arXiv:2007.10292v1 [math.CA] 9 Jul 2020 iae yS srvk n .ua n21 1] nti stud this In [16]. 2013 in M.Turan and Ostrovska S. by tigated n .Wlrni 00rltdt h iesrcueo h cl the of eigenstructure the the of to Eigenfunctions wo related 5]. present [4, 2000 The operators in 21]. 10, Waldron 8, S. 7, and [6, example, for See, operators. r band[,1,1,1,1,1,20]. 19, 15, 14, 13, 11, [9, obtained are studied uhta for that such simp rather published and Bernstein edeveloped and simple find to studied researchers ainlfntos[2.Hwvr n19,Pilp a dev has Phillips 1997, in However, [12]. functions defined rational Lupas¸ has 1987, In [2]. Theorem Approximation htfraycniuu function continuous any proved for Theorem, that Approximation Weierstrass well-known The Introduction 1 P nteegntutr fthe of eigenstructure the On uhthat such ∗ ayrsaceshv tde h iesrcueo h ext the of eigenstructure the studied have researchers Many Keywords orsodn author Corresponding ilgv h ii eaiu fteeegnausadeigen and eigenvalues these of behaviour limit the give will q Brsenoeaosadwt h epo hsoperator, this of help the with and operators -Bernstein 2 eoti ievle n ievcoso h ( the of eigenvectors and eigenvalues obtain We eateto ahmtc,Akr nvriy010 BeÅev 06100, University Ankara , of Department | q f : ( = 1 x q oilScrt nttto,Dt etr eiaal,An Yenimahalle, Center, Data Institution, Security Social ) cluu;( -calculus; 1 − , lsia enti prtr r band[7.Atrthi After [17]. obtained are operators Bernstein classical P B ( x ln K ulent ¨ ) | ǫ < α, -al [email protected] e-mail: ic h ro ftetermi egh n opiae,m complicated, and lengthy is theorem the of proof the Since . q -enti oyoil;Egnaus Eigenvectors. Eigenvalues; polynomials; )-Bernstein -al [email protected] e-mail: oro ¨ f endi nevl[ interval in defined glu ˘ ff q Brsenoeaosadteraypoi eairaeinv are behavior asymptotic their and operators -Bernstein ciepof n11,uigpoaiiyter,SNBernst S.N theory, probability using 1912, In proof. ective 1 ∗ n am Tas¸delen Yes¸ildal Fatma and Abstract 1 α, ( α, q -enti operator )-Bernstein q a eloped aaou fteBrsenplnmasfor polynomials Bernstein the of -analogue , b q etr o all for vectors and ] ,egnausadegnucin fthe of eigenfunctions and eigenvalues y, ki ae ntesuisb .Cooper S. by studies the on based is rk ) eade and le Brsenoperator -Bernstein nin fBrsenand Bernstein of ensions sia n ut-aibeBernstein multi-variable and assical q yKr eesrs n18,states 1885, in Weierstrass Karl by q aaouso ayohroperators other many of -analogues aaou fplnma functions of -analogue > ǫ ff ,teeeit polynomial a exists there 0, ciepoffrWeierstrass for proof ective e,Akr,Turkey Ankara, ler, aa Turkey kara, q . T ae ayresearchers many date, s n 2 , q ,α oevr we Moreover, . q -Bernstein any ein es- (α, q)-Bernstein operators introduced by Qing-Bo Cai and Xiao-Wei Xu in [18] are found and their asymptotic behavior is investigated. When q = 1, one obtains the eigenvalues and eigenfunctions of the α-Bernstein operator introduced by Chen et. al [3].

2 Preliminaries

The definitions and notations used in this article are adopted from [1, Ch.10]. Let q > 0. The q-integer is defined by

2 n−1 [n]q := 1 + q + q + ··· + q , [0]q := 0 (n = 1, 2,... ), (2.1) the q-factorial of n by

[n]q!:= [1]q[2]q ... [n]q, [0]q!:= 1 (n = 1, 2,... ). From (2.1), one can easily see that

[n]q − [i]q [n − i] = , i = 0, 1,..., n, (2.2) q qi For integers k and n with 0 ≤ k ≤ n, the q− binomial coefficient is n [n] ! = q k q [k]q![n − k]q! The q-shifted products defined by

k−1 ∞ s s (a; q)0 = 1, (a; q)k = (1 − aq ), (a; q)∞ = (1 − aq ). Ys=0 Ys=0

We also need the q-Stirling numbers of the second kind S q(k, r) given by

r 1 i i(i−1) r k = − 2 − S q(k, r) r(r−1)/2 ( 1) q [r i]q. (2.3) [r] ! q i q q Xi=0   Using the induction on k, one can verify that

S q(k + 1, r) = S q(k, r − 1) + [r]qS q(k, r), k ≥ 0, r ≥ 1 (2.4) with S q(0, 0) = 1, S q(k, 0) = 0 for k > 0 and S q(k, r) = 0 for k < r. The α-Bernstein polynomial of f : [0, 1] → R is introduced in [3] as

n i T ( f ; x) = f p(α)(x) (2.5) n,α n n,i Xi=0  

2 (α) (α) (α) where pn,i (x) are the α-Bernstein polynomials of degree n given by p1,0(x) = 1 − x, p1,1(x) = x and for n ≥ 2,

n − 2 n − 2 n p(α)(x) = (1 − α)x + (1 − α)(1 − x) + αx(1 − x) xi−1(1 − x)n−1−i. n,i " i ! i − 2! i! #

n n Here i stands for the binomial coefficients and one has i = 0 for i < 0 or i > n. The α-Bernstein operator Tn,α on C[0, 1] is given by  

Tn,α : f → Tn,α f

Using the forward difference operator, (2.5) can also be written as

n n − 1 r n r r Tn,α( f ; x) = (1 − α) ∆ g0 + α ∆ f0 x " r ! r! # Xr=0 where i i i fi = f , gi = 1 − fi + fi+1 n  n − 1 n − 1 0 r r−1 r−1 and ∆ fi = fi, ∆ fi = ∆ fi+1 − ∆ fi for r ≥ 1. Lemma 3.1 in [3] states that the higher-order forward difference of gi can be expressed as

r i r i + r r ∆ gi = 1 − ∆ fi + ∆ fi+1,  n − 1 n − 1 The q-analogue of α-Bernstein operators, called (α, q)-Bernstein operators are defined in [18] as Tn,q,α : f → Tn,q,α( f ; .) such that

n [i]q (α) Tn,q,α( f ; x) = f p (x), [n] ! n,q,i Xi=0 q

(α) (α) where pn,q,i(x) are the (α, q)-Bernstein polynomials of degree n given by p1,q,0(x) = 1 − x, (α) p1,q,1(x) = x and

n − 2 (1 − α)x n − 2 n (α) = + − n−i−2 + i−1 pn,q,i(x) n−i−1 (1 α)q αx x (x; q)n−i.  " i #q 1 − q x " i − 2 #q  i q  Like α-Bernstein polynomials, the (α, q)-Bernstein polynomials have the representation using the forward difference operators as

n n − 1 r n r r Tn,q,α( f ; x) = (1 − α) ∆qg0 + α ∆q f0 x (2.6) " r # r q Xr=0  q   

3 0 r r−1 r−1 r−1 where ∆q fi = fi, ∆q fi = ∆q fi+1 − q ∆q fi for r ≥ 1. Also, the higher-order forward difference of gi can be expressed as, see [18, Lemma 2.4],

n−i−1 n−i−1−r r q [i]q r q [i + r]q r ∆qgi = 1 − ∆q fi + ∆q fi+1. (2.7) [n − 1]q ! [n − 1]q It is worth mentioning that when α = 1, the α-Bernstein and (α, q)-Bernstein polynomials become Bernstein and q-Bernstein polynomials, respectively.

3 Main Results

Since the α-Bernstein polynomials are obtained from (α, q)-Bernstein polynomials as q → 1, we will present only the results for the latter one. Similar results can be derived for α-Bernstein polynomials by taking the limit as q → 1. It is knownthat (α, q)-Bernstein polynomials possess some properties of q-Bernstein polynomials. For example, see [3] and [18], they have the end-point interpolation property:

Tn,q,α( f ; 0) = f (0), Tn,q,α( f ; 1) = f (1), n = 1, 2,..., q > 0, and leave the functions invariant:

Tn,q,α(at + b; x) = ax + b, n = 1, 2,..., q > 0.

k Moreover, they are degree reducing on polynomials, that is, Tn,q,α(t ; x) is a polynomial of degree min{n, k}. This implies that, for k ≤ n, the subspace Pk of polynomials of degree at most k is invariant under Tn,q,α. To be specific, it is known (see [18]) that

k k k−1 Tn,q,α(t ; x) = ak x + ak−1 x + ··· + a1 x, where k(k−1)/2 q [n − 2]q! a = (1 − α)[n − k] [n − 1 + k] + α[n] [n − 1] . k [n − k] ![n]k q q q q q q n o The above representation gives only an explicit formula for the leading coefficient. However, in our study, we need all coefficients explicitly which are given in the following lemma. Lemma 3.1. Let f (t) = tk. Then, for r ≤ k andi = 0, 1,..., n, one has

1 r r ∆r = − s s(s−1)/2 + − k . q fi k ( 1) q [i r s]q (3.1) [n] s q q Xs=0   Proof. Take f (t) = tk in [17, formula (2.1)]. 

4 Lemma 3.2. For n ≥ k ≥ 1, one has

k k r Tn,q,α(t ; x) = a(r, k)x Xr=0 where

r(r−1) q 2 [n − 2] ! = q − − + − + + a(r, k) k (1 α)[n r]q [n r 1]qS q(k 1, r 1) [n]q[n − r]q!  

− [r + 1]q[n − 1]qS q(k, r + 1) + α[n]q[n − 1]qS q(k, r) . (3.2)   Proof. From (2.6) one has

n − 1 r n r a(r, k) = (1 − α) ∆qg0 + α ∆q f0. " r #q  r q For i = 0, (3.1) becomes

1 r r ∆r = − s s(s−1)/2 − k, q f0 k ( 1) q [r s]q [n] s q q Xs=0   and using (2.3), we get

r(r−1)/2 r [r]q!q ∆q f0 = S q(k, r). [n]q!

r+1 r r r As ∆q f0 = ∆q f1 − q ∆q f0, we have

r r+1 r r ∆q f1 = ∆q f0 + q ∆q f0 [r] !qr(r+1)/2 = q + , + + , k ([r 1]qS q(k r 1) S q(k r)) [n]q [r] !qr(r+1)/2 = q + , + k S q(k 1 r 1) [n]q Also, i = 0 in (2.7) results in

n−1−r r r q [r]q r ∆qg0 = ∆q f0 + ∆q f1 [n − 1]q r(r−1) n−1 [r] !q 2 q [r] = q + q + + k S q(k, r) S q(k 1, r 1) [n]q  [n − 1]q 

5 Therefore,

r(r−1) n−1 [r] !q 2 n − 1 q [r] n = q − + q + + + a(r, k) k (1 α) S q(k, r) S q(k 1, r 1) α S q(k, r) [n]q  " r #q [n − 1]q !  r q  r(r−1) n−1 q 2 [n − 1] ! q [r] [n] ! = − q + q + + + q k (1 α) S q(k, r) S q(k 1, r 1) α S q(k, r) . [n]q  [n − r − 1]q! [n − 1]q ! [n − r]q!  Using (2.4), the last equality becomes

r(r−1) q 2 [n − 2] ! = q − − − + + − + + a(r, k) k (1 α)[n 1]q[n r]q S q(k 1, r 1) [r 1]qS q(k, r 1) [n]q[n − r]q!   n−1 q [r]q + S q(k + 1, r + 1) + α[n]q[n − 1]qS q(k, r) [n − 1]q   r(r−1) q 2 [n − 2] ! = q − α − − + n−1 + , + k (1 )[n r]q [n 1]q q [r]q S q(k 1 r 1) [n] [n − r]q! q   − [r + 1]q[n − 1]qS q(k, r + 1) + α[n]q[n − 1]qS q(k, r)   r(r−1) q 2 [n − 2] ! = q − α − + − + , + k (1 )[n r]q [n r 1]qS q(k 1 r 1) [n]q[n − r]q!  

− [r + 1]q[n − 1]qS q(k, r + 1) + α[n]q[n − 1]qS q(k, r)   which is (3.2) as claimed.  Lemma 3.3. The numbers

k(k−1) q 2 [n − 2]q! λ(α,n) = ( 1 − α)[n − k] [n − 1 + k] + α[n] [n − 1] k,q [n − k] ![n]k q q q q q q   are distinct for α ∈ [0, 1] and k = 2,..., n. Proof. One can write

k−1 [n − k]q[n + k − 1]q [m]q λ(α,n) = α + (1 − α) 1 − . (3.3) k,q [n] [n − 1] ! [n] ! q q Ym=1 q

(α,n) Dividing (3.3) by λk− j,q for j = 1, 2,..., k − 1, we get

(α,n) λ (1 − α)[n − k] [n + k − 1] + α[n] [n − 1] k−1 [m] k,q = q q q q − q (α,n) 1 . (1 − α)[n − k + j]q[n + k − j − 1]q + α[n]q[n − 1]q ! [n]q ! λk− j,q mY=k− j

6 Obviously k−1 [m]q 1 − < 1. [n] ! mY=k− j q To complete the proof, note that

[n − k]q[n + k − 1]q ≤ [n − k + j]q[n + k − j − 1]q ⇔(1 − qn−k)(1 − qn+k−1) ≤ (1 − qn−k+ j)(1 − qn+k− j−1) ⇔(q j − 1)(q2k− j−1 − 1) ≥ 0 for all q > 0 and j = 1, 2,..., k − 1. 

(α,n) k Remark 3.1. It is worth mentioning that the numbers λk,q are the leading coefficients of Tn,q,α(t ; x). (α,n) That is, λk,q = a(k, k), and hence

k (α,n) k (α,n) Tn,q,α(t , x) = λk,q x + Pk−1 (x)

(α,n) where Pk−1 (x) is a polynomial of degree k − 1.

4 Eigenvalues and eigenvectors of Tn,q,α

In this part, the eigenvalues and the corresponding eigenvectors of Tn,q,α are found. The coefficients of the eigenvectors are given recursively. For some specific values of n, the eigenvalues are plotted.

Lemma 4.1. For all q > 0 and α ∈ [0, 1], the operator Tn,q,α has n + 1 linearly independent monic (α,n) (α,n) (α,n) eigenvectors pk,q (x) of degree k = 0, 1,..., n corresponding to the eigenvalues λ0,q = λ1,q = 1 and

k(k−1) q 2 [n − 2]q! λ(α,n) = ( 1 − α)[n − k] [n − 1 + k] + α[n] [n − 1] k,q [n − k] ![n]k q q q q q q   for k = 2, 3,....

Proof. The proof is clear for k = 0 and k = 1. For k = 2, 3,..., we have

k (α,n) k (α,n) Tn,q,α(t ; x) = λk,q x + Pk−1 (x),

(α,n) where Pk−1 (x) is a polynomial of degree k − 1. Let

(α,n) k k−1 pk (x) = x + βk−1 x + ... + β1 x

7 (α,n) stand for the monic eigenvector of Tn,q,α corresponding to λk,q , that is,

(α,n) (α,n) (α,n) Tn,q,α(pk (t); x) = λk,q pk (x).

Since Tn,q,α is linear, this equality becomes

k k−1 (α,n) k k−1 Tn,q,α(t ; x) + βk−1Tn,q,α(t ; x) + ··· + β1Tn,q,α(t; x) = λm (x + βk−1 x + ··· + β1 x).

m Comparing the coefficients of x , m = 1, 2,..., k − 1, we get the system in the unknowns β1,β2,..., βk−1, whose coefficient matrix is

(α,n) (α,n) λk,q − λk−1,q 0 0 ··· 0 (α,n) (α,n)  ∗ λk,q − λk−2,q 0 ··· 0  Λ =  .  .  ∗ ∗ λ(α,n) − λ(α,n) .. 0   k,q k−3,q   (α,n) (α,n)  ∗ ∗ ∗ ... λ − λ   k,q 1,q    Clearly (α,n) (α,n) (α,n) (α,n) (α,n) (α,n) , det(Λ) = (λk,q − λk−1,q)(λk,q − λk−2,q) ··· (λk,q − λ1,q ) 0 (α,n) by Lemma 3.3. Thus, there exist unique numbers β1,...,βk−1 and hence pk (x) is an eigenvector of (α,n)  Tn,q,α corresponding to the eigenvalue λk,q .

(α,n) (α,n) Theorem 4.2. The monic eigenvector pk,q (x) of Tn,q,α associated with λk,q is a polynomial of degree k given by

k (α,n) j pk,q (x) = cn,q( j, k)x , Xj=0

(α,n) (α,n) where p0,q (x) = 1, p1,q (x) = x and

j− 1 1 − = − − − cn,q(k j, k) (α,n) (α,n) cn,q(k i, k)an,q(k j, k i) λk,q − λk− j,q Xi=0 for j = 1, 2,..., k, k = 2, 3,....

(α,n) Proof. Let us write the eigenvector pk,q (x) of Tn,q,α in the form

k (α,n) r pk,q (x) = cn,q(r, k)x . Xr=0

8 By the assumption that cn,q(k, k) = 1, the relation

(α,n) (α,n) (α,n) T(pk,q ; x) = λk,q pk,q (x) implies

k k (α,n) s r λk,q cn,q(s, k)x = cn,q(r, k)T(t ; x) Xs=0 Xr=0 k r i = cn,q(r, k) an,q(i, r)x Xr=0 Xi=0 k k s = cn,q(r, k)an,q(s, r)x , Xs=0 Xr=s which leads to

k (α,n) λk,q cn,q(s, k) = cn,q(r, k)an,q(s, r). (4.1) Xr=s Substituting s = k − j and r = k − i on (4.1), we obtain

j (α,n) λk,q cn,q(k − j, k) = cn,q(k − i, k)an,q(k − j, k − i) Xi=0 j−1

= cn,q(k − j, k)an,q(k − j, k − j) + cn,q(k − i, k)an,q(k − j, k − i). (4.2) Xi=0 It is seen from (4.2) that

j− 1 1 − = − − − cn,q(k j, k) (α,n) (α,n) cn,q(k i, k)an,q(k j, k i). λk,q − λk− j,q Xi=0 The proof of Theorem 4.2 is completed 

(α,n) (α,n) Example 4.1. As mentioned before p0,q (x) = 1 and p1,q (x) = x for all n. Also, by the endpoint (α,n) 2 interpolation, one can easily derive that p2,q (x) = x − x for all n. For n = 3 and k = 3, one has

(α,3) 3 2 p3,q (x) = x + a2 x + a1 x where (1 − α)q4 + (2 − α)q3 + 3q2 + (2α + 1)q + 2 a = − 2 (1 − α)q4 + q3 + 2q2 + (1 + α)q + 1

9 (1 − α)q3 + q2 + αq + 1 a = . 1 (1 − α)q4 + q3 + 2q2 + (1 + α)q + 1

(α,3) The graph of p3,q (x) for α = 0.4 and various values q is plotted on Figure 1. Also, the graph of (α,3) p3,q (x) for fixed q and variable α is depicted on Figure 2.

0.15

0.1

0.05

0

-0.05 0 0.2 0.4 0.6 0.8 1

(α,3) Figure 1: The eigenvector p3,q (x) for α = 0.4 and different values of q.

4.1 The limit behavior of the eigenvalues and eigenvectors of Tn,q,α Lemma 4.3. For q ∈ (0, 1) and k = 2, 3,..., one has:

r(r−1) k−r (i) lim an,q(r, k) = q 2 (1 − q) S q(k, r), r = 0, 1,..., k n→∞

(ii) lim λ(α,n) = qk(k−1)/2. n→∞ k,q

Proof. The proof follows, immediately, from the fact that limn→∞[n]q = 1/(1−q), for all q ∈ (0, 1). 

10 0.08

0.06

0.04

0.02

0

-0.02

-0.04 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(α,3) Figure 2: The eigenvector p3,q (x) for q = 0.6 different values of α.

(α,n) Theorem 4.4. Let 0 < q < 1 and pk,q (x), k = 0, 1,..., n be the monic eigenvectors of Tn,q,α given in Theorem 4.2. Then

lim cn,q( j, k) = bq( j, k) n→∞ holds for 0 ≤ j ≤ k, k = 0, 1,... , where 1, j = k,  0, j = k − 1 = 0, bq( j, k) =  k − i− j  (1 q) S q(i, k)  bq(i, k), otherwise.  q(k− j)(k+ j−1)/2 − 1  iX= j+1  In other words, when q ∈ (0,1), we have

k (α,n) j lim p (x) = pk(x) = bq( j, k)x n→∞ k,q Xj=0 uniformly on [0, 1].

11 (n) (n) Proof. p0 (x) = p0(x) = 1 and p1 (x) = p1(x) = x, by Theorem 4.2. So it is enough to consider the case k ≥ 2. Suppose that limn→∞ cn,q(k − i, k) = bq(k − i, k), i = 0,..., j − 1, where 0 ≤ j ≤ k. One can easily see that

j−i an,q(k − j, k − i) (1 − q) S q(k − i, k − j) lim = . n→∞ (α,n) (α,n) q j(2k− j−1)/2 − 1 λk,q − λk− j,q Then

j−1 j−i (1 − q) S q(k − i, k − j) lim cn,q(k − j, k) = cn,q(k − i, k). n→∞ q j(2k− j−1)/2 − 1 Xi=0 Substituting j by k − j and i by k − i, we obtain

k (1 − q)i− jS (i, k) b ( j, k) = q b (i, k) q q(k− j)(k+ j−1)/2 − 1 q iX= j+1 which completes the proof.  Lemma 4.5. For q > 1, one has: (i) lim λ(α,n) = 1. n→∞ k,q

an,q(k − j, k − i) (ii) lim = 0 for i < j − 1, j = 1, 2,..., k − 1. n→∞ (α,n) (α,n) λk,q − λk− j,q (iii) a (k − j, k − j + 1) S (k − j + 1, k − j) + (1 − α)q j−k[k − j] [k − j + 1] n,q = − q q q lim (α,n) (α,n) n→∞ [k − 1]q + [k − 2]q + ··· + [k − j]q λk,q − λk− j,q for j = 1, 2,..., k − 1. Proof. The proof of (i) is obvious. For the proof of (ii) and (iii), one can write

r(r−1) q 2 [n] ! [n − r] [n − r + 1] = q − q q + + an,q(r, k) k (1 α) S q(k 1, r 1) [n]q[n − r]q! [n]q[n − 1]q [n − r]q − (1 − α) [r + 1]qS q(k, r + 1) + αS q(k, r) [n]q  and

k(k−1) q 2 [n] ! [n − k] [n + k − 1] (α,n) = q − q q + λk,q k (1 α) α [n]q[n − k]q! [n]q[n − 1]q 

12 then

(k− j)(k− j−1) q 2 [n]q! A a (k − j, k − i) [n]k−i[n−k+ j] ! n n,q = q q (n,α) (n,α) k(k−1) (k− j)(k− j−1) λk,q − λk− j,q q 2 [n]q! q 2 [n]q! k Bn − k− j Cn [n]q[n−k]q! [n]q [n−k+ j]q! i [n] An = q , j(2k− j−1)/2 j [n − k + j]q ··· [n − k + 1]qq Bn − [n]qCn where

[n − k + j]q[n + k − j − 1]q An = (1 − α) S q(k − i + 1, k − j + 1) [n]q[n − 1]q [n − k + j]q − (1 − α) [k − j + 1]qS q(k − i, k − j + 1) + αS q(k − i, k − j), [n]q [n − k]q[n + k − 1]q Bn = (1 − α) + α [n]q[n − 1]q and

[n − k + j]q[n + k − j − 1]q Cn = (1 − α) + α. [n]q[n − 1]q Using (2.2), one can write

i a (k − j, k − i) [n] An n,q = q (α,n) (α,n) j λk,q − λk− j,q ([n]q − [k − j]q)([n]q − [k − j − 1]q) ··· ([n]q − [k − 1]q)Bn − [n]qCn i [n] An = q j j−1 j−2 , [n]q(Bn − Cn) − [n]q ([k − 1]q + [k − 2]q + ··· + [k − j]q)Bn + O([n]q ) Note that

−k+ j lim An = (1 − α) S q(k − i + 1, k − j + 1) − q [k − j + 1]S q(k − i, k − j + 1) n→∞  + αS q(k − i, k − j) −k+ j = S q(k − j + 1, k − j) + (1 − α)q [k − j]q[k − j + 1]q where (2.4) is used. Also, limn→∞ Bn = 1 and limn→∞ Cn = 1. It is obvious now that if i < j − 1, then

an,q(k − j, k − i) lim = 0 n→∞ (α,n) (α,n) λk,q − λk− j,q

13 which is the claim in (ii). Moreover, if i = j − 1, then we have

a (k − j, k − i) S (k − j + 1, k − j) + (1 − α)q−k+ j[k − j] [k − j + 1] n,q = − q q q lim (α,n) (α,n) n→∞ [k − 1]q + [k − 2]q + ··· + [k − j]q λk,q − λk− j,q which completes the proof. 

Theorem 4.6. For q > 1 and 0 ≤ j ≤ k, we have

lim cn,q( j, k) = dq( j, k), n→∞ where

k− j −k+i S q(k − i + 1, k − i) + (1 − α)q [k − i]q[k − i + 1]q d (0, 1) = 0, d ( j, k) = − q q [k − 1] + ··· + [k − i] Yi=1 q q Proof. For k = 0 and k = 1, there is nothing to prove. Assume that k ≥ 2, and use strong induction on j. Since cn,q(k, k) = 1, the statement is true for j = k. Assume that limn→∞ cn,q(k − i, k) = dq(k − i, k) for i = 0, 1,..., j − 1. Then using Lemma 4.5 (i) and (ii), we obtain

j−1 an,q(k − j, k − i) lim cn,q(k − j, k) = dq(k − i, k) lim n→∞ n→∞ (α,n) (α,n) Xi=0 λk,q − λk,q −k+ j S q(k − j + 1, k − j) + (1 − α)q [k − j]q[k − j + 1]q = − dq(k − j + 1, k) [k − 1]q + ··· + [k − i]q From the fact that

j−1 −k+i S q(k − i + 1, k − i) + (1 − α)q [k − i]q[k − i + 1]q d (k − j + 1, k) = − q [k − 1] + ··· + [k − i] Yi=1 q q then we get

k− j S (k − i + 1, k − i) + (1 − α)q−k+i[k − i] [k − i + 1] d ( j, k) = − q q q q [k − 1] + ··· + [k − i] Yi=1 q q which completes the the induction.  Remark 4.1. Note that when q > 1, the limiting coefficients depend on α unlike the case 0 < q < 1.

14 References

[1] Andrews, G.E., Askey, R., Roy, R. Special Functions. Cambridge University Press: Cambridge, 1999.

[2] Bernstein, S.N. D´emonstration du th´eor`eme de Weierstrass fond´ee sur la calcul des probabilit´es. Communic. Soc. Math. Charkow s´erie 2 13, 1912, 1–2.

[3] Chen, X., Tan, J., Liu, Z., Xie, J. Approximation of functions by a new family of generalized Bernstein operators. Journal of Mathematical Analysis and Applications 2017; 450:244–261.

[4] Cooper, S., Waldron, S. The eigenstructure of the Bernstein operator. J. Approx. Theory 2000; 105:133–165.

[5] Cooper, S., Waldron, S. The diagonalisation of the multivariate Bernstein operator. J. Approx. Theory 2002; 117:103–131.

[6] Gonska, H., Ras¸a, I., Stˇanilˇa, E.D. The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators. Mediterr. J. Math. 11 (2), (2014), 561–576.

[7] Gonska, H., Heilmann, M., Ras¸a, I. Eigenstructure of the genuine beta operators of LupaÅ and Mhlbach. Stud. Univ. BabeÅ-Bolyai Math. 61 (3), (2016), 383388.

[8] Heilmann, M., Ras¸a, I. Eigenstructure and iterates for uniquely ergodic Kantorovich modifica- tions of operators. Positivity. 21 (3) (2017), 897–910.

[9] II’inskii, A., Ostrovska, S. Convergence of generalized Bernstein polynomials. J. Approx. Theory 2002; 116(1):100–112.

[10] Itai, U. On the eigenstructure of the Bernstein kernel. Electron. Trans. Numer. Anal. 25 (2006), 431–438.

[11] Kelisky, R.P., Rivlin, T.J. Iterates of Bernstein polynomials. Pacific J. of Math. 1967; 21(3):511– 520.

[12] Lupas¸, A. q-Analogue of the Bernstein operator. In: Seminer on Numerical and Statistical Cal- culus 9, University of Cluj-Napoca

[13] Novikov, I.Ya. Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets. Mathematical Notes 2002; 71(1-2):217–229.

[14] Ostrovska, S. q-Bernstein polynomials and their iterates. J. Approx. Theory 2003; 123(2):232– 255.

15 [15] Ostrovska, S. The first decade of the q-Bernstein polynomials: results and perspectives. J. Math. Anal. Appr. Th. 2007; 2(1):35–51.

[16] Ostrovska, S., Turan, M. On the eigenvectors of the q-Bernstein operators. Mathematical Meth- ods in the Applied Science. 2012; 37:562–570.

[17] Phillips, G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997; 4:511- 518.

[18] Qing-Bo Cai, Xiao-Wei Xu. Shape-preserving properties of a new family of generalized Bern- stein operators Journal of Inequalities and Applications. 2018, 241 (2018) doi:10.1186/s13660- 018-1821-9

[19] Videnskii, V.S. On some classes of q-parametric positive operators. Operator Theory: Advances and Applications 2005; 158:213–222.

[20] Wang, H., Ostrovska, S. The norm estimates for the q-Bernstein operator in the case q > 1. Math. Comp. 2010; 79:353–363.

[21] Wang, S., Zhang, C. Eigenstructure for binomial operators. Studia Sci. Math. Hungar. 56 (2) 2019, 166176.

16