARAAYCA-3. 15.742% among individuals of congeneric species. Overall, Evidence-Based Complementary and Alternative Medicine 3

Table 1: Genetic divergences (percentage, K2P distance) within various taxonomic levels. Data are based on 321 sequences (>500 bp) from 122 species.

Comparisons within Taxa Number of comparisons Mean Median Minimum Maximum s.e.# Species 121 453 0.319 0.150 0 2.021∗ 0.018 Genus 85 397 15.742 16.490 0.154∗∗ 25.189 0.292 Family 55 848 20.199 19.850 11.532 34.333 0.134 Order 15 17881 24.656 — 12.923 39.627 0.024 Class 2 29262 25.225 — 15.730 40.800 0.016 ∗ Pennahia anea; ∗∗ versus Pampus cinereus. #Standard error. Engraulidae Scombrbidae Leiognathidae 40 40 Mullidae Synodontidae Cynoglossidae Monacanthidae Muraenesocidae

30 30

20 20

10 10 k2P genetic distance (%) k2P genetic distance p.anea (%) k2P genetic distance P.argenteus versus P.cinereus 0 0

−10 −10 SGF S G FSG FSG FSG FSG FSG FSG FSG FSG FSG F Figure 1: Box plots of K2P distances. IQR: interval into which Figure 2: Boxplot distributions of S, G, and F. Intra-species (S), the “central” 50% of the data fall. Black bar in the box indicates interspecies among congeneric species (G), and intergenera but the median. Circle: “mild outlier” and asterisks: “extreme outliers”. intrafamily (F) K2P distances for different families. Extreme outliers are discussed in the text.

the average genetic distance among congeneric species is divergences among congeneric species are above 10%. There nearly 50-fold higher than that among individuals within are no overlaps between intraspecific and congeneric K2P species. For the higher taxonomic ranks (family, order, and distances within the same family (Figure 3). class), mean pairwise genetic distances increased gradually At the species level, all COI sequences clustered in and reached 20.199%, 24.656%, and 25.225%, respectively monophyletic species units. At the family level, there were (Table 1). Standard errors for K2P genetic distances were paraphyletic clusters for three families (Carangidae, Gobi- small, and values of the mean and median were close idae, and Ariidae) (Figure 3), though over 98% of specimens within different taxonomic ranks (Table 1). This indicates fell into the expected division of families. Intrafamily K2P fluctuations of K2P genetic distances tend to be convergent distances (F) were generally higher than congeneric (G) (Figures 1 and 2). distances, which were definitely higher than intraspecific In the unrooted NJ (neighbour-joining) tree (Figure 3), (S) distances (Table 1, all Mann-Whitney tests were highly three specimens of Pampus argentenus were grouped together significant, P value <10−6). However, overlaps between F and contained within the cluster of Pampus cinereus. These and G distances were observed in Clupeidae, Carangidae, Pampus argentenus specimens were collected in the same site Mullidae, and Muraenesocidae. off the west coast of the South China Sea, and were difficult to identify because of their complex morphological char- 4. Discussion acteristics (available at http://www.barcodinglife.org/). They possessed combined characteristics of Pampus cinereus and In morphological taxonomy, characters are delimited usually Pampus argentenus: the asymmetrical tail of Pampus cinereus without any explicit criteria for character selection or coding, and silver color of Pampus argentenus. If the suspicious and morphological data sets have the potential to be quite congeneric K2P distances in the genera Pampus are excluded arbitrary. For example, morphologists do not generally (the extreme outliers in Figure 1), the pairwise genetic report their criteria for including or excluding characters, 4 Evidence-Based Complementary and Alternative Medicine

5% Dendrophysa russelii|FSCS071-06|FSCS 29-W-4|Sciaenidae Dendrophysa russelii|FSCS070-06|FSCS 29-W-3|Sciaenidae Dendrophysa russelii|FSCS069-06|FSCS 29-W-2|Sciaenidae Dendrophysa russelii|FSCS072-06|FSCS 29-W-5|Sciaenidae Dendrophysa russelii|FSCS068-06|FSCS 29-W-1|Sciaenidae Johnius belangerii|FSCS297-06|FSCS 76-b-1|Sciaenidae Johnius belangerii|FSCS201-06|FSCS 76-l-2|Sciaenidae Johnius belangerii|FSCS200-06|FSCS 76-l-1|Sciaenidae Scomberomorus commerson|FSCS248-06|FSCS 86-yz-1|Scombridae Scomberomorus guttatus|FSCS228-06|FSCS 86-l-2|Scombridae Scomberomorus guttatus|FSCS298-06|FSCS 86-b-1|Scombridae Scomberomorus guttatus|FSCS249-06|FSCS 86-yz-2|Scombridae Scomber japonicus|FSCS090-06|FSCS 38-W-2|Scombridae Scomber japonicus|FSCS180-06|FSCS 38-l-1|Scombridae Scomber japonicus|FSCS091-06|FSCS 38-W-3|Scombridae Scomber japonicus|FSCS309-06|FSCS 38-sz-1|Scombridae Scomber japonicus|FSCS089-06|FSCS 38-W-1|Scombridae Scomber japonicus|FSCS181-06|FSCS 38-l-2|Scombridae Scomber japonicus|FSCS092-06|FSCS 38-W-4|Scombridae Scomber sp.|FSCS093-06|FSCS 38-W-5|Scombridae savala|FSCS007-06|FSCS 3-w-1|Trichiuridae Lepturacanthus savala|FSCS290-06|FSCS 3-b-1|Trichiuridae Trichiurus lepturus|FSCS156-06|FSCS 3-l-2|Trichiuridae Trichiurus lepturus|FSCS155-06|FSCS 3-l-1|Trichiuridae Parupeneus ciliatus|FSCS211-06|FSCS 79-l-2|Mullidae Parupeneus ciliatus|FSCS210-06|FSCS 79-l-1|Mullidae Upeneus sulphureus|FSCS046-06|FSCS 22-W-2|Mullidae Upeneus sulphureus|FSCS045-06|FSCS 22-W-1|Mullidae Upeneus sulphureus|FSCS171-06|FSCS 22-l-1|Mullidae Upeneus japonicus|FSCS245-06|FSCS 56-yz-1|Mullidae Upeneus japonicus|FSCS129-06|FSCS 56-w-4|Mullidae Upeneus japonicus|FSCS127-06|FSCS 56-w-2|Mullidae Upeneus japonicus|FSCS128-06|FSCS 56-w-3|Mullidae Upeneus japonicus|FSCS126-06|FSCS 56-w-1|Mullidae Upeneus subvittatus|FSCS130-06|FSCS 56-w-5|Mullidae Upeneus tragula|FSCS209-06|FSCS 78-l-3|Mullidae Upeneus tragula|FSCS208-06|FSCS 78-l-2|Mullidae Upeneus tragula|FSCS207-06|FSCS 78-l-1|Mullidae Upeneus tragula|FSCS279-06|FSCS 78-z-1|Mullidae aurita|FSCS329-06|FSCS 114-st-3|Clupeidae Sardinella aurita|FSCS328-06|FSCS 114-st-2|Clupeidae Sardinella aurita|FSCS327-06|FSCS 114-st-1|Clupeidae clupeoides|FSCS286-06|FSCS 94-z-1|Clupeidae Sardinella jussieu|FSCS272-06|FSCS 18-z-5|Clupeidae Sardinella jussieu|FSCS271-06|FSCS 18-z-4|Clupeidae Sardinella melanura|FSCS235-06|FSCS 107-l-1|Clupeidae Sardinella melanura|FSCS169-06|FSCS 18-l-2|Clupeidae Sardinella melanura|FSCS269-06|FSCS 18-z-2|Clupeidae Sardinella melanura|FSCS268-06|FSCS 18-z-1|Clupeidae Sardinella melanura|FSCS168-06|FSCS 18-l-1|Clupeidae Sardinella sp.|FSCS287-06|FSCS 94-z-2|Clupeidae Dussumieria elopsoides|FSCS036-06|FSCS 16-W-2|Clupeidae Dussumieria elopsoides|FSCS035-06|FSCS 16-W-1|Clupeidae Dussumieria elopsoides|FSCS262-06|FSCS 16-z-1|Clupeidae Anchoviella sp.|FSCS265-06|FSCS 17-z-3|Engraulidae Engraulis japonicus|FSCS267-06|FSCS 17-z-5|Engraulidae Engraulis japonicus|FSCS266-06|FSCS 17-z-4|Engraulidae Engraulis japonicus|FSCS263-06|FSCS 17-z-1|Engraulidae Thryssa hamiltonii|FSCS019-06|FSCS 9-w-5|Engraulidae Thryssa hamiltonii|FSCS016-06|FSCS 9-w-2|Engraulidae Thryssa kammalensis|FSCS161-06|FSCS 9-l-3|Engraulidae Thryssa kammalensis|FSCS241-06|FSCS 9-yz-2|Engraulidae Thryssa kammalensis|FSCS015-06|FSCS 9-w-1|Engraulidae Thryssa kammalensis|FSCS017-06|FSCS 9-w-3|Engraulidae Thryssa kammalensis|FSCS240-06|FSCS 9-yz-1|Engraulidae Thryssa kammalensis|FSCS160-06|FSCS 9-l-2|Engraulidae Thryssa kammalensis|FSCS159-06|FSCS 9-l-1|Engraulidae Thryssa setirostris|FSCS018-06|FSCS 9-w-4|Engraulidae Thryssa setirostris|FSCS014-06|FSCS 8-w-1|Engraulidae Thryssa setirostris|FSCS158-06|FSCS 8-l-1|Engraulidae Chirocentrus dorab|FSCS176-06|FSCS 26-l-2|Chirocentridae Chirocentrus nudus|FSCS056-06|FSCS 26-W-1|Chirocentridae Chirocentrus nudus|FSCS057-06|FSCS 26-W-2|Chirocentridae Chirocentrus nudus|FSCS058-06|FSCS 26-W-3|Chirocentridae Chirocentrus nudus|FSCS175-06|FSCS 26-l-1|Chirocentridae Arnoglossus polyspilus|FSCS118-06|FSCS 52-w-3|Bothidae Arnoglossus polyspilus|FSCS117-06|FSCS 52-w-2|Bothidae Arnoglossus polyspilus|FSCS116-06|FSCS 52-w-1|Bothidae Fistularia commersonii|FSCS215-06|FSCS 81-l-2|Fistulariidae Fistularia commersonii|FSCS214-06|FSCS 81-l-1|Fistulariidae Harpadon nehereus|FSCS326 06|FSCS 113 st 1|Synodontidae

(a)

Figure 3: Continued. Evidence-Based Complementary and Alternative Medicine 5

Fistularia commersonii|FSCS215-06|FSCS 81-l-2|Fistulariidae Fistularia commersonii|FSCS214-06|FSCS 81-l-1|Fistulariidae Harpadon nehereus|FSCS326-06|FSCS 113-st-1|Synodontidae Harpadon nehereus|FSCS307-06|FSCS 113-b-1|Synodontidae Saurida elongata|FSCS100-06|FSCS 44-w-1|Synodontidae Saurida sp.|FSCS277-06|FSCS 44-z-1|Synodontidae Lagocephalus spadiceus|FSCS302-06|FSCS 98-b-1|Tetraodontidae Zebrias quagga|FSCS109-06|FSCS 48-w-1| Epinephelus sexfasciatus|FSCS098-06|FSCS 42-w-1|Serranidae Pardachirus pavoninus|FSCS255-06|FSCS 105-yz-1|Soleidae Pardachirus pavoninus|FSCS253-06|FSCS 103-yz-1|Soleidae maculata|FSCS004-06|FSCS 1-w-4|Menidae |FSCS003-06|FSCS 1-w-3|Menidae Mene maculata|FSCS002-06|FSCS 1-w-2|Menidae Mene maculata|FSCS001-06|FSCS 1-w-1|Menidae Brachirus orientalis|FSCS009-06|FSCS 5-w-1|Soleidae Paraplagusia japonica|FSCS113-06|FSCS 50-w-1|Cynoglossidae Polydactylus sextarius|FSCS305-06|FSCS 100-b-1|Polynemidae Cynoglossus bilineatus|FSCS115-06|FSCS 51-w-2|Cynoglossidae Cynoglossus bilineatus|FSCS125-06|FSCS 55-w-2|Cynoglossidae Cynoglossus bilineatus|FSCS114-06|FSCS 51-w-1|Cynoglossidae Cynoglossus puncticeps|FSCS112-06|FSCS 49-w-3|Cynoglossidae Cynoglossus puncticeps|FSCS110-06|FSCS 49-w-1|Cynoglossidae Cynoglossus sp.|FSCS111-06|FSCS 49-w-2|Cynoglossidae Lactarius lactarius|FSCS011-06|FSCS 6-w-2|Russulaceae Lactarius lactarius|FSCS010-06|FSCS 6-w-1|Russulaceae Lactarius lactarius|FSCS157-06|FSCS 6-l-1|Russulaceae Rachycentron canadum|FSCS095-06|FSCS 40-W-1|Rachycentridae Alepes djedaba|FSCS260-06|FSCS 15-z-1|Carangidae Alepes djedaba|FSCS166-06|FSCS 15-l-1|Carangidae Alepes djedaba|FSCS167-06|FSCS 15-l-2|Carangidae Alepes djedaba|FSCS292-06|FSCS 15-b-1|Carangidae Alepes djedaba|FSCS261-06|FSCS 15-z-2|Carangidae Alepes djedaba|FSCS088-06|FSCS 37-W-1|Carangidae Atule sp.|FSCS257-06|FSCS 111-yz-1|Carangidae Atule mate|FSCS296-06|FSCS 69-b-1|Carangidae Atule mate|FSCS195-06|FSCS 69-l-2|Carangidae Atule mate|FSCS194-06|FSCS 69-l-1|Carangidae Carangoides hedlandensis|FSCS097-06|FSCS 41-w-2|Carangidae Carangoides hedlandensis|FSCS096-06|FSCS 41-w-1|Carangidae Carangoides malabaricus|FSCS013-06|FSCS 7-w-2|Carangidae Carangoides malabaricus|FSCS012-06|FSCS 7-w-1|Carangidae Selaroides leptolepis|FSCS179-06|FSCS 36-l-1|Carangidae Selaroides leptolepis|FSCS086-06|FSCS 36-W-4|Carangidae Selaroides leptolepis|FSCS085-06|FSCS 36-W-3|Carangidae Selaroides leptolepis|FSCS084-06|FSCS 36-W-2|Carangidae Selaroides leptolepis|FSCS083-06|FSCS 36-W-1|Carangidae Selaroides leptolepis|FSCS087-06|FSCS 36-W-5|Carangidae Sillago maculata|FSCS081-06|FSCS 34-W-1|Sillaginidae Sillago sihama|FSCS247-06|FSCS 70-yz-2|Sillaginidae Sillago sihama|FSCS246-06|FSCS 70-yz-1|Sillaginidae Sillago sihama|FSCS197-06|FSCS 70-l-2|Sillaginidae Sillago sihama|FSCS196-06|FSCS 70-l-1|Sillaginidae |FSCS239-06|FSCS 116-l-1|Drepaneidae tol|FSCS066-06|FSCS 28-W-4|Carangidae Scomberoides tol|FSCS067-06|FSCS 28-W-5|Carangidae Scomberoides tol|FSCS065-06|FSCS 28-W-3|Carangidae Scomberoides tol|FSCS064-06|FSCS 28-W-2|Carangidae Scomberoides tol|FSCS063-06|FSCS 28-W-1|Carangidae Thalassoma lunare|FSCS198-06|FSCS 72-l-1|Labridae Thamnaconus septentrionalis|FSCS186-06|FSCS 47-l-1|Monacanthidae Thamnaconus septentrionalis|FSCS108-06|FSCS 47-w-2|Monacanthidae Thamnaconus septentrionalis|FSCS107-06|FSCS 47-w-1|Monacanthidae Paramonacanthus sulcatus|FSCS104-06|FSCS 46-w-1|Monacanthidae Paramonacanthus sulcatus|FSCS184-06|FSCS 45-l-2|Monacanthidae Paramonacanthus sulcatus|FSCS243-06|FSCS 45-yz-1|Monacanthidae Paramonacanthus sulcatus|FSCS106-06|FSCS 46-w-3|Monacanthidae Paramonacanthus sulcatus|FSCS105-06|FSCS 46-w-2|Monacanthidae Paramonacanthus sulcatus|FSCS103-06|FSCS 45-w-3|Monacanthidae Paramonacanthus sulcatus|FSCS183-06|FSCS 45-l-1|Monacanthidae Paramonacanthus sulcatus|FSCS102-06|FSCS 45-w-2|Monacanthidae Paramonacanthus sulcatus|FSCS101-06|FSCS 45-w-1|Monacanthidae Thamnaconus tessellatus|FSCS278-06|FSCS 46-z-1|Monacanthidae Thamnaconus tessellatus|FSCS185-06|FSCS 46-l-1|Monacanthidae Gerres limbatus|FSCS250-06|FSCS 92-yz-1|Gerreidae Gerres limbatus|FSCS283-06|FSCS 92-z-2|Gerreidae Gerres limbatus|FSCS282-06|FSCS 92-z-1|Gerreidae Gerres limbatus|FSCS231-06|FSCS 92-l-1|Gerreidae Gerres limbatus|FSCS232-06|FSCS 92-l-2|Gerreidae Gerres oblongus|FSCS223-06|FSCS 84-l-2|Gerreidae Terapon jarbua|FSCS244-06|FSCS 54-yz-1| Terapon jarbua|FSCS123-06|FSCS 54-w-4|Terapontidae Terapon jarbua|FSCS121-06|FSCS 54-w-2|Terapontidae

(b)

Figure 3: Continued. 6 Evidence-Based Complementary and Alternative Medicine

Teraponjarbua|FSCS244-06|FSCS 54-yz-1|Terapontidae Terapon jarbua|FSCS123-06|FSCS 54-w-4|Terapontidae Terapon jarbua|FSCS121-06|FSCS 54-w-2|Terapontidae Terapon jarbua|FSCS120-06|FSCS 54-w-1|Terapontidae Terapon jarbua|FSCS294-06|FSCS 54-b-2|Terapontidae Terapon jarbua|FSCS293-06|FSCS 54-b-1|Terapontidae Terapon jarbua|FSCS122-06|FSCS 54-w-3|Terapontidae Terapon jarbua|FSCS119-06|FSCS 53-w-1|Terapontidae Terapon theraps|FSCS318-06|FSCS 54-st-1|Terapontidae Siganus argenteus|FSCS317-06|FSCS 13-st-1|Siganidae Siganus argenteus|FSCS230-06|FSCS 89-l-1|Siganidae Siganus argenteus|FSCS319-06|FSCS 89-st-1|Siganidae Siganus argenteus|FSCS311-06|FSCS 89-sz-1|Siganidae Mugil cephalus|FSCS304-06|FSCS 99-b-2|Mugilidae Mugil cephalus|FSCS303-06|FSCS 99-b-1|Mugilidae Valamugil cunnesius|FSCS251-06|FSCS 99-yz-1|Mugilidae Gerres filamentosus|FSCS222-06|FSCS 84-l-1|Gerreidae Gerres filamentosus|FSCS312-06|FSCS 104-sz-1|Gerreidae Gerres filamentosus|FSCS254-06|FSCS 104-yz-1|Gerreidae Platycephalus indicus|FSCS135-06|FSCS 59-w-1|Platycephalidae Hypoatherina valenciennei|FSCS213-06|FSCS 80-l-2|Atherinidae Hypoatherina valenciennei|FSCS212-06|FSCS 80-l-1|Atherinidae Hypoatherina valenciennei|FSCS152-06|FSCS 80-w-2|Atherinidae Hypoatherina valenciennei|FSCS151-06|FSCS 80-w-1|Atherinidae Acanthopagrus latus|FSCS308-06|FSCS 32-sz-1|Sparidae Acanthopagrus latus|FSCS178-06|FSCS 32-l-1|Sparidae Acanthopagrus berda|FSCS078-06|FSCS 32-W-1|Sparidae Acanthopagrus schlegelii schlegelii|FSCS143-06|FSCS 62-w-1|Sparidae Hemiramphus dussumieri|FSCS077-06|FSCS 31-W-2|Hemiramphidae Hemiramphus dussumieri|FSCS076-06|FSCS 31-W-1|Hemiramphidae Hemiramphus far|FSCS177-06|FSCS 31-l-1|Hemiramphidae Parapristipoma sp.|FSCS217-06|FSCS 82-l-2|Haemulidae Parapristipoma sp.|FSCS216-06|FSCS 82-l-1|Haemulidae Pomadasys hasta|FSCS052-06|FSCS 24-W-4|Haemulidae Pomadasys hasta|FSCS050-06|FSCS 24-W-2|Haemulidae Pomadasys hasta|FSCS049-06|FSCS 24-W-1|Haemulidae Pomadasys hasta|FSCS051-06|FSCS 24-W-3|Haemulidae Pomadasys hasta|FSCS174-06|FSCS 24-l-1|Haemulidae Lutjanus fulvus|FSCS229-06|FSCS 88-l-1| Seriola dumerili|FSCS220-06|FSCS 83-l-3|Carangidae Seriola dumerili|FSCS219-06|FSCS 83-l-2|Carangidae Seriola dumerili|FSCS221-06|FSCS 83-l-4|Carangidae Seriola dumerili|FSCS218-06|FSCS 83-l-1|Carangidae Kumococius rodericensis|FSCS133-06|FSCS 58-w-2|Platycephalidae Kumococius rodericensis|FSCS134-06|FSCS 58-w-3|Platycephalidae Kumococius rodericensis|FSCS132-06|FSCS 58-w-1|Platycephalidae Sphyraena helleri|FSCS182-06|FSCS 43-l-1|Sphyraenidae Sphyraena pinguis|FSCS099-06|FSCS 43-w-1|Sphyraenidae Glossogobius aureus|FSCS082-06|FSCS 35-W-1| Parapercis ommatura|FSCS042-06|FSCS 20-W-3|Pinguipedidae Parapercis ommatura|FSCS041-06|FSCS 20-W-2|Pinguipedidae Parapercis ommatura|FSCS043-06|FSCS 20-W-4|Pinguipedidae Parapercis ommatura|FSCS040-06|FSCS 20-W-1|Pinguipedidae Hypodytes indicus|FSCS131-06|FSCS 57-w-1|Congiopodidae Acentrogobius caninus|FSCS037-06|FSCS 19-W-1|Gobiidae Acentrogobius caninus|FSCS038-06|FSCS 19-W-2|Gobiidae Acentrogobius caninus|FSCS274-06|FSCS 19-z-2|Gobiidae Acentrogobius caninus|FSCS273-06|FSCS 19-z-1|Gobiidae Acentrogobius caninus|FSCS039-06|FSCS 19-W-3|Gobiidae Acentrogobius caninus|FSCS170-06|FSCS 19-l-1|Gobiidae Priacanthus macracanthus|FSCS322-06|FSCS 110-st-2|Priacanthidae Priacanthus macracanthus|FSCS321-06|FSCS 110-st-1|Priacanthidae Bathycallionymus kaianus|FSCS310-06|FSCS 60-sz-1|Callionymidae Repomucenus richardsonii|FSCS138-06|FSCS 60-w-3|Callionymidae Repomucenus richardsonii|FSCS139-06|FSCS 60-w-4|Callionymidae Repomucenus richardsonii|FSCS137-06|FSCS 60-w-2|Callionymidae Repomucenus richardsonii|FSCS136-06|FSCS 60-w-1|Callionymidae Apogon erythrinus|FSCS193-06|FSCS 68-l-1|Apogonidae Apogon fuscus|FSCS190-06|FSCS 66-l-1|Apogonidae Apogon quadrifasciatus|FSCS256-06|FSCS 109-yz-1|Apogonidae Apogon quadrifasciatus|FSCS295-06|FSCS 66-b-1|Apogonidae Apogon quadrifasciatus|FSCS150-06|FSCS 66-w-2|Apogonidae Apogon quadrifasciatus|FSCS149-06|FSCS 66-w-1|Apogonidae Apogon taeniatus|FSCS192-06|FSCS 67-l-2|Apogonidae Apogon taeniatus|FSCS191-06|FSCS 67-l-1|Apogonidae Elops hawaiensis|FSCS061-06|FSCS 27-W-3| Elops hawaiensis|FSCS060-06|FSCS 27-W-2|Elopidae Elops hawaiensis|FSCS059-06|FSCS 27-W-1|Elopidae Elops hawaiensis|FSCS062-06|FSCS 27-W-4|Elopidae Muraenesox cinereus|FSCS288-06|FSCS 95-z-1|Muraenesocidae Muraenesox cinereus|FSCS234-06|FSCS 95-l-2|Muraenesocidae Oxyconger leptognathus|FSCS146-06|FSCS 63-w-3|Muraenesocidae Oxyconger leptognathus|FSCS145-06|FSCS 63-w-2|Muraenesocidae Oxyconger leptognathus|FSCS144-06|FSCS 62-w-1|Muraenesocidae

(c)

Figure 3: Continued. Evidence-Based Complementary and Alternative Medicine 7

Oxyconger leptognathus|FSCS146-06|FSCS 63-w-3|Muraenesocidae Oxyconger leptognathus|FSCS145-06|FSCS 63-w-2|Muraenesocidae Oxyconger leptognathus|FSCS144-06|FSCS 63-w-1|Muraenesocidae Oxyconger sp.|FSCS320-06|FSCS 95-st-1|Muraenesocidae Oxyconger sp.|FSCS233-06|FSCS 95-l-1|Muraenesocidae rondeletii|FSCS080-06|FSCS 33-W-2|Exocoetidae Hirundichthys rondeletii|FSCS079-06|FSCS 33-W-1|Exocoetidae Lethrinus lentjan|FSCS281-06|FSCS 91-z-2|Lethrinidae Lethrinus lentjan|FSCS280-06|FSCS 91-z-1|Lethrinidae Leiognathus brevirostris|FSCS048-06|FSCS 23-W-2|Leiognathidae Leiognathus brevirostris|FSCS047-06|FSCS 23-W-1|Leiognathidae Leiognathus leuciscus|FSCS028-06|FSCS 13-W-1|Leiognathidae Leiognathus leuciscus|FSCS030-06|FSCS 13-W-3|Leiognathidae Leiognathus leuciscus|FSCS029-06|FSCS 13-W-2|Leiognathidae Leiognathus leuciscus|FSCS165-06|FSCS 13-l-3|Leiognathidae Leiognathus leuciscus|FSCS164-06|FSCS 13-l-2|Leiognathidae Leiognathus leuciscus|FSCS163-06|FSCS 13-l-1|Leiognathidae Leiognathus bindus|FSCS032-06|FSCS 14-W-2|Leiognathidae Leiognathus bindus|FSCS033-06|FSCS 14-W-3|Leiognathidae Leiognathus bindus|FSCS034-06|FSCS 14-W-4|Leiognathidae Leiognathus bindus|FSCS031-06|FSCS 14-W-1|Leiognathidae Leiognathus bindus|FSCS242-06|FSCS 23-yz-1|Leiognathidae Leiognathus bindus|FSCS173-06|FSCS 23-l-2|Leiognathidae Leiognathus bindus|FSCS172-06|FSCS 23-l-1|Leiognathidae Leiognathus nuchalis|FSCS276-06|FSCS 23-z-2|Leiognathidae Leiognathus nuchalis|FSCS275-06|FSCS 23-z-1|Leiognathidae Secutor insidiator|FSCS316-06|FSCS 12-st-3|Leiognathidae Secutor insidiator|FSCS315-06|FSCS 12-st-2|Leiognathidae Secutor ruconius|FSCS027-06|FSCS 12-W-2|Leiognathidae Secutor ruconius|FSCS026-06|FSCS 12-W-1|Leiognathidae Secutor ruconius|FSCS314-06|FSCS 12-st-1|Leiognathidae thoracata|FSCS022-06|FSCS 10-w-3|Clupeidae Escualosa thoracata|FSCS021-06|FSCS 10-w-2|Clupeidae Escualosa thoracata|FSCS024-06|FSCS 10-w-5|Clupeidae Escualosa thoracata|FSCS020-06|FSCS 10-w-1|Clupeidae Escualosa thoracata|FSCS259-06|FSCS 10-z-2|Clupeidae Escualosa thoracata|FSCS258-06|FSCS 10-z-1|Clupeidae Scatophagus argus|FSCS055-06|FSCS 25-W-3|Scatophagidae Scatophagus argus|FSCS054-06|FSCS 25-W-2|Scatophagidae Scatophagus argus|FSCS053-06|FSCS 25-W-1|Scatophagidae Scatophagus argus|FSCS299-06|FSCS 96-b-1|Scatophagidae sp.|FSCS300-06|FSCS 96-b-2|Belonidae Strongylura leiura|FSCS006-06|FSCS 2-w-2|Belonidae Strongylura leiura|FSCS005-06|FSCS 2-w-1|Belonidae Strongylura strongylura|FSCS187-06|FSCS 59-l-1|Belonidae Strongylura strongylura|FSCS154-06|FSCS 2-l-2|Belonidae Strongylura strongylura|FSCS153-06|FSCS 2-l-1|Belonidae Dasyatis zugei|FSCS008-06|FSCS 4-w-1|Dasyatididae Etmopterus lucifer|FSCS236-06|FSCS 115-l-1|Squalidae Etmopterus lucifer|FSCS237-06|FSCS 115-l-2|Squalidae Etmopterus lucifer|FSCS238-06|FSCS 115-l-3|Squalidae Etmopterus lucifer|FSCS162-06|FSCS 9-l-4|Squalidae Favonigobius gymnauchen|FSCS044-06|FSCS 21-W-1|Gobiidae Gymnothorax pseudothyrsoideus|FSCS188-06|FSCS 64-l-1|Muraenidae Gymnothorax pseudothyrsoideus|FSCS189-06|FSCS 64-l-2|Muraenidae Gymnothorax pseudothyrsoideus|FSCS147-06|FSCS 64-w-1|Muraenidae Pampus argenteus|FSCS074-06|FSCS 30-W-2| Pampus cinereus|FSCS323-06|FSCS 112-st-1|Stromateidae Pampus cinereus|FSCS324-06|FSCS 112-st-2|Stromateidae Pampus cinereus|FSCS325-06|FSCS 112-st-3|Stromateidae Pampus cinereus|FSCS075-06|FSCS 30-W-3|Stromateidae Pampus argenteus|FSCS142-06|FSCS 61-w-3|Stromateidae Pampus argenteus|FSCS141-06|FSCS 61-w-2|Stromateidae Pampus argenteus|FSCS140-06|FSCS 61-w-1|Stromateidae Pampus cinereus|FSCS073-06|FSCS 30-W-1|Stromateidae Pampus cinereus|FSCS289-06|FSCS 112-z-1|Stromateidae Scorpaenopsis vittapinna|FSCS225-06|FSCS 85-l-2|Scorpaenidae Scorpaenopsis vittapinna|FSCS226-06|FSCS 85-l-3|Scorpaenidae Scorpaenopsis vittapinna|FSCS224-06|FSCS 85-l-1|Scorpaenidae Arius thalassinus|FSCS204-06|FSCS 77-l-3|Ariidae Arius thalassinus|FSCS206-06|FSCS 77-l-5|Ariidae Arius thalassinus|FSCS205-06|FSCS 77-l-4|Ariidae Arius thalassinus|FSCS202-06|FSCS 77-l-1|Ariidae Takifugu oblongus|FSCS094-06|FSCS 39-W-1|Tetradontidae Abudefduf septemfasciatus|FSCS199-06|FSCS 74-l-1|Pomacentridae Arius leiotetocephalus|FSCS285-06|FSCS 93-z-2|Ariidae Arius leiotetocephalus|FSCS284-06|FSCS 93-z-1|Ariidae Otolithes ruber|FSCS306-06|FSCS 101-b-1|Sciaenidae Otolithes ruber|FSCS252-06|FSCS 101-yz-1|Sciaenidae Chrysochir aureus|FSCS148-06|FSCS 65-w-1|Sciaenidae Pennahia anea|FSCS313-06|FSCS 11-st-1|Sciaenidae Pennahia anea|FSCS291-06|FSCS 11-b-1|Sciaenidae

(d)

Figure 3: Neighbor-joining (NJ) tree of COI sequences. Scale: 5% K2P distance. The first numbers following species names are the process IDs, and the latter are the sample IDs. 8 Evidence-Based Complementary and Alternative Medicine and when criteria are given, they vary considerably among cannot set a threshold of the genetic variation in species studies [32]. Thus, it is not surprising that there are so many delimitation, we find ourselves sunk in the dilemma facing synonyms for organisms [33],andanobjective,rigorous new or cryptic species. On the one hand, the morphological species delimitation according to explicit criteria is therefore taxonomy cannot give a definite identification. On the necessary for many taxonomic studies [34]. While DNA other hand, we cannot claim that it may be a new species barcoding provides taxonomic identification for a specimen, based on molecular analysis without the species delimitation. the accuracy of such an assignment depends on whether An assumed threshold is helpful to expedite discovery of species are monophyletic with respect to sequence variations new species and biodiversity, especially in dealing with of the COI gene. That is, individuals of a given species little-studied biotas, although a single, uniform threshold are more closely related to all other conspecifics than to for species delimitation seems arbitrary because rates of any member of other species. Except for the hybridized molecular evolution vary widely within and among lineages specimens in the genus Pampus, there are no overlaps [24, 25, 48]. between genetic variations of S and G (Figure 1). The factors responsible for deviations from taxonomic Acknowledgments monophyly may be varied and complex [35]; one potential cause of species-level polyphyly is the occasional mat- Thanks are due to Chinese National Funding U0633007 and ing between distinct species, resulting in hybrid offspring 40776089 and CAS Founding KZCX2-YW-213. carrying a mixture of genes from both parent species. Furthermore, mitochondrial genes are generally subjected to introgression more frequently than nuclear ones, and References introgression also leads to phylogenetic paraphyly [35– [1] R. S. Rasmussen, M. T. Morrissey, and P. D. N. Hebert, 38], like the hybridization between Pampus argentenus and “DNA barcoding of commercially important salmon and trout Pampus cinereus in this study. In such cases, combinations species (oncorhynchus and salmo ) from North America,” of morphological and genotypic data are needed for species Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. assignment of hybrids. 8379–8385, 2009. Biological mechanisms, water dynamics, or historical [2] B. C. Victor, R. Hanner, M. Shivji, J. Hyde, and C. Cal- events may cause deep genetic structuring of populations dow, “Identification of the larval and juvenile stages of the in marine species [26, 39]. Many explanations for genetic Cubera Snapper, Lutjanus cyanoptems , using DNA barcoding,” population structuring on local and regional scales involve Zootaxa, no. 2215, pp. 24–36, 2009. behaviors such as the adoption of pelagic early life stages [3] B. Patwardhan, D. Warude, P. Pushpangadan, and N. Bhatt, and movement over broad geographic ranges, and these “Ayurveda and traditional Chinese medicine: a comparative factors are theoretically associated with gene flow [40–42]. overview,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 4, pp. 465–473, 2005. For many marine fishes, there is a lack of phylogeographic [4] S. E. Bartlett and W. S. Davidson, “Identification of Thunnus structure among populations [43, 44]; in this study, for species by the polymerase chain reaction and direct individuals from long distance localities, some intraspecific sequence analysis of their mitochondrial cytochrome b genes,” genetic variations reduced to zero within families Carangi- Canadian Journal of Fisheries and Aquatic Sciences, vol. 48, pp. dae, Sciaenidae, and Mullidae. However, some pairwise 309–317, 1991. K2P distances exceeded 1.00% within the coastal species [5] A. Rocha-Olivares, “Multiplex haplotype-specific PCR: a new such as Acentrogobius caninus, Scomber japonicus, Terapon approach for species identification of the early life stages of jarbua, Upeneus sulphureus, Elops hawaiensis, Gymnothorax rockfishes of the species-rich genus Sebastes Cuvier,” Journal pseudothyrsoideus, and Dendrophysa russelii. It implied that of Experimental Marine Biology and Ecology, vol. 231, no. 2, biological mechanisms were responsible for the fluctuation pp. 279–290, 1998. of intraspecific genetic divergences in marine fishes. [6] A. J. Gharrett, A. K. Gray, and J. Heifetz, “Identification The neighbor-joining method was originally employed in of rockfish (Sebastes spp.) by restriction site analysis of the this study for species identification, but some phylogenetic mitochondrial ND-3/ND-4 and 12S/16S rRNA gene regions,” information was also revealed by the dendrogram, and over Fishery Bulletin, vol. 99, no. 1, pp. 49–62, 2001. 98% of specimens were allocated into different families with- [7] B. Horstkotte and H. Rehbein, “ species identification by out polyphyly/paraphyly in the NJ tree (Figure 3). However, means of restriction fragment length polymorphism and high- DNA barcoding is independent of the way the taxonomy has performance liquid chromatography,” Journal of Food Science, vol. 68, no. 9, pp. 2658–2666, 2003. been built, and it cannot be regarded as the “taxonomic” tag [8]C.J.Noell,S.Donnellan,R.Foster,andL.Haigh,“Molecular [45]. DNA barcoding is no substitute for taxonomy Ebach discrimination of garfish Hyporhamphus () lar- and Holdrege [46], and a great deal of work is needed vaeinsouthernAustralianwaters,”Marine Biotechnology, vol. to bring about the reconciliation between traditional and 3, no. 6, pp. 509–514, 2001. molecular taxonomy. It is unfeasible to build the phylogeny [9] J. Zhang, L. Huang, and H. Huo, “Larval identification of of fishes only based on mitochondrial DNA fragments. Lutjanus Bloch in Nansha coral reefs by AFLP molecular Polyphyly/paraphyly in the NJ tree probably results from method,” Journal of Experimental Marine Biology and Ecology, “bad taxonomy” when named species fail to identify the vol. 298, no. 1, pp. 3–20, 2004. genetic limits of separate evolutionary entities, particularly [10] G. Comi, L. Iacumin, K. Rantsiou, C. Cantoni, and L. Cocolin, for perplexing taxa involving cryptic species [47]. If we “Molecular methods for the differentiation of species used in Evidence-Based Complementary and Alternative Medicine 9

production of cod-fish can detect commercial frauds,” Food [26]P.H.Barber,S.R.Palumbi,M.V.Erdmann,andM.K.Moosa, Control, vol. 16, no. 1, pp. 37–42, 2005. “Biogeography: a marine Wallace’s line?” Nature, vol. 406, no. [11] P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. DeWaard, 6797, pp. 692–693, 2000. “Biological identifications through DNA barcodes,” Proceed- [27] N. V. Ivanova, J. R. DeWaard, and P. D. N. Hebert, “An inex- ings of the Royal Society B: Biological Sciences, vol. 270, no. pensive, automation-friendly protocol for recovering high- 1512, pp. 313–321, 2003. quality DNA,” Molecular Ecology Notes, vol. 6, no. 4, pp. 998– [12]P.D.N.Hebert,E.H.Penton,J.M.Burns,D.H.Janzen,and 1002, 2006. W. Hallwachs, “Ten species in one: DNA barcoding reveals [28] N. V. Ivanova, T. S. Zemlak, R. H. Hanner, and P. D. N. cryptic species in the neotropical skipper butterfly Astraptes Hebert, “Universal primer cocktails for fish DNA barcoding,” fulgerator,” Proceedings of the National Academy of Sciences of Molecular Ecology Notes, vol. 7, no. 4, pp. 544–548, 2007. the United States of America, vol. 101, no. 41, pp. 14812–14817, [29] M. Kimura, “A simple method for estimating evolutionary 2004. rates of base substitutions through comparative studies of [13] M. Hajibabaei, D. H. Janzen, J. M. Burns, W. Hallwachs, and nucleotide sequences,” Journal of Molecular Evolution, vol. 16, P. D. N. Hebert, “DNA barcodes distinguish species of tropical no. 2, pp. 111–120, 1980. Lepidoptera,” Proceedings of the National Academy of Sciences [30] S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated of the United States of America, vol. 103, no. 4, pp. 968–971, software for molecular evolutionary genetics analysis and 2006. sequence alignment,” Briefings in Bioinformatics,vol.5,no.2, [14] D. M. Lambert, A. Baker, L. Huynen, O. Haddrath, P. D. pp. 150–163, 2004. N. Hebert, and C. D. Millar, “Is a large-scale DNA-based [31] J. W. Tuckey, Exploratory Data Analysis, Addison–Wesley, inventory of ancient life possible?” Journal of Heredity, vol. 96, Boston, Mass, USA, 1977. no. 3, pp. 279–284, 2005. [32] J. J. Wiens, Phylogenetic Analysis of Morphological Data, [15] M. H. Greenstone, D. L. Rowley, U. Heimbach, J. G. Lundgren, Smithsonian Institution Press, Washington, DC, USA, 2000. R. S. Pfannenstiel, and S. A. Rehner, “Barcoding generalist [33] J. Kohler,¨ K. Munn, A. Ruegg,¨ A. Skusa, and B. Smith, predators by polymerase chain reaction: carabids and spiders,” “Quality control for terms and definitions in ontologies and Molecular Ecology, vol. 14, no. 10, pp. 3247–3266, 2005. taxonomies,” BMC Bioinformatics, vol. 7, article 212, 2006. [16] R. D. Ward, T. S. Zemlak, B. H. Innes, P. R. Last, and P. D. N. [34] M. Pfenninger, M. Cordellier, and B. Streit, “Comparing Hebert, “DNA barcoding Australia’s fish species,” Philosophical the efficacy of morphologic and DNA-based taxonomy in Transactions of the Royal Society B: Biological Sciences, vol. 360, the freshwater gastropod genus Radix (Basommatophora, no. 1462, pp. 1847–1857, 2005. Pulmonata),” BMC Evolutionary Biology, vol. 6, article 100, [17] G. G. Pegg, B. Sinclair, L. Briskey, and W. J. Aspden, “MtDNA 2006. barcode identification of fish larvae in the southern Great [35] D. J. Funk and K. E. Omland, “Species-level paraphyly and Barrier Reef, Australia,” Scientia Marina, vol. 70, no. 2, pp. 7– polyphyly: frequency, causes, and consequences, with insights 12, 2006. from animal mitochondrial DNA,” Annual Review of Ecology, [18] N. Hubert, R. Hanner, E. Holm et al., “Identifying Canadian Evolution, and Systematics, vol. 34, pp. 397–423, 2003. freshwater fishes through DNA barcodes,” PLoS ONE, vol. 3, [36] J. Arnold, “Cytonuclear disequilibria in hybrid zones,” Annual no. 6, article e2490, 2008. Review of Ecology and Systematics, vol. 24, pp. 521–554, 1993. [19] M. Vences, M. Thomas, R. M. Bonett, and D. R. Vieites, [37] T. G. Barraclough and S. Nee, “Phylogenetics and speciation,” “Deciphering amphibian diversity through DNA barcoding: Trends in Ecology and Evolution, vol. 16, no. 7, pp. 391–399, chances and challenges,” Philosophical Transactions of the Royal 2001. SocietyB:BiologicalSciences, vol. 360, no. 1462, pp. 1859–1868, [38] P. Alexandrino, R. Faria, D. Linhares et al., “Interspecific 2005. differentiation and intraspecific substructure in two closely [20] M. Vences, M. Thomas, A. van der Meijden, Y. Chiari, and D. related clupeids with extensive hybridization, Alosa alosa and R. Vieites, “Comparative performance of the 16S rRNA gene Alosa fallax,” Journal of Fish Biology, vol. 69, pp. 242–259, 2006. in DNA barcoding of amphibians,” Frontiers in Zoology, vol. 2, [39]J.S.Nelson,R.J.Hoddell,L.M.Chou,W.K.Chan,andV. article 5, 2005. P. E. Phang, “Phylogeographic structure of false clownfish, [21] M. Aliabadian, M. Kaboli, V. Nijman, and M. Vences, “Molec- Amphiprion ocellaris, explained by sea level changes on the ular identification of birds: performance of distance-based Sunda shelf,” Marine Biology, vol. 137, no. 4, pp. 727–736, DNA barcoding in three genes to delimit parapatric species,” 2000. PLoS ONE, vol. 4, no. 1, article e4119, 2009. [40] S. F. Chenoweth and J. M. Hughes, “Genetic population struc- [22] V. Nijman and M. Aliabadian, “Performance of distance-based ture of the catadromous perciform: Macquaria novemaculeata DNA barcoding in the molecular identification of Primates,” (Percichthyidae),” Journal of Fish Biology,vol.50,no.4,pp. Comptes Rendus—Biologies, vol. 333, no. 1, pp. 11–16, 2010. 721–733, 1997. [23] S. J. Scheffer, M. L. Lewis, and R. C. Joshi, “DNA barcoding [41] C. L. Dudgeon, N. Gust, and D. Blair, “No apparent genetic applied to invasive leafminers (Diptera: Agromyzidae) in the basis to demographic differences in scarid fishes across Philippines,” Annals of the Entomological Society of America, continental shelf of the great barrier reef,” Marine Biology, vol. vol. 99, no. 2, pp. 204–210, 2006. 137, no. 5-6, pp. 1059–1066, 2000. [24] K. W. Will and D. Rubinoff, “Myth of the molecule: DNA bar- [42] G. Bernardi, S. J. Holbrook, and R. J. Schmitt, “Gene flow at codes for species cannot replace morphology for identification three spatial scales in a coral reef fish, the three-spot dascyllus, and classification,” Cladistics, vol. 20, no. 1, pp. 47–55, 2004. Dascyllus trimaculatus,” Marine Biology, vol. 138, no. 3, pp. [25] R. DeSalle, M. G. Egan, and M. Siddall, “The unholy 457–465, 2001. trinity: taxonomy, species delimitation and DNA barcoding,” [43] S. R. Palumbi, “Genetic divergence, reproductive isolation, Philosophical Transactions of the Royal Society B: Biological and marine speciation,” Annual Review of Ecology and System- Sciences, vol. 360, no. 1462, pp. 1905–1916, 2005. atics, vol. 25, pp. 547–572, 1994. 10 Evidence-Based Complementary and Alternative Medicine

[44] M. E. Hellberg, R. S. Burton, J. E. Neigel, and S. R. Palu- mbi, “Genetic assessment of connectivity among marine populations,” Bulletin of Marine Science, vol. 70, no. 1, pp. 273–290, 2002. [45] T. Lefebure,´ C. J. Douady, M. Gouy, and J. Gibert, “Rela- tionship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular thresh- old to help species delimitation,” Molecular Phylogenetics and Evolution, vol. 40, no. 2, pp. 435–447, 2006. [46] M. C. Ebach and C. Holdrege, “DNA barcoding is no substitute for taxonomy,” Nature, vol. 434, no. 7034, p. 697, 2005. [47] C. C. Nice and A. M. Shapiro, “Patterns of morphological, biochemical, and molecular evolution in the Oeneis chryxus complex (Lepidoptera: Satyridae): a test of historical biogeo- graphical hypotheses,” Molecular Phylogenetics and Evolution, vol. 20, no. 1, pp. 111–123, 2001. [48] E. Zuckerkandl and L. Pauling, “Evolutionary divergence and convergence in proteins,” in Evolving Genes and Proteins,V. Bryson and H. J. Vogel, Eds., pp. 97–166, Academic Press, New York, NY, USA, 1965. M EDIATORSof INFLAMMATION

The Scientific Gastroenterology Journal of Research and Practice Diabetes Research Disease Markers World Journal Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of International Journal of Immunology Research Endocrinology Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

BioMed PPAR Research Research International Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Obesity

Evidence-Based Journal of Stem Cells Complementary and Journal of Ophthalmology International Alternative Medicine Oncology Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Parkinson’s Disease

Computational and Mathematical Methods Behavioural AIDS Oxidative Medicine and in Medicine Neurology Research and Treatment Cellular Longevity Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014