In-Situ Ammonia Removal of Leachate from Bioreactor Landfills

Total Page:16

File Type:pdf, Size:1020Kb

In-Situ Ammonia Removal of Leachate from Bioreactor Landfills University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2006 In-situ Ammonia Removal Of Leachate From Bioreactor Landfills Nicole Berge University of Central Florida Part of the Environmental Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Berge, Nicole, "In-situ Ammonia Removal Of Leachate From Bioreactor Landfills" (2006). Electronic Theses and Dissertations, 2004-2019. 776. https://stars.library.ucf.edu/etd/776 IN-SITU AMMONIA REMOVAL OF LEACHATE FROM BIOREACTOR LANDFILLS by NICOLE D. BERGE B.S. University of South Carolina, 1999 M.S. University of South Carolina, 2001 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2006 Major Professor: Debra R. Reinhart ABSTRACT A new and promising trend in solid waste management is to operate the landfill as a bioreactor. Bioreactor landfills are controlled systems in which moisture addition and/or air injection are used as enhancements to create a solid waste environment capable of actively degrading the biodegradable organic fraction of the waste. Although there are many advantages associated with bioreactor landfills, some challenges remain. One such challenge is the ammonia-nitrogen concentration found in the leachate. The concentrations of ammonia-nitrogen tend to increase beyond concentrations found in leachate from conventional landfills because recirculating leachate increases the rate of ammonification and results in accumulation of higher levels of ammonia-nitrogen concentrations, even after the organic fraction of the waste is stabilized. Because ammonia-nitrogen persists even after the organic fraction of the waste is stabilized, and because of its toxic nature, it is likely that ammonia-nitrogen will determine when the landfill is biologically stable and when post-closure monitoring may end. Thus an understanding of the fate of nitrogen in bioreactor landfills is critical to a successful and economic operation. Ammonia-nitrogen is typically removed from leachate outside of the landfill. However, additional costs are associated with ex-situ treatment of ammonia, as separate treatment units on site must be maintained or the leachate must be pumped to a publicly owned wastewater treatment facility. Therefore, the development of an in-situ nitrogen removal technique would be an attractive alternative. Several recent in-situ treatment approaches have been explored, but lacked the information necessary for field-scale ii implementation. The objectives of this study were to develop information necessary to implement in-situ ammonia removal at the field-scale. Research was conducted to evaluate the kinetics of in-situ ammonia removal and to subsequently develop guidance for field-scale implementation. An aerobic reactor and microcosms containing digested municipal solid waste were operated and parameters were measured to determine nitrification kinetics under conditions likely found in bioreactor landfills. The environmental conditions evaluated include: ammonia concentration (500 and 1000mg N/L), temperature (25o, 35o and 45oC), and oxygen concentration in the gas-phase (5, 17 and 100%). Results suggest that in-situ nitrification is feasible and that the potential for simultaneous nitrification and denitrification in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data were fitted to the Monod equation, resulting in an equation that describes the impact of pH, oxygen concentration, ammonia concentration, and temperature on ammonia removal. In order to provide design information for a field-scale study, a simple mass balance model was constructed in FORTRAN to forecast the fate of ammonia injected into a nitrifying portion of a landfill. Based on model results, an economic analysis of the in-situ treatment method was conducted and compared to current ex-situ leachate treatment costs. In-situ nitrification is a cost effective method for removing ammonia-nitrogen when employed in older waste environments. Compared to reported on-site treatment costs, the costs associated with the in-situ ammonia removal process fall within and are on the lower end of the range found in the literature. When compared to treating the iii leachate off-site, the costs of the in-situ ammonia removal process are always significantly lower. Validation of the laboratory results with a field-scale study is needed. iv ACKNOWLEDGMENTS First and foremost, I would like to begin by thanking my advisor, Dr. Debra Reinhart, without whom this work would not have been possible. Dr. Reinhart has played many roles during my time here. She has been an extraordinary role model, mentor, friend and critic, exerting an influential impact on my future and helping to shape me both as an aspiring researcher and teacher. She has taught me how to be strong, positive, and have confidence, as she always had immense confidence in me. I have also learned from her the role teaching and research have in life and how much passion for both makes all the difference. I also thank her for providing me with numerous professional development opportunities, such as teaching and attending many conferences. Her willingness to reply to the countless daily emails I sent and for always being available when I needed to blow off steam have been invaluable. One truly could not ask for a better mentor and I feel blessed to have had the opportunity to get to know and work with her. I truly believe that I am leaving UCF not only with a better understanding of theories and as a better researcher, but also as a better person because of all I learned from her. I would also like to thank Dr. John Dietz for all of his help during the past few years. Thank you, Dr. Dietz, for being so helpful and gracious with your time. I have learned so much from you. Dr. Dietz always dropped by my office to help with my, at times quite numerous, problems or to give advice as to how to interpret results. He taught me how to be critical of all results and how to truly understand the inherent limitations associated with them. His help and expertise were invaluable to this work and I really cannot express the immense gratitude I have for all he has done for me. And yes, Dr. Dietz, I did finish before you retired! I just made it…barely! v I also would like to thank my other committee members. Dr. Tim Townsend has offered invaluable guidance to this work. His comments and critiques have made this project better and I greatly appreciate all of his time and support. Thanks also go to Dr. Andrew Randall for agreeing to serve on my committee and for always being willing to help me sort through microbiological issues. I also thank Dr. Ni-Bin Chang, who enthusiastically joined my committee late in the process and was so willing to help and positively contribute to this work. Thank you all so much. I also acknowledge the Florida Center for Solid and Hazardous Waste and the Environmental Research and Education foundation for funding this work. This work would not have possible without your contributions. Thanks also go to Jackie Ceather, who helped me tremendously with some of the laboratory work. Her help and time were greatly appreciated. I would not have slept during the past five years if it weren’t for her. Thanks also go to my fellow research group colleagues, particularly those who spent so much time in the lab with me (Eyad, Lucia and Andrea). I also would like to extend thanks to my dear friends Sara and Bryan Stone. I couldn’t have made it without all of your support. You guys helped to keep me somewhat sane through this process and always reminded me why I was here. Finally, I thank my family for their enduring love and support. My Mom always taught me that if I worked hard and believed in myself, I could accomplish anything. And she was right. Thanks for always being supportive. I also thank my Step-Dad for all of his support and wisdom throughout the years. And, of course, I thank my little brothers, Weber and Mattison, whom I cherish more than anything. I am finally graduating, guys! vi TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ xi LIST OF FIGURES......................................................................................................... xii CHAPTER 1 INTRODUCTION ....................................................................................... 1 Background Information.............................................................................................. 1 Research Objectives and Scope of Work.................................................................... 4 Dissertation Organization ............................................................................................ 6 References......................................................................................................................7 CHAPTER 2 THE FATE OF NITROGEN IN BIOREACTOR LANDFILLS
Recommended publications
  • Water Quality: a Field-Based Quality Testing Program for Middle Schools and High Schools
    DOCUMENT RESUME ED 433 223 SE 062 606 TITLE Water Quality: A Field-Based Quality Testing Program for Middle Schools and High Schools. INSTITUTION Massachusetts State Water Resources Authority, Boston. PUB DATE 1999-00-00 NOTE 75p. PUB TYPE Guides Classroom - Teacher (052) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS Bacteria; Environmental Education; *Field Studies; High Schools; Middle Schools; Physical Environment; Pollution; *Science Activities; *Science and Society; Science Instruction; Scientific Concepts; Temperature; *Water Pollution; *Water Quality; Water Resources IDENTIFIERS pH ABSTRACT This manual contains background information, lesson ideas, procedures, data collection and reporting forms, suggestions for interpreting results, and extension activities to complement a water quality field testing program. Information on testing water temperature, water pH, dissolved oxygen content, biochemical oxygen demand, nitrates, total dissolved solids and salinity, turbidity, and total coliform bacteria is also included.(WRM) ******************************************************************************** * Reproductions supplied by EDRS are the best that can be made * * from the original document. * ******************************************************************************** SrE N N Water A Field-Based Water Quality Testing Program for Middle Schools and High Schools U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement PERMISSION TO REPRODUCE AND EDUCATIONAL RESOURCES INFORMATION DISSEMINATE THIS MATERIAL
    [Show full text]
  • Oxygen Concentration of Blood: PO
    Oxygen Concentration of Blood: PO2, Co-Oximetry, and More Gary L. Horowitz, MD Beth Israel Deaconess Medical Center Boston, MA Objectives • Define “O2 Content”, listing its 3 major variables • Define the limitations of pulse oximetry • Explain why a normal arterial PO2 at sea level on room air is ~100 mmHg (13.3 kPa) • Describe the major features of methemogobin and carboxyhemglobin O2 Concentration of Blood • not simply PaO2 – Arterial O2 Partial Pressure ~100 mm Hg (~13.3 kPa) • not simply Hct (~40%) – or, more precisely, Hgb (14 g/dL, 140 g/L) • not simply “O2 saturation” – i.e., ~89% O2 Concentration of Blood • rather, a combination of all three parameters • a value labs do not report • a value few medical people even know! O2 Content mm Hg g/dL = 0.003 * PaO2 + 1.4 * [Hgb] * [%O2Sat] = 0.0225 * PaO2 + 1.4 * [Hgb] * [%O2Sat] kPa g/dL • normal value: about 20 mL/dL Why Is the “Normal” PaO2 90-100 mmHg? • PAO2 = (FiO2 x [Patm - PH2O]) - (PaCO2 / R) – PAO2 is alveolar O2 pressure – FiO2 is fraction of inspired oxygen (room air ~0.20) – Patm is atmospheric pressure (~760 mmHg at sea level) o – PH2O is vapor pressure of water (47 mmHg at 37 C) – PaCO2 is partial pressure of CO2 – R is the respiratory quotient (typically ~0.8) – 0.21 x (760-47) - (40/0.8) – ~100 mm Hg • Alveolar–arterial (A-a) O2 gradient is normally ~ 10, so PaO2 (arterial PO2) should be ~90 mmHg NB: To convert mm Hg to kPa, multiply by 0.133 Insights from PAO2 Equation (1) • PaO2 ~ PAO2 = (0.21x[Patm-47]) - (PaCO2 / 0.8) – At lower Patm, the PaO2 will be lower • that’s
    [Show full text]
  • Oxygenation and Oxygen Therapy
    Rules on Oxygen Therapy: Physiology: 1. PO2, SaO2, CaO2 are all related but different. 2. PaO2 is a sensitive and non-specific indicator of the lungs’ ability to exchange gases with the atmosphere. 3. FIO2 is the same at all altitudes 4. Normal PaO2 decreases with age 5. The body does not store oxygen Therapy & Diagnosis: 1. Supplemental O2 is an FIO2 > 21% and is a drug. 2. A reduced PaO2 is a non-specific finding. 3. A normal PaO2 and alveolar-arterial PO2 difference (A-a gradient) do NOT rule out pulmonary embolism. 4. High FIO2 doesn’t affect COPD hypoxic drive 5. A given liter flow rate of nasal O2 does not equal any specific FIO2. 6. Face masks cannot deliver 100% oxygen unless there is a tight seal. 7. No need to humidify if flow of 4 LPM or less Indications for Oxygen Therapy: 1. Hypoxemia 2. Increased work of breathing 3. Increased myocardial work 4. Pulmonary hypertension Delivery Devices: 1. Nasal Cannula a. 1 – 6 LPM b. FIO2 0.24 – 0.44 (approx 4% per liter flow) c. FIO2 decreases as Ve increases 2. Simple Mask a. 5 – 8 LPM b. FIO2 0.35 – 0.55 (approx 4% per liter flow) c. Minimum flow 5 LPM to flush CO2 from mask 3. Venturi Mask a. Variable LPM b. FIO2 0.24 – 0.50 c. Flow and corresponding FIO2 varies by manufacturer 4. Partial Rebreather a. 6 – 10 LPM b. FIO2 0.50 – 0.70 c. Flow must be sufficient to keep reservoir bag from deflating upon inspiration 5.
    [Show full text]
  • Oxygen Saturation in High-Altitude Pulmonary Edema
    Oxygen Saturation In High-Altitude Pulmonary J Am Board Fam Pract: first published as 10.3122/jabfm.5.4.429 on 1 July 1992. Downloaded from Edema James]. Bachman, M.D., Todd Beatty, M.D., and Daniel E. Levene High altitude, defined as elevations greater than Methods or equal to 8000 feet (2438 m) above sea level, is The 126 subjects for this study were all patients responsible for a variety of medical problems both who came to the Summit Medical Center Emer­ chronic and acute. The spectrum of altitude ill­ gency Department or to the Frisco Medical ness ranges from the common, mild symptoms of Center. Both units serve Summit County, Colo­ acute mountain sickness, such as insomnia, head­ rado. The base elevation of Summit County ache, and nausea, to severe and potentially fatal ranges from roughly 9000 to 11,000 feet (2743 to conditions, such as high-altitude pulmonary 3354 m). Between 1 November 1990 and 26Janu­ edema (HAPE) and high-altitude cerebral edema ary 1991, a record was maintained of the age, sex, (RACE).l room air pulse oximeter measure of oxygen satu­ HAPE is a noncardiogenic form of pulmonary ration (Sa 02)' chest radiograph findings, and final edema that predominantly affects young, physi­ diagnoses of all patients who underwent a chest cally active, previously healthy individuals who radiograph examination. arrived at high altitude between 1 and 4 days There were 152 patients who underwent chest before developing symptoms. Symptoms of early, radiography during the study period. Twenty-six milder cases include dry nonproductive cough, patients were excluded from the study: 18 had no decreased exercise tolerance, and dyspnea on ex­ oxygen saturation measurement taken or re­ ertion.
    [Show full text]
  • Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting
    Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting Techniques and Methods 1–D3 U.S. Department of the Interior U.S. Geological Survey Front Cover. Upper left—South Fork Peachtree Creek at Johnson Road near Atlanta, Georgia, site 02336240 (photograph by Craig Oberst, USGS) Center—Lake Mead near Sentinel Island, Nevada, site 360314114450500 (photograph by Ryan Rowland, USGS) Lower right—Pungo River at channel light 18, North Carolina, site 0208455560 (photograph by Sean D. Egen, USGS) Back Cover. Lake Mead near Sentinel Island, Nevada, site 360314114450500 (photograph by Ryan Rowland, USGS) Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting By Richard J. Wagner, Robert W. Boulger, Jr., Carolyn J. Oblinger, and Brett A. Smith Techniques and Methods 1–D3 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]
  • Environmental Dissolved Oxygen Values Above 100 Percent Air Saturation
    Technical Note YSI, a Xylem brand • T602-01 Environmental Dissolved Oxygen VALUES GREATER THAN 100% AIR SATURATION Some of YSI’s customers are occasionally concerned about observing “Percent Air Saturation” dissolved oxygen readings in environmental water (lakes, streams, estuaries, etc.) that are above 100%. The issue is usually one of semantics. How can something be more than 100% saturated? To understand the overall concept, it is necessary to consider the sources of dissolved oxygen in environmental water and to appreciate that equilibration between air and water is rarely perfect in environmental situations. Air is certainly one source of dissolved oxygen in environmental water. If air were the only source of oxygen and if environmental water equilibrated with the air above it instantly during temperature changes, then it would indeed be impossible to observe values above 100% air saturation unless the sensor was in error. Neither of these “if statements” is true, however, for most bodies of water. ...it is necessary to consider the sources of dissolved oxygen in Figure 1. Photosynthetically-active species produce pure oxygen environmental water and to (not air) during photosynthesis. appreciate that equilibration between air and water is rarely perfect in environmental situations. Oxygen Sources Photosynthetically-active species (plants, algae, etc.) are common additional sources of dissolved oxygen in the environment and, in many bodies of water, can, in fact, be the dominant factor in determining the dissolved oxygen content. It is important to remember that these organisms produce pure oxygen (not air) during photosynthesis. Air is approximately 21% oxygen and thus it contains about five times less oxygen than the pure gaseous element produced during photosynthesis.
    [Show full text]
  • Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation
    NOAA Atlas NESDIS 83 WORLD OCEAN ATLAS 2018 Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation Silver Spring, MD July 2019 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service National Centers for Environmental Information NOAA National Centers for Environmental Information Additional copies of this publication, as well as information about NCEI data holdings and services, are available upon request directly from NCEI. NOAA/NESDIS National Centers for Environmental Information SSMC3, 4th floor 1315 East-West Highway Silver Spring, MD 20910-3282 Telephone: (301) 713-3277 E-mail: [email protected] WEB: http://www.nodc.noaa.gov/ For updates on the data, documentation, and additional information about the WOA18 please refer to: http://www.nodc.noaa.gov/OC5/indprod.html This document should be cited as: Garcia H. E., K.W. Weathers, C.R. Paver, I. Smolyar, T.P. Boyer, R.A. Locarnini, M.M. Zweng, A.V. Mishonov, O.K. Baranova, D. Seidov, and J.R. Reagan (2019). World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation. A. Mishonov Technical Editor. NOAA Atlas NESDIS 83, 38pp. This document is available on-line at https://www.nodc.noaa.gov/OC5/woa18/pubwoa18.html NOAA Atlas NESDIS 83 WORLD OCEAN ATLAS 2018 Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation Hernan E. Garcia, Katharine W. Weathers, Chris R. Paver, Igor Smolyar, Timothy P. Boyer, Ricardo A. Locarnini, Melissa M. Zweng, Alexey V. Mishonov, Olga K. Baranova, Dan Seidov, James R.
    [Show full text]
  • Oxygen Delivering Processes in Groundwater and Their Relevance for Iron -Related Well Clogging Processes – a Case Study on the Quaternary Aquifers of Berlin
    OXYGEN DELIVERING PROCESSES IN GROUNDWATER AND THEIR RELEVANCE FOR IRON -RELATED WELL CLOGGING PROCESSES – A CASE STUDY ON THE QUATERNARY AQUIFERS OF BERLIN Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. eingereicht am Fachbereich Geowissenschaften der Freien Universität Berlin vorgelegt von Christian Menz aus Friedberg/Hessen 2016 1. Gutachter: Prof. Dr. Michael Schneider 2. Gutachter: Priv.-Doz. Dr. Christoph Merz Disputation am 06.07.2016 3 Summary Redox condition, in particular the amount of oxygen in groundwater used for drinking water supply, is a key factor for the drinking water quality as well as for the production well’s lifecycle. Thus, a process-based and quantitative understanding about the oxygen fluxes in groundwater systems is fundamental in order to predict e.g. the removal capacity of pollutants or in particular the likelihood of iron-related well clogging. Such well ageing is a major thread for well operators and objective in practice and science. The formation of iron oxides responsible for well clogging is mainly known for wells abstracting groundwater from unconsolidated aquifers with a distinct redox zonation. The accumulation of precipitates is primarily taking place at the slots of the well screens, but also affects aquifers, pumps and collector pipes. Several studies already identified interacting hydro-chemical and microbiological processes as major cause for the development of iron oxides in wells. They develop in the presence of dissolved species of iron and oxygen in the water. The co-occurrence of both, the dissolved iron and oxygen, is the result of a mixing of groundwater with different redox states. The abstraction of groundwater by wells is known to promote such mixing processes.
    [Show full text]
  • Pulse Oximetry Pulse Oximetry Is a Way to Measure How Much Oxygen Your Blood Is Carrying
    American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES Pulse Oximetry Pulse oximetry is a way to measure how much oxygen your blood is carrying. By using a small device called a pulse oximeter, your blood oxygen level can be checked without needing to be stuck with a needle. The blood oxygen level measured with an oximeter is called your oxygen saturation level (abbreviated O2sat or SaO2). This is a percentage of how much oxygen your blood is carrying compared to the maximum it is capable of carrying. Normally, more than 89% of your red blood should be carrying oxygen. Why is it important to have my blood is carrying oxygen. It also provides a reading of your oxygen level checked? heart rate (pulse). To make sure the oximeter is giving If you have a lung disease, your blood oxygen level may you a good reading, count your pulse for one minute be lower than normal. This is important to know because and compare the number you get to the pulse number when your oxygen level is low, the cells in your body can on the oximeter. If they are the same, you are getting a have a hard time working properly. Oxygen is the “gas” good signal. that makes your body “go,” and if you are low on “gas,” Should I get a pulse oximeter? your body does not run smoothly. Having a very low Most people do not normally need a pulse oximeter, blood oxygen level also can put a strain on your heart and brain. though during the COVID-19 pandemic, many people are using them to check their oxygen levels.
    [Show full text]
  • Dissolved Oxygen and Biochemical Oxygen Demand in the Waters Close to the Quelimane Sewage Discharge
    Dissolved Oxygen and Biochemical Oxygen Demand in the waters close to the Quelimane sewage discharge. Jeremias Joaquim Mocuba Master thesis in Chemical Oceanography NOMA Supervisors: Eva Falck Geophysical Institute, University of Bergen – Norway António Mubango Hoguane School of Marine and Coastal Sciences, Eduardo Mondlane University –Quelimane June 2010 Acknowledgements First I would like to thank my supervisors Eva Falck and António Mubango Hoguane, for their determined contribution, monitoring, and encouragement on this work; it was good to work with them. Very thanks to Tor Gammelsrød, NOMA project manager, for his valuable support throughout the master studies and for his complete hospitality in Bergen. I am immensely thankful to the NOMA program for the scholarship received and the opportunity to study in Norway. I am grateful to Kristin Kalvik, Marie Louise Ljones and Knut Barthel for their assisting in student affairs at the Bergen University. I would like to address with special thanks to my teachers Tor Gammelsrød, Truls Johannessen, Christoph Heinze, Ingunn Skjelvan, Eva FalcK, Knut Barthel, Øyvind Breivik, Svein Sundby, Solfrid Hjøllo Sætre, Ana Lucas and all those who contributed directly and indirectly in my studies. I am grateful to my classmates Ahmed, Elfatih, Salma, Waleed, Cândida, Naftal, and Valentina for their company in Bergen. Abstract The River dos Bons Sinais Estuary is one of the most important estuaries in the central region of the Mozambican coast. It is situated between the confluence of Cuácua and Licuári rivers and the Mozambican Channel in the Indian Ocean. The climate is subtropical with the rain season generally from November to April.
    [Show full text]
  • BOD Analysis: Basics and Particulars
    BOD Analysis: Basics and Particulars George Bowman sponsored by: Inorganics Supervisor State Laboratory of Hygiene Rick Mealy Regional Certification Coordinator DNR-Laboratory Certification Disclaimer Any reference to product or company names does not constitute endorsement by the Wisconsin State Laboratory of Hygiene, the University of Wisconsin, or the Department of Natural Resources. April 2001 InformationInformation UpdatesUpdates Watch for…. Text highlighted like this indicates additional or updated information that is NOT on your handouts …be sure to annotate your handouts!!! Session Objectives Discuss Importance and Use of BOD Review Method and QC requirements Troubleshoot: QA/QC problems Identify Common Problems Experienced Troubleshoot: Common Problems Demonstrate: calibration, seeding, probe maintenance Troubleshoot: GGA and dilution water issues Discuss documentation required Provide necessary tools to pass audits Course Outline Overview Sampling/Sample Handling Equipment O2 Measurement Techniques Calibration Method Details Quality Control Troubleshooting Documentation BOD Basics What is it? • Bioassay technique • used to assess the relative strength of a waste −the amount of oxygen required −to stabilize it if discharged to a surface water. Significance of the BOD Test • Most commonly required test on WPDES and NPDES discharge permits. • Widely used in facility planning • Assess waste loading on surface waters • Characterized as the “Test everyone loves to hate” The test everyone loves to hate Rick George BOD Test: Limitations Test period is too long not good for process control Test is imprecise and unpredictable The test is simply not very easy - a lot of QC makes it time-consuming - can take years of experience to master it Cannot evaluate accuracy no universally accepted standard other than GGA accuracy at 200 ppm vs.
    [Show full text]
  • BT Hydro-Single Pages-2
    ® cultivation climate technologies hydro sciences ® cultivation climate technologies At the forefront of BioTherm’s mission is the belief that growers, their families, and the entire world will benefit from stronger, healthier crop yields. By providing innovative solutions for the grower, we take pride in contributing to happy, healthy, and thriving plant production. HEAT Our greenhouse heating systems are tailored to each grower’s specifications, and our innovative technology meets the needs of even the most demanding projects -- whether new construction, major upgrades, or retrofits. hydro sciences BioTherm Hydro Sciences has one simple focus... to enhance your irrigation system and boost plant growth using cutting edge technologies with efficiency in mind. Our products are proven to increase yields, improve plant vigor, and increase resistance to diseases and pests. optimized air BioTherm creates innovative air technologies for plant growers. The atmosphere of the growing environment directly affects the Biotherm TOOB dissolved oxygen infuser system health and productivity of the crop. toob® dissolved oxygen infusion systems Simply put, dissolved oxygen is the amount of oxygen that is dissolved in water. Just like hydro science solutions humans and animals, your plants require an optimal amount of oxygen not only to survive, but to thrive. Because oxygen is a gas and water is a liquid, the mixture of the two elements needs to be done efficiently to ensure the oxygen is dissolved properly. sub-irrigation systems Why is maintaining proper dissolved oxygen levels in your irrigation water so vital to Sub-irrigation systems, also known as zero runoff, are an environmentally responsibly alternative that conserve water and fertilizers.
    [Show full text]