Facultad de Ciencias

COMPENSACIÓN ECOLÓGICA EN LA EVALUACIÓN DE IMPACTO AMBIENTAL EN ESPAÑA: SITUACIÓN Y PROPUESTAS DE ACCIÓN Ecological compensation and Environmental Impact Assessment in Spain: current practice and recommendations for improvement

Ana Villarroya Ballarín

Servicio de Publicaciones de la Universidad de Navarra

ISBN 978-84-8081-299-3 Facultad de Ciencias

COMPENSACIÓN ECOLÓGICA EN LA EVALUACIÓN DE IMPACTO AMBIENTAL EN ESPAÑA: SITUACIÓN Y PROPUESTAS DE ACCIÓN

Memoria presentada por Dª Ana Villarroya Ballarín para aspirar al grado de Doctor por la Universidad de Navarra

El presente trabajo ha sido realizado bajo mi dirección en el Departamento de Zoología y Ecología y autorizo su presentación ante el Tribunal que lo ha de juzgar.

Pamplona, Junio de 2012

Dr. Jordi Puig i Baguer

“We travel together, passengers on a little spaceship, dependent on its vulnerable reserves of air and oil; all committed for our safety to its security and peace; preserved from annihilation only by the care, the work and, I will say, the love we give our fragile craft.”

Adlai Stevenson, Embajador de EEUU en las Naciones Unidas, en 1965, tras la toma de las primeras imágenes de la Tierra desde el espacio

AGRADECIMIENTOS

Durante una tesis se aprenden muchas cosas, pero no son necesariamente los libros o los artículos los que más enseñan. En mi caso he tenido la suerte de coincidir con muchas personas que me han ayudado a crecer, y a las que debo por ello todo mi agradecimiento. Intentaré nombrar aquí a todas, aunque de antemano pido disculpas si mi memoria no hace justicia como debiera. Gracias al Departamento de Zoología y Ecología de la Universidad de Navarra, no sólo por darme la oportunidad de hacer la tesis sino por haberme acogido desde el principio y por haber creado un ambiente en el que siempre me he sentido bien. Gracias especialmente a mi director, Jordi, por haberme dado siempre más de lo que esperaba, y por no haber tenido ningún reparo en “perder el tiempo” conmigo. Gracias a Mari, Javi Oscoz, Ana y María por vuestra alegría y humanidad. A Ángel y David por vuestra disponibilidad, incluso en el último minuto. A Luis Sanz por el material fotográfico. A los compañeros de tesis por los buenos ratos compartidos. A Arturo por inventarse horas para dedicarlas a los demás. A Enrique y Rafa por el entusiasmo transmitido. A Fernando por su compañía y apoyo todoterreno. A Eva por dar el brazo entero cuando se le pide una mano. A todos los alumnos a los que he tenido la suerte de dar prácticas, porque fui yo quien más aprendió. A Enrique, Sheila y Melissa por los buenos momentos que siempre me hacéis pasar. Gracias a Elisa, Rubén, Diego, Asier, Iratxe, Ixai, Maite, David y los demás, porque esta tesis os debe más de lo que creéis. Y yo también. Gracias a María Iraburu, Miriam Latorre y quienes nos apoyaron desde el principio con el grupo de Voluntarios Ambientales, y a los integrantes del mismo, puesto que este proyecto ha sido un reto apasionante. Gracias a Alicia Ederra, por su confianza y sus enseñanzas valiosísimas mis años de alumna interna en Botánica, y por seguir estando ahí todo este tiempo. A Ricardo Ibáñez por su interés, apoyo y simpatía, y por los repasos de botánica recorriendo el Camino de Santiago. A Ricardo Marco por sus consejos y orientaciones con ArcGIS. A Jesper (y familia) por su acogida en la SLU, y por su hospitalidad durante las estancias en Suecia. Tack så mycket. A mis amigos que me han apoyado aún sin una explicación en condiciones de a qué dedicaba mi tiempo, especialmente a Fátima, Bea, Sara, Patri, Sandra y Ángel. A Adri y Clara por hacer de la distancia una mera anécdota. A Míriam por su cariño sincero y por su ejemplo de cómo no rendirse nunca. A Pedro por ponerme siempre una sonrisa en la boca. A Peibol por las largas conversaciones. Mi mayor agradecimiento para mi familia, para los que están y para los que ya marcharon. A Pilar por su vitalidad contagiosa, a mi yaya Presen y a mi tío Celso por su apoyo tranquilo. Gracias a mi familia más reciente, Jose, Aurora, Amaia y el Aitona, porque desde el primer momento me hicisteis sentir en casa. Gracias a mi hermana por su cariño incondicional, y a Leandro por su ejemplo inspirador. Gracias especialmente a mis padres por su infinita paciencia, y porque sin ellos nada de nada hubiera podido ser.

Y por supuesto a Javi. Por todo.

Esta tesis se realizó gracias a una beca predoctoral del Departamento de Ciencia, Tecnología y Universidades del Gobierno de Aragón.

Esta tesis doctoral es una colección de manuscritos en diferentes estados de publicación, cada uno de los cuales constituye un capítulo. Los manuscritos se reproducen íntegros y en el idioma en el que fueron publicados o enviados para su publicación, incluyendo siempre un resumen en castellano. Los artículos publicados han sido reproducidos con el permiso de las editoriales.

En cumplimiento de la normativa para la presentación de tesis doctorales en la Facultad de Ciencias de la Universidad de Navarra se incluyen los siguientes apartados en castellano: (1) un resumen integrador del contenido de la tesis doctoral; (2) una introducción general que sitúa el trabajo realizado en su contexto teórico; (3) una relación de los objetivos de la tesis doctoral; (4) una discusión general; y (5) un apartado de conclusiones generales. En cumplimiento de la normativa para optar a la mención de Doctorado Europeo en la Universidad de Navarra, se incluye la traducción a inglés del resumen y las conclusiones generales.

ÍNDICE

Resumen...... 1 Summary...... 2 Prólogo ...... 3 Introducción general...... 5 Introduction ...... 13 Estructura y Objetivos...... 20 Objectives and Structure...... 21 Primera Parte ...... 23 Estudio del papel de la compensación ecológica en los procedimientos de EIA en España y de las dificultades a las que se enfrenta Capítulo I...... 26 Una visión general sobre la compensación ecológica en España Capítulo II ...... 44 La dificultad de identificar algunos impactos a compensar Capítulo III...... 75 La pérdida aceptada de calidad ecológica Segunda Parte...... 92 Propuestas para promover la compensación ecológica en la EIA en España Capítulo IV...... 94 Un método adecuado para la valoración ecológica del medio y de los impactos residuales Capítulo V ...... 115 La conveniencia de subrayar los impactos ecológicos residuales Capítulo VI...... 136 Selección de medidas compensatorias para impactos ecológicos en la EIA Discusión general...... 161 Discussion ...... 169 Conclusiones generales...... 176 General conclusions...... 180 Bibliografía general / References ...... 184

RESUMEN

La Evaluación de Impacto Ambiental (EIA) es una herramienta que persigue mejorar la sostenibilidad ambiental de proyectos con una incidencia ambiental significativa. Para ello, durante este procedimiento se identifican y analizan los impactos que una actividad sometida al proceso de EIA puede causar sobre el entorno, y se proponen medidas para revertirlos. Para lograr un objetivo de sostenibilidad que evite la pérdida neta de calidad ambiental debida a la ejecución de un proyecto, las medidas compensatorias juegan un papel crucial, ya que son la única manera de contrarrestar los impactos residuales, que son aquellos impactos que permanecen después de haberse aplicado todas las medidas preventivas y correctoras. Pero, ¿cuál es el grado de compensación que se aplica en el marco de la EIA?

Esta tesis analiza el caso de la compensación ecológica en la EIA en España y de las dificultades a las que se enfrenta, y propone maneras de promover su práctica.

La primera parte del trabajo (capítulos I, II, y III) estudia el grado en que la EIA propone la adopción de medidas compensatorias para impactos ecológicos en este país, principalmente de vías de transporte. Además, se indaga en algunas de las posibles causas de la escasa práctica compensatoria actual. Entre las causas técnicas, se destaca la dificultad de atribuir ciertos impactos residuales a un proyecto en concreto, y de valorarlos. Entre las conceptuales, la mentalidad aparentemente predominante de admitir pérdidas de calidad ecológica como inevitables.

En la segunda parte de la tesis (capítulos IV, V y VI), se estudia la manera en que actualmente se valoran, registran y muestran los impactos residuales ecológicos, así como las guías que existen para proponer medidas compensatorias adecuadas. En respuesta a los resultados de este estudio, se elaboran propuestas para mejorar la práctica de la compensación ecológica en la EIA en España.

- 1 - SUMMARY

Environmental Impact Assessment (EIA) aims at improving the environmental sustainability of those projects with significant effects on the environment. During this procedure, environmental impacts caused by an EIA regulated activity are identified and analyzed, and proposals are advanced to counter them. When the sustainability goal is set in avoiding net losses in environmental quality by a project implementation, compensatory measures have a crucial role to play, as they are the only way to counter residual impacts, those that remain after all impact avoidance and minimization measures have been implemented. But, what is the level of compensation implemented in EIA frameworks?

This doctoral dissertation analyzes the case of ecological compensation in Spanish EIA and the difficulties that it faces, and advances some proposals to increase practice levels. The first section (chapters I, II, and III) focuses on how frequently ecological compensation is present in EIA procedures, mainly for roads and railways. It studies as well some of the potential difficulties that explain the low ecological compensation practice level found. Among the technical difficulties, the attention focuses in the difficulty of identifying and valuing all residual impacts possibly caused by any given project. Among the conceptual ones, the status-quo of a prevailing social mindset that accepts ecological quality losses as inevitable stands up.

The second section (chapters IV, V, and VI) studies how ecological residual impacts are valued, registered and shown, as well as the existing guidelines on how to choose the specific measures to be implemented. As a response to the results of this study, several proposals to improve and foster ecological compensation practice in EIA in Spain are advanced.

- 2 - PRÓLOGO

Esta tesis nace de la percepción de que el uso por parte del ser humano del medio que lo acoge y del que forma parte, con frecuencia repercute negativamente sobre el valor ambiental del mismo.

El acierto de esta premisa, o la dimensión de verdad que encierre, interesa no sólo al marco socioeconómico en el que nos movemos a diario, de cara a hacerlo sostenible, sino a la profundidad del análisis cultural y antropológico de cómo se expresa el Hombre en el territorio. Territorio que a su vez, refleja y revela la conducta humana.

Lógicamente, no se abordarán los aspectos sociales, económicos y culturales desde enfoques sociológicos, económicos o humanistas propios de otras disciplinas ajenas al ámbito científico-técnico que nos acoge académicamente, aunque se permanezca atento a ellos. Pero sí interesa destacar que hablar de compensación, aunque sea de suyo un tema concreto, implica entrar a considerar el fondo de la inevitable convivencia que mantienen el Hombre y la Tierra.

¿Y si nos convenciéramos mayoritariamente de que está en nuestra mano no sólo cuidar lo natural recibido, sino mejorarlo? ¿Y si la naturaleza esperara de nosotros, para regalarnos todo su potencial, un dominio rendido a su modo de ser natural?

De momento nuestra conducta global parece asumir que lo natural alimenta la sociedad y la economía, y acaso la cultura, a costa de un inevitable desgaste. Pero no parece estar escrito así en la esencia de lo vivo y lo vivido.

- 3 -

INTRODUCCIÓN

SOSTENIBILIDAD

En 1987 la WCED1 (World Commission on Environment and Development) definió “desarrollo sostenible” como “aquél que satisface las necesidades de la generación presente sin comprometer la capacidad de las generaciones futuras para satisfacer sus propias necesidades” (WCED, 1987). Aunque esta definición es la más frecuentemente citada en la bibliografía relativa a sostenibilidad (Beder, 2006), no se puede afirmar que exista un acuerdo universal en cuanto al significado de este concepto, que ha sido y continúa siendo ampliamente discutido (e. g. Mebratu, 1998; Norton, 2005; Fischer et al., 2007; Voinov & Farley, 2007).

Esto no es de extrañar, puesto que la sostenibilidad es un concepto intuitivamente sencillo de comprender, pero difícil de concretar y de poner en práctica (e.g. Fenech et al., 2003), y aún más de una manera ampliamente acordada. Por un lado, la tarea de concreción requiere trabajar a diversas escalas de forma complementaria (Kates, 2000; Kates et al., 2001), ya que es necesario tanto trasladar los grandes objetivos a ideas concretas, como dirigir las pequeñas acciones locales hacia el logro de metas globales. Además, se hace necesario abordar la sostenibilidad integrando distintas perspectivas de estudio, ya que ésta concierne a las esferas social, ecológica y económica, que están a su vez interconectadas de distintas maneras (Gibson, 2001; Pope et al., 2004).

EVALUACIÓN DE IMPACTO AMBIENTAL

Una de las herramientas que tiene como objetivo la mejora de la sostenibilidad en los proyectos con una incidencia ambiental significativa es la Evaluación de Impacto Ambiental (EIA), especialmente en lo relativo a los aspectos sociales y ecológicos (IAIA & UK Institute of Environmental Assessment, 1999).

1 La WCED, comúnmente conocida como la Comisión Brundtland, se constituyó en 1983 tras una resolución de la Asamblea General de las Naciones Unidas en la que se apuntaba la necesidad de crear un órgano independiente que examinara los principales problemas ambientales y de desarrollo existentes en distintos lugares del mundo, y formulara propuestas realistas para afrontarlos (United Nations, 1983). Tras la publicación del Informe Brundtland (‘Our Common Future’) en 1987, la Comisión fue oficialmente disuelta. En su lugar, en 1988 se creó el Centro para Nuestro Futuro Común (‘Center for Our Common Future’). - 5 - Introducción

La EIA es el procedimiento por el cual se identifican y evalúan los efectos de ciertos proyectos de desarrollo sobre el medio físico y social (IAIA & UK Institute of Environmental Assessment, 1999; Wood, 2003; Jay et al., 2007). Su objetivo es proponer la forma más adecuada de llevar a cabo un proyecto, minimizando el impacto sobre el mismo (Garmendia et al., 2005). Aunque por principio el procedimiento no busca paralizar las propuestas de desarrollo, permite no autorizar aquellos proyectos cuyas repercusiones ambientales inevitables se juzguen como inaceptables. En otras palabras, “una EIA eficaz modifica la naturaleza de las acciones que se implementan para reducir los perjuicios ambientales que causan y hacerlas más sostenibles. Si no lo logra, la EIA es un desperdicio de tiempo y dinero.” (Wood, 2003).

Desde que fuera implantada por primera vez en EEUU en los años 70 a través de la National Environmental Policy Act (United States Congress, 1969), la EIA se ha extendido a otros muchos lugares, incluyendo países en vías de desarrollo (Garmendia et al., 2005; Glasson et al., 2005; Jay et al., 2007). En Europa, la Directiva 2011/92/UE regula actualmente cómo ha de llevarse a cabo la EIA y en qué proyectos. En España, el Real Decreto Legislativo 1/2008 transpone la normativa europea a la legislación nacional, y junto con el Real Decreto 1131/1988 y la Ley 6/2010 establecen las fases en que debe realizarse la EIA, que aquí se resumen en la Figura 1 y la Caja 1.

- 6 - Introducción

Memoria-resumen Administración inicial CONSULTAS PREVIAS Público

Administración Elaboración EIS

INFORMACIÓN PÚBLICA Público

Declaración de Impacto Ambiental

Ejecución y seguimiento Figura 1. Esquema que resume las distintas fases del proceso administrativo de la Evaluación de Impacto Ambiental en España, una vez se ha decidido que el proyecto ha de someterse a ella.

Caja 1. Resumen del procedimiento de EIA en España

Cuando un proyecto debe someterse a EIA, el promotor debe iniciar el procedimiento y enviar a la Administración competente una memoria-resumen del proyecto que se propone ejecutar. Tras la presentación de este primer documento, y atendiendo al resultado de las consultas al público y organismos afectados, el promotor debe elaborar un Estudio de Impacto Ambiental (EIS por sus siglas en inglés). Este documento recoge las principales características del proyecto, así como una exposición de las alternativas estudiadas, una evaluación de los impactos previsibles y la correspondiente propuesta de medidas para contrarrestarlos, y un plan de vigilancia ambiental dirigido a controlar la aplicación de dichas medidas (RDL 1/2008). Tras su elaboración, el EIS se somete a información pública con el fin de que cualquier persona pueda revisarlo y presentar las alegaciones que considere oportunas. Basándose en los resultados del EIS y de la fase de información pública, la Administración competente elabora una Declaración de Impacto Ambiental (DIA), en la que se resumen los principales puntos del EIS y de la fase de participación pública y se concede o deniega la aprobación del proyecto desde el punto de vista ambiental. El cumplimiento de las condiciones establecidas por la DIA para la ejecución del proyecto, en su caso, deberá ser comprobado durante la fase de seguimiento.

- 7 - Introducción

Se podría decir que el EIS es el documento central de todo este proceso ya que recoge la información necesaria para evaluar los posibles daños al entorno y proponer las medidas necesarias para contrarrestarlos, lo que constituye el núcleo de la EIA.

En este trabajo se ha decidido estudiar la sostenibilidad desde el ámbito de la EIA por dos razones principales. Primera, porque siendo uno de los múltiples ámbitos en los que la sostenibilidad debe ser concretada en la práctica, la EIA cuenta ya con unos años de experiencia internacional y es oportuno ver qué ha conseguido. Y también porque si en algún lugar hay que ser exigentes con la pérdida de valor natural, es cuando nos enfrentamos a la decisión de si autorizar o no un proyecto ambientalmente adverso.

UN OBJETIVO PARA LA EIA: LA ‘NO PÉRDIDA NETA’ DE

VALOR ECOLÓGICO

Según indica la legislación, las medidas que se proponen en el EIS para integrar en lo posible los aspectos ambientales en el proyecto pueden ser de tres tipos: preventivas, correctoras y compensatorias (Directiva 85/337/CEE; RDL 1/2008). Este orden no es aleatorio, sino que corresponde a la denominada ‘secuencia de mitigación’ o ‘jerarquía de mitigación’ (‘mitigation sequence’ o ‘mitigation hierarchy’ en inglés), que consta de 3 pasos: evitar/minimizar (medidas preventivas), corregir/reducir lo que no ha podido ser evitado (medidas correctoras), y compensar lo que no ha podido ser evitado ni reducido (medidas compensatorias) (ten Kate et al., 2004; McKenney, 2005; Dolan et al., 2006; Escorcio Bezerra, 2007; Darbi et al., 2009; Moilanen et al., 2009).

La aplicación de medidas siguiendo esta secuencia se propone, desde un punto de vista teórico, como la forma de neutralizar el impacto negativo del proyecto sobre el entorno, o incluso de conseguir un impacto final positivo mejorando las condiciones iniciales del medio en el que se desarrolla la actividad: son los denominados objetivos de ‘no pérdida neta’ y ‘ganancia neta’ (Iuell et al., 2003; ten Kate et al., 2004; McKenney, 2005; Gibbons & Lindenmayer, 2007; Moilanen et al., 2009; Rowe et al., 2009). Que el logro de esos objetivos en procedimientos de EIA concretos se alcance o no es otra cuestión. Y precisamente este contraste, entre los objetivos teóricos de la EIA y sus logros en los casos reales, urge más al estudio de cómo aplicar el concepto de sostenibilidad en procesos de decisión ambiental reales.

- 8 - Introducción

La lógica subyacente a estas metas, utilizando una terminología más común en enfoques socioeconómicos, parte de la idea de que mantener constante el capital natural es clave para lograr un desarrollo sostenible desde una perspectiva ecológica, económica y social (Costanza & Daly, 1992; Aronson et al., 2006). En el ámbito de la economía ecológica el capital natural designa al conjunto de bienes y servicios que proporcionan los recursos naturales al ser humano; lo que más comúnmente se designa como naturaleza o medio natural (Rees, 1995; Goodland & Daly, 1996; Aronson et al., 2007). La visión predominante durante los últimos veinte años es que el capital natural es el factor limitante del que dependen no sólo la sostenibilidad económica y el bienestar de la población, sino la propia vida (Costanza & Daly, 1992; Prugh, 1995; Goodland & Daly, 1996; Aronson et al., 2006; Farley & Daly, 2006).

Actualmente no se conoce, o no se llega a un acuerdo sobre qué nivel de capital natural es necesario para mantener la vida humana en condiciones adecuadas. De hecho, la medida del capital natural es una tarea que plantea importantes dificultades (Azqueta & Sotelsek, 2007). Aunque las consecuencias de las actividades humanas nunca se han conocido con total certeza, y aunque no esté resuelto el debate sobre la definición y medida del capital natural, la duda es ahora más significativa, puesto que tales actividades tienen mayor alcance y complejidad que en el pasado (Beder, 2006). Dada esta incertidumbre, y las consecuencias fatales de una posible predicción errónea, mantener constante el capital natural se presenta como el requisito mínimo necesario para caminar hacia la sostenibilidad (Costanza & Daly, 1992; Prugh, 1995).

El enfoque de esta tesis no es económico y, por ello, términos como “capital natural” resultan limitados para abordar la totalidad de la riqueza, calidad o valor ecológico de un entorno. Sin embargo, el razonamiento que justifica la necesidad de mantener constante, al menos, el capital natural es paralelo al que justifica los principios de no pérdida neta y ganancia neta ecológica en el campo de la EIA. Así, el mantenimiento o incluso la mejora de la calidad ecológica del entorno para las generaciones venideras, objetivo ético o moral, confluye con la necesidad a más corto plazo de preservar la propia vida y los recursos necesarios para mantenerla, lo que constituye habitualmente un argumento más eficaz en los contextos en que se desarrolla la práctica de la EIA.

A efectos prácticos, y centrándonos en una perspectiva ecológica dentro de la EIA, se puede decir que solamente consiguiendo que no haya pérdidas netas tras la

- 9 - Introducción ejecución de proyectos se puede evitar la progresiva degradación del medio natural que resultaría de la acumulación de impactos provocados por distintos proyectos en una misma región. Dentro de la “secuencia de mitigación”, las medidas compensatorias juegan un papel importante para conseguir este objetivo, puesto que son el último recurso para contrarrestar aquellos impactos que no pueden ser evitados ni corregidos; los denominados impactos residuales, presentes en todos los proyectos sometidos a EIA.

COMPENSACIÓN ECOLÓGICA EN LA EIA

En términos muy generales, compensar puede definirse como “igualar en opuesto sentido el efecto de una cosa con el de otra” y/o como “dar algo o hacer un beneficio en resarcimiento del daño, perjuicio o disgusto que se ha causado” (RAE, 2010). Se puede decir que el término “compensación” tiene un cierto sentido de buscar un balance entre efectos de sentido contrario (positivo-negativo, ganancia-pérdida…).

Esto puede lograrse por distintos medios. Un recurso es la compensación monetaria, en la que se trata de reparar el daño mediante el pago de una suma de dinero. En el campo de la EIA esta es una medida habitual en el caso de impactos sobre propiedades o actividades económicas, puesto que se plantea como una solución directa. En relación a impactos ambientales, sin embargo, no siempre se considera apropiada la compensación monetaria, sino que a menudo se requiere una intervención concreta en el medio físico y biológico, sobre un lugar o elemento determinado (compensación no monetaria). La compensación ambiental no monetaria es un campo que abarca impactos de muy distinta naturaleza, gran parte de los cuales podrían denominarse de tipo “ecológico”.

Aunque en ocasiones los términos “ambiental” y “ecológico” se emplean como sinónimos, compensación ambiental y compensación ecológica no siempre son tales, y por ello conviene distinguirlas. En esta tesis, se entiende por “compensación ambiental” aquella que tiene como objetivo cualquier elemento del medio ambiente, lo que incluye tanto los elementos naturales como aquellos que derivan de la acción humana (construcciones, patrimonio cultural, usos sociales de un lugar o elemento…). En cambio, se entiende por “compensación ecológica” la dirigida específicamente a los elementos naturales (o en lo que retengan de natural); aquellos que, aunque pueden ser modificados por la acción humana, no tienen su origen en ella. Este tipo de compensación conlleva

- 10 - Introducción acciones de creación, restauración o mejora de elementos naturales para sustituir aquellas funciones o valores ecológicos que han sido afectados por proyectos de desarrollo (Cuperus et al., 2001; Iuell et al., 2003).

La compensación ecológica se presenta como una herramienta para lograr la sostenibilidad de forma proactiva, generando cambios positivos en el entorno; un contrapunto necesario a limitarse simplemente a minimizar los negativos (Pope et al., 2004; McKenney, 2005; EPA, 2006; van Merwyk & Daddo, 2007; Weaver et al., 2008; BBOP, 2009). De forma similar a lo que ocurre con el concepto de sostenibilidad, la compensación también presenta dificultades en su ejecución, que hacen que sea un concepto más fácil de comprender que de poner en práctica. Como se verá a lo largo del desarrollo de la tesis, esta es una idea recurrente, que está presente de fondo en prácticamente todos los aspectos del trabajo en torno a la compensación ecológica.

Por otro lado, ya en el plano teórico existe cierta controversia y división de opiniones en torno al papel de la compensación ecológica en la EIA. Los principales argumentos que cuestionan el papel de las medidas compensatorias son la imposibilidad (técnica o ética) de reemplazar los valores naturales perdidos (Katz, 2000; Morris et al., 2006), y la incertidumbre que existe tanto en la medida de los daños y de las compensaciones necesarias (Burgin, 2008) como en torno al éxito de las medidas ejecutadas (PENGO, 2002; Morris et al., 2006; Burgin, 2008). También ciertos autores advierten del riesgo de que la compensación pueda ser utilizada para justificar proyectos ambientalmente no viables (ten Kate et al., 2004; Rundcrantz, 2007), cuando no se respetan las exigencias de la “secuencia de mitigación”: no se debería compensar más que lo que no se ha podido evitar ni minimizar.

Si bien es cierto que la compensación ecológica tiene puntos débiles, en parte por haberse empezado a desarrollar recientemente, es por el momento la única herramienta para tratar de revertir los impactos residuales que inevitablemente causa un desarrollo actualmente imparable. Siempre que se aplique como una solución de último recurso para compensar impactos residuales y no para justificar una gestión ambiental deficiente (Damarad & Bekker, 2003; Escorcio Bezerra, 2007, Burgin, 2008), e incluso aunque no ofrezca unos resultados óptimos, la implantación de medidas compensatorias será una opción mejor que la simple admisión de pérdidas ecológicas (Hayes & Morrison-Saunders, 2007). Además de sus efectos ambientales directos, la normalización de esta práctica puede ayudar a promover una mayor conciencia sobre el deber de respetar nuestro

- 11 - Introducción entorno, reforzando la idea de que tenemos no sólo el poder de dañar el medio, sino también la obligación de colaborar en su mantenimiento y enriquecimiento.

A pesar de estas incertidumbres y de los problemas prácticos que plantea, el uso de la compensación se ha ido extendiendo y actualmente está presente en legislaciones de distintos lugares del mundo, como EEUU, Europa, Australia, Brasil o Canadá (Rundcrantz & Skärbäck, 2003; ten Kate et al., 2004; McKenney, 2005; Hayes & Morrison- Saunders, 2007; Burgin, 2008; Darbi et al., 2009). En el caso de España, la obligación de compensar impactos ecológicos se aplica a nivel nacional a las áreas incluidas en la Red Natura 2000, como ordena la Directiva Hábitats (92/43/CEE) que transpone a la legislación española el Real Decreto 1997/1995. Solamente en algunas Comunidades Autónomas existen leyes que extienden esta obligación a otros lugares o elementos naturales (ver capítulo I).

Esta tesis se desarrolla en torno a la compensación ecológica no monetaria de impactos, dentro del marco general de la EIA en España, y principalmente en torno al caso de infraestructuras lineares de transporte, generalmente carreteras y autopistas2. Estos elementos tienen una importante presencia en el territorio, y su construcción y uso generan impactos significativos en el entorno (Forman & Alexander, 1998; Spellerberg, 1998; Trombulak & Frisell, 2000; Forman et al., 2003). Muchos de estos impactos no pueden ser evitados ni corregidos, lo que hace de estos proyectos un objetivo habitual en la bibliografía acerca de compensación ecológica (e.g. Penny Anderson Associates, 1993; Cuperus et al., 1996; Kuiper, 1997; Cuperus et al., 1999; Cuperus et al., 2001; Cuperus et al., 2002; Rundcrantz, 2006; Thorne et al., 2009). En esta tesis se quiso aprovechar esa tradición, ya que recoge buena parte de los problemas a los que se enfrenta el desarrollo teórico y práctico de la compensación, que este trabajo presenta y aborda.

2 Bajo la categoría de autopistas se incluyen tanto autopistas de peaje como autovías (sin peaje), puesto que para el propósito de la tesis no se considera necesario distinguir entre ambos tipos de vía. - 12 - INTRODUCTION

SUSTAINABILITY In 1987, the WCED3 (World Commission on Environment and Development) defined “sustainable development” as the development that “meets the needs of the present without compromising the ability of future generations to meet their own needs” (WCED, 1987). Although this definition is the most frequently quoted in the specific literature (Beder, 2006), at present time there remains an on-going discussion on the meaning of this term (e.g. Mebratu, 1998; Norton, 2005; Fischer et al., 2007; Voinov & Farley, 2007).

Such controversy may be related to the very nature of the concept ‘sustainability’, for this term is easily understood but putting it into practice becomes a harder task (e.g. Fenech et al., 2003), especially when trying to do so in a widely agreed way. On the one hand, translating the theoretical concept onto specific actions requires working at different scales in combination with each other (Kates, 2000; Kates et al., 2001), since it is necessary both to transform general objectives into specific ideas and to direct local actions towards the fulfilment of global goals. On the other hand, working on sustainability requires integrating different viewpoints, mainly regarding social, ecological and economic aspects (Gibson, 2001; Pope et al., 2004).

ENVIRONMENTAL IMPACT ASSESSMENT Environmental Impact Assessment (EIA) is a tool which seeks to improve the sustainability of projects which have significant negative effects on the environment, especially regarding social and ecological issues (IAIA & UK Institute of Environmental Assessment, 1999).

EIA may be defined as the procedure that identifies and evaluates the effects of certain development projects on the physical and social environment (IAIA & UK Institute of Environmental Assessment, 1999; Wood, 2003; Jay et al., 2007). Its aim is to minimize

3 The WCED, also known as the ‘Brundtland Commission’, was constituted in 1983 after a resolution of the United Nations General Assembly that pointed out the need of creating an independent organism to study and propose ways to face the main environmental and development problems in the world (United Nations, 1983). After publishing the Brundtland Report (‘Our Common Future’) in 1987, the Commission was officially dissolved. In 1988, the ‘Center for Our Common Future’ was created to take its place. - 13 - Introduction the negative impact that a certain project may cause on the affected environment (Garmendia et al., 2005). Although its objective is not to stop development proposals, EIA can deny the authorization of projects which are expected to cause unacceptable harms on the environment. In other words, “effective EIA alters the nature of decisions or of the actions implemented to reduce their environmental disbenefits and render them more sustainable. If it fails to do this, EIA is a waste of time and money” (Wood, 2003).

Since the passing of National Environmental Policy Act (United States Congress 1969), EIA has spread worldwide, even to numerous developing countries (Garmendia et al., 2005; Glasson et al., 2005; Jay et al., 2007). European Directive 2011/92/EU stipulates how and in which cases EIA has to be carried out in EU countries. This regulation has been transposed into Spanish regulation by the RDL 1/2008, which is complemented by the RD 1131/1988 and Law 6/2010 that specify the steps to follow during the EIA process (see Figure 1 and Box 1).

Environmental Summary of the authority project

PUBLIC CONSULTATION Public

Environmental Environmental authority Impact Statement PUBLIC PARTICIPATION PROCESS Public Record of Decision

Implementation and monitoring

Figure 1. Summary of the steps to be followed when a project must undergo EIA in Spain.

- 14 - Introduction

Box 1. Summary of the EIA process in Spain

When a project must undergo EIA, the developer must initiate the process by sending a summary of the project to the environmental authority. After that, and taking into account the results of the public consultation and the suggestions of the affected entities, the developer must prepare an Environmental Impact Statement (EIS). This document gathers the specifications of the project, the different alternatives for it, the evaluation of the potential impacts and the measures proposed to counter them, and the elaboration of an Environmental Surveillance Plan to monitor the implementation of such measures (RDL 1/2008). This EIS is made public so that any person can look through it and suggest any changes. Depending on the EIS and on the results of the public participation process, the environmental authority prepares a Record of Decision (ROD) that summarizes the main aspects of the EIS and of the public participation process and concedes or denies the environmental authorization for the project. When the activity is carried out it must fulfil the environmental requirements as stated in the ROD. This fulfilment shall be checked during the monitoring stage.

The EIS is considered to be the central document of the whole EIA process, since it gathers all the information that is necessary to evaluate the potential damages to the environment and to propose the actions needed to counter them, which actually constitute the core of EIA.

This thesis chose to approach sustainability from the viewpoint of EIA for two main reasons. First, because among the many different frameworks that should put this concept into practice, EIA has been for long implemented worldwide, and it is opportune to gauge what has been accomplished to date. In addition, because decision-making on environmentally adverse projects demands of itself especial efforts to minimize and counteract environmental losses.

AN OBJECTIVE FOR EIA: ‘NO NET LOSS’ OF ECOLOGICAL VALUE According to current Spanish legislation, three kinds of actions may be proposed within the EIS to integrate environmental issues into the development project: preventive, mitigative and compensatory measures (Directive 85/337/EEC; RDL 1/2008). This order responds to the so-called ‘mitigation sequence’ (also called ‘mitigation hierarchy’), which consists of three consecutive steps: avoid (measures to prevent impacts from happening), minimize what cannot be avoided (measures to mitigate the harm, ‘mitigation’ here understood as trying to restore the damaged place to its former state), and offset/compensate what cannot be avoided nor minimized (measures to compensate for

- 15 - Introduction the impacts that cannot be avoided or reversed) (ten Kate et al., 2004; McKenney, 2005; Dolan et al., 2006; Escorcio Bezerra, 2007; Darbi et al., 2009; Moilanen et al., 2009).

Theoretically, this mitigation sequence is proposed as a way to counteract the negative environmental impact of a development project, or even to achieve a net positive impact that improves the original state of the affected environment. These are the so-called ‘no net loss’ and ‘net gain’ objectives, respectively (Iuell et al., 2003; ten Kate et al., 2004; McKenney, 2005; Gibbons & Lindenmayer, 2007; Moilanen et al., 2009; Rowe et al., 2009). However, the achievement of these goals in EIA practice is not automatically granted. The contrast between theoretical objectives and practical achievements in EIA spurs the need of studying how to apply better the concept of sustainability to actual decision-making processes.

From a socioeconomic standpoint, these ‘no net loss’ and ‘net gain’ goals depart from the idea that keeping natural capital constant is key to achieve ecological, economic and social sustainability (Costanza & Daly, 1992; Aronson et al., 2006). ‘Natural capital’ is an economic term for the stock of natural resources that provide different goods and services; what is broadly called ‘nature’ (Rees, 1995; Goodland & Daly, 1996; Aronson et al., 2007). For the last twenty years, natural capital is increasingly being considered as the limiting factor to human well-being and economic sustainability (Costanza & Daly, 1992; Goodland & Daly, 1996; Aronson et al., 2006; Farley & Daly, 2006). At the end, it is not to be forgotten that natural capital is what supports life (Prugh, 1995).

At present time, there is no agreement upon which stock of natural capital would be enough to support human life. In fact, such measurement entails important difficulties (Azqueta & Sotelsek, 2007). The uncertainties on the reach and magnitude of the effects of human activities on the environment have always been there, but they grow more significant at present time as such activities are bigger and more complex than they were in the past (Beder, 2006). Given this uncertainty, and the dire consequences of guessing wrong, keeping natural capital intact comes up as a prudent minimum condition for achieving sustainability (Costanza & Daly, 1992; Prugh, 1995).

This thesis is not built from an economic standpoint, and for that reason ‘natural capital’ turns out a too-limited term to refer to the whole ecological richness, quality or value of an environment. Nevertheless, we have recalled here the reasoning behind the natural capital constancy principle for it is parallel to the argument that justifies the ‘no net ecological loss’ and ‘net ecological gain’ goals within EIA. Thus, what can be argued as an

- 16 - Introduction ethical or moral principle, i.e. the preservation or even enhancement of the ecological quality of the environment for future generations, meets the practical need of preserving natural resources and life quality in the short run, an utilitarian argument that seems more easily accepted within EIA contexts.

From an ecologic, practical standpoint within EIA, it can be argued that the only way of avoiding a continuous loss of natural quality within a given region is to ensure that no net losses result from the implementation of each development project. Of the three steps of the mitigation sequence, compensation plays a key role to achieve ‘no net loss’ for it is the last option to counteract those impacts that can not be avoided or reversed, and which are associated to all projects subject to EIA: the residual impacts.

ECOLOGICAL COMPENSATION IN EIA In general terms, compensating may be defined as the balancing of the effects of a certain action with the effects of another action, and/or as to give or make something to repair some damage previously caused (RAE, 2010).

This balancing effect may be achieved through different means. A common option is monetary compensation, which seeks to repair the damage through the payment of a certain amount of money. This mechanism is commonly used within EIA to compensate for impacts on private properties or economic activities, for it is a direct solution. However, monetary compensation is not always a proper way to offset environmental impacts. Most often, these impacts demand some intervention on physical or biological elements in specific places to be compensated (non-monetary compensation). And among all the different environmental impacts, this applies especially to ecological ones.

Although the terms ‘environmental’ and ‘ecological’ may be employed as synonyms in some contexts, environmental and ecological compensation are not always equivalent. In this thesis, ‘environmental compensation’ refers to offsets aimed to counter any damage caused on any element of the environment, either natural or human-made (such as buildings, artistic or cultural heritage, social assets…). ‘Ecological compensation’ is understood as those actions aimed to offset specifically natural assets; those elements that have not been created by humans, although they can be modified by us. Ecological compensation usually entails creation, restoration or enhancement of natural assets in order to replace the impaired ecological functions or values (Cuperus et al., 2001; Iuell et al., 2003).

- 17 - Introduction

Ecological compensation is a tool to promote sustainability in a proactive way, by generating positive changes instead of simply minimising the negative (Pope et al., 2004; McKenney, 2005; EPA, 2006; van Merwyk & Daddo, 2007; Weaver et al., 2008; BBOP, 2009). Comparably to what was previously described for the concept of sustainability, it is easy to understand the concept of compensation but its practice proves harder. This idea is recurrent when working on ecological compensation, and lays behind many of the questions this thesis deals with.

Complementarily to practical problems, there is also some controversy and discussion on the role of ecological compensation within EIA. Main arguments questioning the reach and efficiency of compensatory measures recall the technical or ethical impossibility of replacing some natural values or elements (Katz, 2000; Morris et al., 2006), the difficulty of measuring natural damage and the offsets that would be necessary to counter it (Burgin, 2008), and the uncertainty on the success of the implemented measures (PENGO, 2002; Morris et al., 2006; Burgin, 2008). Other authors are concerned about the risk of using compensation to justify environmentally unacceptable projects (ten Kate et al., 2004; Rundcrantz, 2007) when the mitigation sequence is not properly applied, and compensation is proposed prior to avoidance or correction.

Even though ecological compensation has some weaknesses (partly because it has been developed quite recently), it is for now the only tool that allows counteracting somehow the residual impacts that unavoidably cause our currently unstoppable development. As long as it is always used as a last-term resource for compensating residual impacts, and not as a way to justify poor environmental management (Damarad & Bekker, 2003; Escorcio Bezerra, 2007; Burgin, 2008), compensation should be promoted within EIA. Even if they do not provide optimal results, attempting to establish ecological offsets is a better option than simply admitting ecological losses (Hayes & Morrison-Saunders, 2007). In addition to its ecological effects, the practice of compensation may send a message about the duty of respecting the environment where we live, and may reinforce the idea that we have the obligation of preserving and improving nature.

In spite of the uncertainties and practical problems around it, ecological compensation is being increasingly included in environmental regulations from different places, such as the United States, Europe, Australia, Brazil or Canada (Rundcrantz & Skärbäck, 2003; ten Kate et al., 2004; McKenney, 2005; Hayes & Morrison-Saunders, 2007;

- 18 - Introduction

Burgin, 2008; Darbi et al., 2009). The Spanish legislation establishes the duty to compensate for significant damages on areas that belong to the Natura 2000 network (Royal Decree 1997/1995, transposing European Directive 92/43/EEC). Only certain regional laws extend this duty to other spaces or natural features (see chapter I).

This thesis studies non-monetary ecological compensation in the context of EIA in Spain. Different kinds of projects are regarded, but special attention is paid to transport infrastructures, mainly roads and motorways. These elements are present across all humanized landscapes, and their construction and use cause significant impacts on the environment (Forman & Alexander, 1998; Spellerberg, 1998; Trombulak & Frisell, 2000; Forman et al., 2003). Since many of those impacts cannot be avoided nor reversed, roads and motorways have traditionally been in the focus of studies on ecological compensation in different places (e.g. Penny Anderson Associates, 1993; Cuperus et al., 1996; Kuiper, 1997; Cuperus et al., 1999; Cuperus et al., 2001; Cuperus et al., 2002; Rundcrantz, 2006; Thorne et al., 2009). This thesis takes advantage of this expertise that gathers most theoretical and practical problems that compensation development has to face, and which will be tackled also in the following chapters.

- 19 - ESTRUCTURA Y OBJETIVOS

Los objetivos generales de esta tesis son dos: estudiar el papel de la compensación ecológica en los procedimientos de EIA en España y de las dificultades a las que se enfrenta, y proponer, en función de de los resultados obtenidos, maneras de promoverla. Estos objetivos determinan la estructura general del trabajo, que se desarrolla en dos partes coordinadas, dentro de las cuales se abordan objetivos parciales.

La primera parte desarrolla un objetivo principal en cada uno de sus tres capítulos, que sirven al propósito general de la sección:

1. Conocer cómo se integran actualmente en España las propuestas de compensación ecológica dentro del procedimiento de EIA. ... Capítulo I 2. Mostrar la dificultad de atribuir algunos impactos residuales a un proyecto concreto y, por tanto, la de decidir la compensación correspondiente...... Capítulo II 3. Contrastar la tolerancia de pérdida de calidad ecológica, frente a la alta exigencia de compensaciones socioeconómicas a los daños causados por un proyecto...... Capítulo III Los resultados de esta primera parte conforman el marco sobre el que se desarrolla la segunda, que consta también de tres capítulos, en cada uno de los cuales se aborda principalmente un objetivo:

4. Mostrar la utilidad de que los métodos de valoración de impactos dentro de la EIA revelen los impactos ecológicos residuales, para promover así la práctica de la compensación...... Capítulo IV 5. Evaluar la visibilidad actual de la valoración del impacto residual en los procesos de EIA de vías de transporte para mejorar la compensación...... Capítulo V 6. Revisar las orientaciones generales publicadas para la definición de medidas compensatorias, con el fin de complementarlas mediante propuestas específicas para los proyectos de carreteras y autopistas en EspañaCapítulo VI Para subrayar la unidad entre los distintos capítulos, antes de cada artículo se incluye una breve presentación del mismo, que resume sus principales objetivos y contenidos, y explica su integración en el conjunto de la tesis. Esta estructura procura clarificar lo que no podía hacerse desde cada uno de los artículos de forma individual, ayudando a generar una discusión general y a obtener conclusiones que van más allá de lo apuntado en cada uno de ellos, y con las que se cierra la tesis.

- 20 - OBJECTIVES AND STRUCTURE

This thesis is divided in two complementary parts, each one addressing one general objective. The first one studies the role of ecological compensation within EIA processes in Spain and the obstacles it faces. The second part develops proposals to promote ecological compensation practice in this context, according to the results of the former.

Each general objective is addressed through three secondary objectives, each one corresponding to a separate chapter.

The first part, entitled ‘On the role of ecological compensation in Spanish EIA processes and the obstacles it faces’, is divided in the three following chapters:

7. Chapter I: on the way ecological compensation is currently proposed within EIA processes in Spain.

8. Chapter II: on the difficulties that may arise when trying to identify and attribute certain residual impacts to a specific project, which may constitute an obstacle to the estimation of the corresponding offsets.

9. Chapter III: on the difference between the efforts we put to demand socio- economic compensation and the acceptance of ecological losses when facing a project.

The second part of the thesis (‘Some proposals to promote ecological compensation within Spanish EIA’) is based on the results obtained in the first one, and is also divided in three chapters:

10. Chapter IV: on the convenience of highlighting ecological residual impacts within EIA processes to promote ecological compensation practice.

11. Chapter V: on the way ecological residual impacts are currently addressed within EIA processes and how this may be improved to promote compensation.

12. Chapter VI: on current guidance to design ecological offsets, and a complementary proposal for the specific case of roads and motorways in Spain.

- 21 -

To unify the different chapters and integrate them in the general structure of the thesis, a brief presentation precedes each paper that explains its objective and content. This structure clarifies the role each chapter has for the general purposes of the thesis, and makes possible to develop a general discussion and to obtain general conclusions that go over and above the conclusions of each paper.

- 22 -

PRIMERA PARTE ESTUDIO DEL PAPEL DE LA COMPENSACIÓN ECOLÓGICA EN LOS PROCEDIMIENTOS DE EIA EN ESPAÑA Y DE LAS DIFICULTADES A LAS QUE SE ENFRENTA

- 23 -

El objetivo de esta primera parte de la tesis es explorar cómo se lleva a cabo actualmente la compensación ecológica en España dentro del marco de la EIA, tanto desde la perspectiva general que otorga el estudio de las declaraciones de impacto ambiental (artículo I), como más en detalle, a través del estudio de dos casos concretos que permiten comprender mejor algunos problemas a los que se enfrenta la concreción práctica de la compensación, y que el enfoque general del primer artículo no permite ver.

El primer artículo se ocupa de buscar, en las declaraciones de impacto ambiental, indicadores de la frecuencia con la que se recurre a la compensación en la EIA. A través de la revisión del grado en que se aplican medidas compensatorias en diferentes tipos de proyectos nacionales y autonómicos, ofrece una aproximación general al tema, buscando confirmar la intuición de que la práctica de la compensación se encuentra en unos niveles muy bajos. Concretando un poco esta visión global, en el mismo artículo se analiza con más detalle la compensación ecológica en proyectos de carreteras y autopistas, puesto que la tesis se centra principalmente en este tipo de infraestructuras, por las razones expuestas en la introducción.

Los dos siguientes artículos exploran algunas posibles causas técnicas y conceptuales de la baja práctica compensatoria que registra el primero. Desde temáticas aparentemente dispares, contribuyen a completar la visión del primero a través del cambio en la escala y en la perspectiva desde la que se construyen.

El artículo II estudia uno de los obstáculos técnicos que pueden afectar a la aplicación de medidas compensatorias: la dificultad de identificar y evaluar los impactos residuales de un proyecto. A través del estudio de las causas de los impactos inducidos en torno a una carretera, explora la dificultad que presenta en ocasiones la simple atribución de algunos de los impactos residuales a un proyecto concreto. Esta dificultad para atribuir ciertos efectos sobre el entorno como causados exclusivamente por un proyecto supone un importante obstáculo para su compensación en el marco de la EIA. El cambio en la escala de estudio complementa la perspectiva del artículo I y aporta nueva información en torno a la dificultad de abordar la compensación de impactos en proyectos de carreteras y autopistas.

El artículo III, por último, se centra en explorar algunos de los posibles obstáculos conceptuales que pueden estar detrás de la escasa práctica de la compensación detectada en el artículo I. A través de la comparación de la compensación ecológica y la compensación socioeconómica alrededor de un caso concreto, pone de relieve algunas

- 24 -

de las razones que pueden contribuir a la escasa puesta en práctica de la primera. Es, además, el único artículo que no se centra en proyectos de carreteras, sino que se desarrolla en torno a un proyecto costero, lo que permite contrastar los resultados obtenidos para este caso con los recabados para vías de transporte en los otros artículos.

Esta complementariedad de casos y escalas de estudio se plantea como una forma de abordar una cuestión amplia, como es la compensación ecológica de impactos, profundizando en algunos de sus aspectos pero sin perder la visión de conjunto.

- 25 -

CAPÍTULO I UNA VISIÓN GENERAL SOBRE LA COMPENSACIÓN ECOLÓGICA EN ESPAÑA

Villarroya A, Puig J. 2010. Ecological compensation and Environmental Impact Assessment in Spain. Environmental Impact Assessment Review; 30(6):357-362. doi: 10.1016/j.eiar.2009.11.001

Compensación ecológica en España

Como se adelantaba en la Introducción a la tesis, la compensación ecológica resulta un concepto más fácil de entender que de poner en práctica. En un contexto de toma de decisión administrativa como la EIA, sujeto a limitaciones específicas de tiempo y recursos, esta dificultad para trasladar una idea teórica a acciones concretas puede acabar provocando que las propuestas de medidas compensatorias no se ajusten a lo que sería necesario para evitar la pérdida neta de calidad natural.

Partiendo de la hipótesis de que la compensación ecológica en la EIA en España se aplica en pocas ocasiones, el artículo I recoge datos de la EIA de distintos proyectos para evaluar de forma general cómo es la práctica actual de la compensación en España, y si realmente se aplica en todos los casos en que debería aplicarse para conseguir el objetivo de evitar pérdidas netas de calidad natural.

Los datos utilizados se obtuvieron a partir de la revisión sistemática de declaraciones de impacto ambiental (DIAs)4, elegidas como indicadores del procedimiento de EIA por ser documentos accesibles que recogen la información más relevante del proceso. Además, al incorporar un resumen en el que se incluyen los elementos considerados clave para justificar la toma de decisión, aportan indicios sobre la importancia que se da a cada parte de la EIA.

En este artículo se buscaron y analizaron referencias a compensación ecológica en 1302 DIAs correspondientes a distintos proyectos. Se distinguió entre los documentos que solamente hacían mención a la propuesta de medidas compensatorias, y los que incluían una descripción de tales acciones. De esta manera se calculó la proporción de casos en que se proponía la aplicación de compensación ecológica, obteniendo también una indicación de la importancia que parece otorgarse a estas acciones en base al nivel de detalle con que se describen en el documento final de la EIA (la DIA).

La revisión reveló que la mayor parte de los documentos no incluían ni tan siquiera referencias a compensación ecológica, algo que se registró también en revisiones posteriores de DIAs de proyectos de carreteras (artículo V) y de proyectos costeros (artículo III). Y de manera similar a lo observado en este primer artículo, no en todos los

4 La DIA es el documento público elaborado por la Administración competente en el que se resumen los principales factores tenidos en cuenta para tomar la decisión sobre la viabilidad ambiental de un proyecto, incluyendo las medidas necesarias para prevenir o contrarrestar sus efectos negativos. Por ser el documento que justifica esta resolución final ante el público, la DIA refleja las prioridades establecidas por la Administración, constituyendo así un indicador fiable del papel que se atribuye a la compensación ecológica dentro del proceso de la EIA. - 27 - Compensación ecológica en España casos en que se mencionaba la compensación se describían las acciones concretas. Sin embargo, las medidas preventivas y correctoras no sólo aparecían mencionadas, sino que además eran descritas en casi todos los documentos revisados.

Estos datos confirman la intuición que motivó la investigación presentada en este primer artículo, y refuerzan la conclusión apuntada en él de que la compensación ecológica es actualmente una práctica poco extendida en España en el marco de la EIA, y que, generalmente, no recibe la misma atención que las medidas preventivas y correctoras. Si se ha desarrollado una “cultura de la corrección”, falta por desarrollar una “cultura de la compensación”. Como se ha indicado en la introducción, el logro de objetivos de no pérdida neta en cuanto al medio natural o semi-natural pasa por la aplicación completa de la secuencia de mitigación. Si no se otorga la misma importancia a todos los pasos de esta secuencia, la neutralización total de los impactos no es posible, y al menos una parte del daño permanece en el medio.

Esta baja aplicación de medidas compensatorias, que contrasta con los datos registrados para prevención y corrección de impactos, puede tener su origen en distintos puntos. Los capítulos II y III tratan de arrojar algo de luz sobre esta cuestión a través del estudio de dos casos concretos.

- 28 - Compensación ecológica en España

ECOLOGICAL COMPENSATION AND ENVIRONMENTAL IMPACT ASSESSMENT IN SPAIN COMPENSACIÓN ECOLÓGICA Y EVALUACIÓN DE IMPACTO AMBIENTAL EN ESPAÑA

ABSTRACT To achieve meaningful sustainable development, Environmental Impact Assessment (EIA) should avoid the net losses in the environment resource base. But EIA practice does not always avoid the losses caused by the implementation of the projects under EIA regulation. Some environmental impacts are, simply, admitted, even without enforcing any form of compensation. When applied, compensation is sometimes just a monetary payment to offset the environmental loss. This paper looks for evidence on the role that compensation is given at present in EIA practice in Spain, and for some of its conceptual and regulatory roots. Specifically, it explores how compensation is addressed in 1302 records of decision (RODs) on those projects subject to the Spanish EIA regulation published during the years 2006 and 2007, to know how far Spain is from preserving the environmental resource base managed through this particular aspect of EIA practice. As a result, it is concluded that the practice of ecological compensation in EIA in Spain is much lower than it could be expected in a theoretical sustainability context committed to avoid net losses in the environment resource base, mainly due to an EIA practice focused on on-site mitigation that allows these net losses.

KEYWORDS: EIA; sustainability; Records of Decision.

RESUMEN Para promover un desarrollo más sostenible, la Evaluación de Impacto Ambiental (EIA) debería evitar pérdidas netas de recursos ambientales. Pero la práctica de la EIA no siempre evita las pérdidas causadas por la implementación de proyectos sujetos a este procedimiento. Algunos impactos ambientales son, simplemente, admitidos, incluso sin exigir ningún tipo de compensación a cambio. Y cuando se aplica, con frecuencia la compensación se limita a un pago monetario. Este artículo estudia el papel que actualmente se le da a la compensación en la práctica de la EIA en España, explorando al mismo tiempo algunas de sus raíces conceptuales y legales. De forma más específica, se evalúa cómo se aborda la compensación en 1302 Declaraciones de Impacto Ambiental (DIAs) correspondientes a proyectos sujetos a la legislación de EIA en España, publicadas durante los años 2006 y 2007, para estimar hasta qué punto esta práctica se utiliza para preservar los recursos ambientales en este país.

- 29 - Compensación ecológica en España

Los resultados obtenidos muestran que la práctica de la compensación ecológica en España es mucho más baja de lo que sería esperable en un contexto teórico de sostenibilidad en el que primase el objetivo de evitar pérdidas netas de recursos ambientales, principalmente debido a una práctica de la EIA enfocada hacia la corrección de impactos, que permite este tipo de pérdidas.

PALABRAS CLAVE: EIA; sostenibilidad; Declaración de Impacto Ambiental.

1. INTRODUCTION

The interest in effective means of protecting environmental values is growing wherever human developments increase environmental degradation. Land use changes such as urbanization or road development, for example, usually reduce the value of the landscapes and habitats they occupy, by altering some of the functions of these environmental assets (Hueting, 1974 in Kuiper, 1997). All this happens even as the new developments are implemented, under the control of Environmental Impact Assessment (EIA), intended “to promote development that is sustainable and optimizes resource use and management opportunities” (IAIA and Institute of Environmental Assessment of UK, 1999).

Most of the projects under EIA regulation result eventually in an onsite net depletion of the natural resource base, even after all the possible mitigating measures are implemented. The impacts of new roads, dams, railways or urban developments cannot be completely reversed on-site. They may be accepted by decision makers, when EIA practice is understood so that it should reduce the environmental disbenefits of projects and render them more sustainable (Wood, 2003). This prevalent understanding of EIA may be inevitable, even the only option at hand, in certain EIA decision-making contexts, countries or periods. As a result, the sustainability of landscapes is not ensured just because the projects implemented in them undergo thorough EIA processes. Should EIA be understood or carried out differently?

Compensation has been put forward in EIA practice as a tool to keep whole the natural value of landscapes. It may not be sufficient, a straightforward way of delivering sustainable development. But, it is increasingly perceived as necessary to attain sustainability. The role of compensation in EIA is a subject for debate (Section 2). Yet,

- 30 - Compensación ecológica en España improved levels of sustainability could be achieved through the improvement of compensation in EIA practice.

This paper looks for evidence on the role that compensation is given at present in EIA practice in Spain, and for some of its conceptual and regulatory roots. Specifically, it explores how compensation is addressed in the records of decision (ROD) produced by EIA practice, and how far Spain is from preserving the environmental resource base managed through this particular aspect of EIA practice. The answer to these questions may cast light on the degree of sustainability attributable to each development project implemented under EIA regulation, and on the sustainability of the habitats and landscapes in the long run.

Section 2 overviews briefly the role of compensation in EIA. Section 3 addresses how compensation is regulated in Spain. In Section 4, 1302 records of decision (RODs) publicized during the years 2006 and 2007 on those projects subject to the Spanish EIA regulation are analyzed, regarding some particular aspects of compensation practice. Finally (Section 5) conclusions are drawn on how compensation practice is working in Spain at present within EIA frameworks, and suggestions are made for the future.

2. THE ROLE OF COMPENSATION PRACTICE IN EIA

Environmental compensation has been put forward as a tool to prevent the net loss of environmental values within EIA frameworks. Since the 1970s, many countries have given a growing role to environmental compensation in decision-making processes on land use (i.e. Rundcrantz and Skärbäck, 2003; Wilding and Raemaekers, 2000a,b). It has been linked to the concept of natural capital, and proposed as a means to achieve sustainability. But it remains discussed to what extent the erosion of environmental values may possibly be restored or reversed by environmental compensation (Cowell, 1997). Moreover, the very meanings of “natural capital” and “environmental compensation”, and their efficiency in protecting environmental values or the environmental resource base, are still open to discussion, either within EIA procedures (Hayes and Morrison-Saunders, 2007) or in other decision-making contexts. What is the meaning of “environmental” compensation? To what extent is it possible to distinguish “natural” values from the “human-made” or cultural ones in each environment? Is it “natural capital” a good tool to

- 31 - Compensación ecológica en España take care of environmental values? How can we maintain natural capital if environments are repositories of plural and incommensurable values (Cowell, 1997)?

Some clarifying conceptualizations on how to understand and make good use of compensation practices in EIA contexts have been developed. For instance, it has been argued that sound compensation practice should adhere to the mitigation sequence of avoid, minimize, rectify, reduce and then utilize offsets or compensation as a last resort, assuming that the acceptability and manageability of impacts have to be considered before offsets are brought into the equation. Complementarily, a hierarchy of approaches has been identified within the concept of compensation itself, where the preferred order of methods would be restoration, creation, enhancement and preservation. Even the net environmental gain, through compensation, of every implemented project has been put forward as a goal for EIA practice. Multiple other issues involved in compensation practice might be brought to discussion, as the concept of “like for like” compensation, the difficulties in the valuation of lost biodiversity, the time lags between project impact and offset deliverance, and the gap between the real and intended environmental outcomes resulting from practice, among others (Hayes and Morrison-Saunders, 2007). The scope for potential research in compensation is very broad.

The avoidance of net losses in the environment resource base seems inescapable to achieve meaningful sustainability in EIA contexts. Environmental compensation should offset the environmental impact of human developments by avoiding a net loss in the environment resource base, and not by paying for its depletion. We use the term “ecological compensation” rather than “environmental compensation” to stress this option, as the latter is used sometimes to refer to situations when the depletion of the environment resource base has been compensated through payments. Ecological compensation has been defined as the substitution of ecological functions or qualities that are impaired by development (Cuperus et al., 1996 in Cuperus et al., 1999). By using this term we intend to reject the idea that “natural capital” can be paid for in compensation for its loss, or be readily substituted by “human-made capital” during a sustainable EIA practice.

As Rundcrantz and Skärbäck (2003) have stated, the term ‘ecological compensation’ is not used in the same way in all countries. In this paper, ecological compensation will be understood as the set of measures carried out to substitute the habitats, ecological values and functions that remain definitively damaged or lost, even

- 32 - Compensación ecológica en España after the measures to reverse the damage caused by a given infrastructure have been implemented. Compensation may range from the ecological improvement of damaged areas to the creation of entirely new habitats, generally the same as or at least similar to the lost ones. Following Cuperus et al. (2002), we distinguish between mitigation (those measures minimizing, rectifying and reducing adverse impacts, and so tied to the infrastructure causing them) and compensation (the replacement of natural habitat that takes place generally elsewhere) as separate terms.

3. A REVIEW ON THE SPANISH REGULATION REGARDING COMPENSATION

Regulation is an important formal step to integrate and attain ecological compensation in the decision-making process of projects with environmental side effects. In the European Union, compensation measures have their regulatory basis mainly in three Directives: the Environmental Impact Assessment Directive 85/337/EEC and 97/11/EC (European Union, 1985 and 1997), the Birds Directive, 79/409/EEC (European Union, 1979) and the Habitats Directive, 92/43/EEC (European Union, 1992) (Rundcrantz and Skärbäck, 2003). Special pre-eminence is given in the EU to the integrity of the Natura 2000 network, in order to preserve its overall coherence as a network of protected land.

The EU Member States, such as Spain, have to comply with the EU Directives in their own national regulations, and they retain the right to lay down stricter rules regarding scope and procedure when assessing environmental effects. In Spain, two main regulatory levels can be found: national regulation, which has a general scope and applies to the whole of the national territory, and “autonomous” regulation, which applies to just one of the 17 “autonomous regions” into which the country is divided, and usually includes rules complementary to the national ones, which are frequently stricter.

Spanish national regulations do comply with the EU Directives. But, regarding compensation, they do not go much further. No reference can be found, for example, on how to define the extent of the areas where compensation should be applied, or the detailed circumstances under which compensation measures should be carried out. Nothing concrete is said on how to integrate environmental compensation in the decision making processes, or on how to monitor compensation work and its efficiency, etc.

- 33 - Compensación ecológica en España

The term “compensation” does appear in regulations derived from EU Directives on Environmental Impact Assessment (EIA), nature conservation and other similar fields. EIA regulation establishes that the Environmental Impact Statements (EIS) must include the prevention, mitigation and/or compensation measures to be carried out when a project is finally implemented (Ministerio de Obras Públicas y Urbanismo, 1988; Ministerio de Medio Ambiente, 2008). But not even a definition for “compensation” is provided in any of these laws.

The autonomous regulation, on the other hand, has to comply with the national one. But in some of the regions, stricter regulations can be found. They are in force only in the autonomous region that promulgates each regulation. Some of the 17 so-called “autonomous regions” in Spain have passed regulatory provisions to foster the practice of compensation. Law 7/2007 in the autonomous region of Andalucía (Comunidad Autónoma de Andalucía, 2007), i.e., empowers the competent authority to enforce compensation when the damage caused to the natural values cannot be reversed in the affected place. It also allows the developer to pay a fine, which will be used for carrying out compensating measures. In the region of Aragón, Order of 4th April 2006 establishes the obligation to implement measures to compensate for environmental damage in potential wind farm areas that are ecologically sensitive. Law 11/2006 in the Balearic Islands (Comunidad Autónoma de las Illes Balears, 2006) forces developers to carry out ecological compensation, both in protected and in non-protected areas. Autonomous law in the region of Extremadura establishes the duty to compensate for measures taken to prevent bird nesting on power line infrastructures (Consejería de Economía y Trabajo de Extremadura, 2004). In the autonomous region of Navarra a reduction in forested land must be compensated by a reforestation area equivalent to the one lost (Comunidad Foral de Navarra, 1990).

Other autonomous laws indicate the contents on compensation measures that must be specified in the EIS, such as maps (Departamento de Ordenación del Territorio y Medio Ambiente del País Vasco, 2003), or the budget and implementation schedule to be followed (Presidència de la Generalitat de Catalunya, 1988; Comunidad Autónoma de Madrid, 2002). The design of compensation measures in the Environmental Statement in the region of Aragón (Comunidad Autónoma de Aragón, 2006) must include the indicators to monitor their implementation and effectiveness. Decree 93/2006 in Navarra (Comunidad Foral de Navarra, 2006) enforces the Environmental Statement to specify

- 34 - Compensación ecológica en España the exact amount of the deposit to be paid by the developer to provide for the implementation of the compensatory measures to be carried out in the project.

4. A REVIEW OF THE PUBLIC EIA RECORDS OF DECISIONS (RODS) IN SPAIN

The regulatory framework is important or even necessary to promote compensation practices, but it does not give an account of their actual implementation. The understanding of the meaning and efficiency of the letter of regulation requires of data on its implementation. Of the multiple questions that could be inquired regarding compensation in EIA, the focus in this paper is on whether compensation is addressed in EIA RODs in Spain every time it should be to prevent a net loss in the environment resource base. To answer this question 1302 records of decision (RODs) from the EIA procedure of projects ranging from January 1st 2006 to December 31st 2007 have been studied.

A ROD is the publicly available document where the approving agency presents the main factors that were contemplated to reach the final decision on every project, including the practical means to avoid or minimize environmental harm. The RODs in Spain contain an account of the EISs prepared during the EIA procedure. As the document justifying to the public the final resolution adopted on project implementation, it reflects the priorities set down by each environmental authority, and provides a solid indication of the role that they give to compensation.

A total of 1088 of the RODs selected belong to “nonlinear” projects or infrastructures (like farms, quarries or dams), 27 to rail infrastructures, and 187 to roads. The RODs of six autonomous regions and cities have had to be excluded from the review (Andalucía, Baleares, Ceuta, Madrid, Melilla and Valencia), because it was not possible to access the information required to conduct the study.

The 1302 RODs belong to a variety of project types. None of the 2006 and 2007 RODs concerning “linear projects” (roads or railways) was left out of the sample. The impossibility to reverse on-site the environmental impacts of roads and railways built on environmentally valuable land is self-evident. This is the main reason why these projects have been given separated attention. Noise, habitat loss and habitat fragmentation have been frequently quoted as some of the most important road and railway environmental impacts (Forman and Alexander, 1998; Forman et al., 2003). They

- 35 - Compensación ecológica en España may be minimized at best, but never completely avoided. As a consequence, sustainable EIA practice regarding the approval of any of these projects should make provisions for compensation practice, to avoid a net loss in the environmental resource base. Habitat loss may be compensated by transforming an off-site degraded area into a habitat comparable to the lost one. Fragmentation, as any other functional aspect of habitats, is more difficult to tackle with seemingly, and it may demand not only off-site but also “out- of-kind” compensation (Rundcrantz and Skärbäck, 2003). In most countries road projects have become main projects where ecological compensation is applied (i.e. Cuperus et al., 1999; Rundcrantz, 2006).

As to the nonlinear project types, a maximum of 10 projects (five per year, when possible) were selected randomly for each kind of project in each region (e.g. only ten farm projects, five from 2006 and five from 2007, were revised in the autonomous region of Aragón). Once the 1302 RODs had been selected, a search for any references or terms related to environmental compensation was conducted. As a result, the project RODs were classified into three categories, as regards compensation practices:

‐ No compensation measures (“No CM” category): including those projects whose RODs do not even mention environmental compensation.

‐ Unspecified compensation measures (“Unspecified CM” category): including those projects whose RODs do mention compensation measures, but do not describe them at all.

‐ Specific compensation measures (“Specific CM” category): including those projects whose RODs specify and describe the compensation measures to be carried out as part of the project implementation.

4.1. MAIN RESULTS AND DISCUSSION

It was found that only 407 out of the 1302 RODs reviewed (31%) mention environmental compensation, and only 117 of these (9% of the total) describe the compensatory measures to be carried out (Fig. 1). This ratio is maintained within the subgroup of nonlinear projects. The results for linear infrastructures can be seen in Figs. 2 and 3. The importance of all these data grows when compared with mitigation practice data: almost 100% of the RODs make provisions for mitigation. Data from road and railway RODs, which are projects with self-evident and unavoidable residual impacts, - 36 - Compensación ecológica en España stress that the lack of reference to compensation practice in these RODs is not due to a sustainable implementation of these projects, but to an understanding of EIA that allows a net loss of the environment resource base.

9% 26%

22% No CM No CM Unspecified Unspecified Specific CM Specific CM

69% 74%

Fig. 1. Results of the review of the RODs. 22% of the RODs Fig. 2. Results of the review of railway project RODs. No (290 out of 1302) mention but not describe compensation RODs with specific compensation measures were found for measures, while an extra 9% more (117 out of 1302) railway infrastructure projects, while 26% (7 out of a total 27) describe them. of these records mention environmental compensation.

13%

No CM Unspecified 28% Specific CM 59%

Fig. 3. Results of the review of road projects RODs. 28% of reviewed RODs (52 out of 187) just mention environmental compensation, while an extra 13% more (24 out of 187) also describe compensation measures (adding up to a total of 76 records out of 187, a 41% of the total RODs).

The proportion of projects belonging to each of the three categories above mentioned (‘No CM’, ‘Unspecified CM’, and ‘Specific CM’) varies from one autonomous region to another. Unexpectedly, this variation is not always in keeping with the degree of development of the regulatory framework regarding compensation practice in every region. Law 6/ 2002 in the autonomous region of Canarias (Comunidad Autónoma de Canarias, 2002) is a demanding one as compared to other regulations. But only one of the ten RODs reviewed for this region mentions environmental compensation, and it does not describe the specific measures to be implemented. This does not seem a demanding approach to compensation practice, particularly if we remember that alternatively almost 100% of the RODs make provisions for mitigation. - 37 - Compensación ecológica en España

It has been noticed also that there is no homogeneity or standardization in the way environmental compensation is dealt with in the RODs. Given a year, type of project and region, some RODs have been found that describe compensation measures specifically, while others belonging to the same year, type of project and region and that should seemingly make provisions for compensation, for no apparent reason, do not even mention this practice.

4.2. COMPENSATION MEASURES IN ROAD PROJECTS

Compensation practices regarding road projects were studied intentionally in more detail to identify future areas of research on compensation within EIA. Specifically, the 24 RODs on road projects describing to any extent the compensation measures to be implemented were reviewed. The specific measures are shown in Table 1, as they appear in the RODs. This table also indicates the kind of natural features to provide compensation for, as specified in each ROD.

An initial review of the cases summarized in the table shows that the terms “compensatory” and “compensation” are used occasionally in the RODs in a confusing way, even to refer to measures that should rather be labelled as “mitigating” or “mitigation”.

Compensation measures are described in the RODs quite heterogeneously. Their description varies in detail from one ROD to another. These descriptions do not seem to follow any common pattern in their design. For example, in some projects the compensatory measure “reforestation” appears only mentioned as ‘compensatory reforestation’, with no further specification (see Table 1, Navarra NA-178 road). Other RODs specify the proportion of the area to be reforested and the species to be used (see Table 1, Castilla la Mancha CM-4106 road).

The way compensation is implemented varies from one region to the other, and also within the same region (e.g. Table 1 Castilla la Mancha, Alovera—Azuqueca road and CU-9161 road: they compensate the damage to an SPA by reforesting in different proportions). As a result, similar impacts may be compensated to different degrees.

- 38 -

Competent Roads Natural feature to provide compensation for Compensation measures in the ROD Authority A-11 motorway, Aranda Woodland and shrubland Replacement of woodland and shrubland removed by the road construction del Duero west bypass - Valladolid A-66 motorway, Benavente Mediterranean temporary ponds habitat (Habitat Type nº Replacement of an area equivalent to 100% of the damaged Mediterranean temporary ponds habitat - Zamora 3170, Council Directive 92/43/EEC) area ES0000207 SPA (Special Protection Area) Replacement of an extension equivalent to 50% of the SPA damaged area. A-32 motorway, Linares - Montagu’s harrier (Circus pygargus) Payments to keep temporarily unharvested some selected Montagu’s harrier breeding areas of cereal Albacete crops. A-8 motorway, Unquera - ES1200034 “Purón river” SCI (Site of Community Interest) Improvement of a 5km-long stretch of riparian vegetation alongside Purón river. Central Government Llanes “Sierra plana de la Borbolla” SCI Promote a fern restoration programme in “Sierra Plana de la Borbolla” SCI . “Ribadesella-Tina Mayor” SCI, and ES0000319 SPA (Special Develop an exotic species eradication programme, focused mainly in Eucalyptus globulus. Protection Area) N-232 road, Agoncillo - Riverbank Riverbank improvement, from the river crossing point by the road, to the confluence with the Ebro river. Logroño N-435 bypass, Beas — Green corridor Improvement of the nearby green corridor already built on a former railway. Removal of abandoned Trigueros road stretches, and revegetation. N-I bypass, M-40 — Molar SCI ES3110001 and ES3110003 vegetation Vegetation replacement. The new planted area has to have an extension equivalent to at least four times that of the affected SCI area. Cantabria Pisueña river lane Riverside areas Restoration of degraded riverside areas. Shutdown of a nearby scrapyard, and of several unauthorized autonomous region dump areas. Castilla y León CL-600 road to Boecillo Woodland and shrubland Woodland and shrubland replacement and handover of an area equal to twice the piece of land autonomous region expropriated from the “Arroyadas” estate, crossed by the new road. Apply forest management techniques to minimize the induced fire risk alongside the road. A-5 (N-V) — A-4 (N-IV) ES4250009 SCI Rare vegetation replacement. The newly planted area has to have an extension equal to at least three main road times the damaged SCI area. Streams Riparian vegetation improvement alongside twice the length of the damaged stream stretch. Castilla la Mancha CM-3216 road, Alcaraz- Iberian lynx (Lynx pardina) Rabbit habitat improvement (main prey species to Iberian lynx) autonomous region Vianos Alovera-Azuqueca road ES0000167 SPA Replacement of an area of riparian forest equivalent to the lost one. A-45 road, access to Beg- Riverbanks and riparian vegetation Riverbank cleaning. Riparian vegetation improvement on the riversides close to the damaged area. Nerpio

Table 1 (I) Compensation measures for road projects as described in the reviewed RODs.

Competent Roads Natural feature to provide compensation for Compensation measures in the ROD Authority Guadalajara — A-3 main Lesser Kestrel (Falco naumanni) Restoration of damaged Lesser Kestrel nests, and construction of new ones. road ‘Vulnerable’ and ‘particular attention’ bird species, Leguminous plantations to compensate for the steppe avifauna habitat alteration. Woodland and shrubland Vegetation replacement. The newly planted shrubland and woodland has to have an extension equivalent to four times that of the damaged area. Riverbanks, riparian forest Riparian forest restoration of an area alongside the river twice as long as the damaged riverbank area. Public interest Holm Oak (Quercus ilex) forest Restoration and cleaning of the Holm Oak public interest forest. Avifauna Power line impact mitigation measures for avifauna. CM-5051 road, Nombela - Habitat loss Dump site reclamation, by planting the predominant oak and juniper species corresponding to the Pelahustán habitat.

Castilla la Mancha CM-2023 road, Priego- Woodland and shrubland Reforestation. The planted forest has to have an extension equivalent to at least twice the area occupied autonomous region Albendea - Salmeroncillos by the project.

CU-9161 road, CM-2106 Prospective SCI (ES4230014) and ES0000162 SPA Revegetation. The planted area has to have an extension equivalent to at least three times the total SCI junction — Puerto del and SPA damaged areas. Cubillo CM-4106 road, Sevilleja de SPA and SCI ES4250013 and ES4220003, and critical area Dump site reclamation (including planting of native vegetation; the environmental statement sets the la Jara - Anchuras for Black Stork (Ciconia nigra) species to be used). Reforestation of an area at least twice as large as the damaged non-protected forest area. Puertollano bypass Forest area (Habitat Type nº 9340 Quercus ilex and Revegetation. The planted area has to have an extension equivalent to at least three times the damaged Quercus rotundifolia forests, Council Directive 92/43/EEC) area. Native species have to be used. EX-A I motorway, Plasencia Woodland and shrubland Ponds have to be created alongside the road, mainly near wildlife crossings. - Portugal Riverbank reforestation with native species of crossing streams. Extremadura Old dump and extractive areas reclamation. autonomous region Plantation of ten native trees per each one that has to be cut down. EX-A3 motorway, Zafra - Woodland and shrubland. Riverbanks. Plantation of ten native trees per each one that has to be cut down. Jerez N-121-A road, Bera de SCI ES2200014 Substitution of non-native plantations by Alnus glutinosa forests. Bidasoa - Endarlatsa Construction of an upstream fish passage. Spawning area creation. Navarra NA-134 road, Woodland and shrubland (pine reforestation) Plantation of three coniferous trees per cut-down tree autonomous region bypass NA-178 road, Puerto de Vegetation Reforestation Iso

Table 1 (II) Compensation measures for road projects as described in the reviewed RODs.

Compensación ecológica en España

5. CONCLUSIONS AND PROPOSALS

The practice of ecological compensation in EIA in Spain is much lower than it could be expected in a theoretical sustainability context committed to avoid net losses in the environment resource base. Less than one-third of the 1302 EIA RODs reviewed in this paper make some reference to compensation measures, while almost 100% make provisions for mitigation. These proportions are maintained within the subset of road and railway projects, indicating that the absence of compensation provisions in the RODs reviewed is not due to a sustainable implementation of the approved projects, but to an EIA practice that allows a net loss in the environment resource base. This loss takes place both in protected areas where EIA fails to provide mandatory ecological compensation (as demanded by EU and national regulations), and in other areas where compensation is optional from a regulatory point of view (so revealing potential deficiencies in the underlying policy towards natural environments).

To make EIA in Spain a better tool towards sustainability such practice should change, making of compensation a necessary (even though it is not sufficient) condition to be integrated within every project approved through any EIA procedure generating impacts that cannot be completely reversed on-site. If this change should be promoted through changes in the Spanish and EU EIA regulations and policies, is an interesting subject for debate and further research.

The practice of ecological compensation in EIA in Spain is not registered in the RODs as a consistent aspect of EIA decision making. The term “compensation” is used sometimes to refer to mitigation measures. On occasion, the measures are described more as suggestions than as mandatory conditions attached to the project approval decision. The description of the compensation measures to be implemented is rarely found in the RODs as mitigation measures are, endangering a sound public participation in EIA procedures. The way compensation is implemented varies from one region to the other, and also within the same region, as similar impacts are compensated to different degrees.

All these data suggest that the way compensation measures are addressed in the RODs is not standardized. Although this seems a secondary question compared to the low rate of compensation practice, it demands also attention. A guidance document on

- 41 - Compensación ecológica en España how to deal with compensation in EIA, focused on the consistent selection of compensation measures for any project undergoing EIA could be helpful in this context.

ACKNOWLEDGEMENTS We want to thank Prof. Jesper Persson for comments on earlier drafts of this paper. The corresponding author is supported by a doctoral fellowship provided by the Department of Science, Technology and Universities of the Government of the Autonomous region of Aragón.

REFERENCES Comunidad Autónoma de Andalucía, 2007. Ley 7/2007, de Gestión Integrada de la Calidad Ambiental. http://www.boe.es/boe/dias/2007/08/09/pdfs/A34118-34169.pdf (01/04/2008). Comunidad Autónoma de Aragón, 2006. Ley 7/2006, de 22 de junio, de protección ambiental de Aragón. http://www.boe.es/ccaa/boa/2006/081/d09819-09854.pdf (21/02/2008). Comunidad Autónoma de Canarias, 2002. Ley 6/2002, de 12 de junio, sobre medidas de ordenación territorial de la actividad turística en las islas de El Hierro, La Gomera y La Palma. http://www.boe.es/boe/dias/2002/08/06/pdfs/A29016-29021.pdf (22/04/2008). Comunidad Autónoma de las Illes Balears, 2006. Ley 11/2006, de 14 de septiembre, de evaluaciones de impacto ambiental y evaluaciones ambientales estratégicas en las Illes Balears. http://www.boe.es/boe/dias/2006/10/13/pdfs/A35382-35405.pdf (22/04/2008). Comunidad Autónoma de Madrid, 2002. Ley 2/2002, de 19 de junio, de Evaluación Ambiental de la Comunidad de Madrid. http://www.boe.es/boe/dias/2002/07/24/pdfs/A27195-27220.pdf (15/04/2008). Comunidad Foral de Navarra, 1990. Ley Foral 13/1990, de 31 de diciembre, de protección y desarrollo del Patrimonio Forestal de Navarra. http://www.boe.es/boe/dias/1991/03/22/pdfs/A09073-09080.pdf (25/04/2008). Comunidad Foral de Navarra, 2006. Decreto Foral 93/2006, de 28 de diciembre, por el que se aprueba el Reglamento de desarrollo de la Ley Foral 4/2005, de 22 de marzo, de Intervención para la Protección Ambiental. http://www.lexnavarra.navarra.es/detalle.asp?r=5485 (26/02/2008). Consejería de Economía y Trabajo de Extremadura, 2004. Decreto 47/2004, de 20 de abril, por el que se dictan Normas de Carácter Técnico de adecuación de las líneas eléctricas para la protección del medio ambiente en Extremadura. http://doe.juntaex.es/pdfs/doe/2004/480O/04040050.pdf (31/03/2008). Cowell R. Stretching the limits: environmental compensation, habitat creation and sustainable development. Trasact Inst Br Geogr 1997;22(3):297—306. Cuperus R, Canters KJ, Udo de Haes HA, Friedman DS. Guidelines for ecological compensation associated with highways. Biol Conserv 1999;90:41—51. Cuperus R, Kalsbeek M, Udo de Haes HA, Canters KJ. Preparation and implementation of seven ecological compensation plans for Dutch highways. Environ Manag 2002;29(6):736—49, doi:10.1007/s00267- 001-2504-7. Departamento de Ordenación del Territorio y Medio Ambiente del País Vasco, 2003. Decreto 183/2003, de 22 de julio, por el que se regula el procedimiento de evaluación conjunta de impacto ambiental. http://www.euskadi.net/cgi-bin_k54/bopv_20?c&f=20030904&a=200304936 (26/02/2008). European Union, 1979. Council Directive 79/409/EEC of 2 April 1979 on the conservation of wild birds. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1979:103:0001:005:EN:HTML (28/03/2008).

- 42 - Compensación ecológica en España

European Union, 1985. Council Directive 85/337/EEC of 27 June on the assessment of the effects of certain public and private projects on the environment. http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31985L0337:EN:HTML (31/03/2008). European Union, 1992. Council Directive 92/43/EEC of 21May 1992 on the conservation of natural habitats and of wild fauna and flora. http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML (28/03/2008). European Union, 1997. Council Directive 97/11/EC of 3 March 1997 amending Directive 85/337/EEC on the assessment of the effects of certain public and private projects on the environment. http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31997L0011:EN:HTML (31/03/2008). Forman RTT, Alexander LE. Roads and their major ecological effects. Ann Rev Ecol Syst 1998;29:207—31. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, et al. Road ecology: science and solutions. First ed. Washington, DC: Island Press; 2003. Hayes N, Morrison-Saunders A. Effectiveness of environmental offsets in environmental impact assessment: practitioner perspectives from Western Australia. Impact Assess Proj Apprais 2007;25(3):209—18. IAIA & Institute of Environmental Assessment of UK. Principles of Environmental Impact Assessment best practice; 1999. http://www.iaia.org/modx/assets/files/Principles%20of%20IA_web.pdf (15/05/2009). Kuiper G. Compensation of environmental degradation by highways: a Dutch case study. Eur Environ 1997;7:118—25. Ministerio de Medio Ambiente, 2008. Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación de Impacto Ambiental de proyectos. http://www.boe.es/boe/dias/2008/01/26/pdfs/A04986-05000.pdf (01/05/2009). Ministerio de Obras Públicas y Urbanismo, 1988. Real Decreto 1131/1988 de 30 de septiembre, por el que se aprueba el Reglamento para la ejecución del Real Decreto Legislativo 1302/1986, de 28 de junio, de Evaluación de Impacto Ambiental. http://www.boe.es/boe/dias/1988/10/05/pdfs/A28911- 28916.pdf (23/04/2008). Presidència de la Generalitat de Catalunya, 1988. Decreto 114/1988, de 7 de abril, de evaluación de impacto ambiental. http://www.miliarium.com/Paginas/Leyes/eia/ccaa/Catalunya/decreto114-88.asp (31/03/2008). Rundcrantz K, Skärbäck E. Environmental compensation in planning: a review of five different countries with major emphasis on the German system. Eur Environ 2003;13:204—26, doi:10.1002/eet.324. Rundcrantz K. Environmental compensation in Swedish road planning. Eur Environ 2006;16:350—67, doi:10.1002/eet.429. Wilding S, Raemaekers J. Environmental compensation for Greenfield development: is the devil in the detail? Plan Pract Res 2000a;15(3):211—31. Wilding S, Raemaekers J. Environmental compensation: can the British planning regime learn from Germany? Plan Theory Pract 2000b;1(2):187—201. Wood C. Environmental Impact Assessment: a comparative review. Second ed. Harlow: Pearson-Prentice Hall; 2003.

- 43 -

CAPÍTULO II LA DIFICULTAD DE IDENTIFICAR ALGUNOS IMPACTOS A COMPENSAR

Villarroya A, Puig J. Urban and industrial land-use changes alongside motorways within the Pyrenean area of , Spain. Aceptado en Environmental Engineering and Management Journal

Dificultad en la identificación de impactos

Pese a que en las DIAs de proyectos de carreteras y autopistas se detectó una proporción de referencias a compensación ecológica algo mayor que en otros proyectos, los datos para el período 2006-2010 (recogidos en los artículos I y V) revelan que en la mayoría de los casos estas medidas no son ni siquiera mencionadas.

Estos datos contrastan con el hecho de que la construcción y uso de vías de transporte originan diversos impactos residuales en el entorno (ver Introducción), de cuya compensación depende el logro de los objetivos de no pérdida neta o ganancia neta. Algunos ejemplos comunes de estos efectos sobre la calidad ecológica del medio son la pérdida de superficie natural, la fragmentación de hábitats, la mortalidad de fauna por atropellos, la emisión de elementos y partículas contaminantes, y la afección a poblaciones animales por los ruidos del tráfico (Forman & Alexander, 1998; Spellerberg, 1998; Forman et al., 2003).

Aparte de estos impactos, cuya identificación y evaluación han sido (y son) bastante estudiadas, existen otros efectos de las carreteras y autopistas sobre el entorno que todavía no son bien conocidos. La compensación de tales efectos en su totalidad es, por tanto, inabordable, puesto que no es posible siquiera estimar la pérdida de calidad natural que suponen para el medio. Uno de los ejemplos escogidos para este trabajo es el crecimiento urbano en torno a vías de comunicación. Entre los múltiples factores que pueden influir en este fenómeno se encuentra la construcción y mejora de carreteras y autopistas, pero el alcance y naturaleza concreta de la parte que se debe a estas infraestructuras son todavía poco conocidos.

El artículo II se desarrolla en torno a este tema a través del caso de tres autopistas construidas en la misma región (Navarra) pero en distintos entornos (zona montañosa escarpada, zona montañosa de valles amplios y área no montañosa). Partiendo de la premisa de que cuando el crecimiento urbano se da en entornos naturales o seminaturales, le sigue por lo general una pérdida de calidad ecológica, el estudio compara la evolución del crecimiento urbano alrededor de las tres vías, para buscar datos que permitan conocer algo mejor cómo puede ser la influencia de estas infraestructuras sobre la inducción de este fenómeno.

Como se deriva de este trabajo, y como indica la bibliografía existente en torno al tema, es difícil establecer una relación causal entre mejora de vías de comunicación y crecimiento urbano, así como discernir qué influencia tiene cada uno de los factores que afecta a este último. De acuerdo con la bibliografía, también existe una influencia de la

- 45 - Dificultad en la identificación de impactos distribución y características de las zonas urbanas sobre la demanda y patrones de uso de carreteras y autopistas (e.g. Badoe & Miller, 2000), lo que añade otra dificultad al estudio del fenómeno: la red de centros urbanos “requiere” de nuevas infraestructuras que los enlacen.

En el contexto en que se desarrolla la tesis este artículo permite un acercamiento, desde el caso concreto de las vías de transporte, a la complejidad de la identificación y evaluación de impactos, en este caso inducidos. Aparte de las conclusiones específicas que se puedan derivar de él, este artículo permite explorar la dificultad de atribuir algunos de los impactos residuales a un proyecto concreto y, por tanto, de decidir las medidas compensatorias que le corresponderían. Mientras ciertos efectos son fácilmente perceptibles y hasta cierto punto mensurables (pérdida de superficie natural, emisión de contaminantes…), y atribuibles en exclusiva a la construcción y funcionamiento de la carretera, otros siguen planteando incógnitas respecto a sus causas que por ahora hacen casi imposible su evaluación. En base a esto se podría pensar que el impacto real de un proyecto viario sobre el medio natural posiblemente sea mayor que el que podamos atribuirle sin discusiones, puesto que puede haber efectos difíciles de asignar en exclusiva, de abordar o incluso de detectar. Ante esto, la necesidad de compensar al menos los impactos que conocemos como provocados exclusivamente por el proyecto en cuestión en cada caso se ve reforzada, puesto que las pérdidas de calidad ecológica que pueden causar aquellos que escapan a nuestro conocimiento aumentan la brecha que hay que salvar para lograr la no pérdida neta.

Puesto que el formato de artículo científico impone ciertas restricciones en cuanto al número de tablas y figuras a incluir en un trabajo, aquellas que no han podido ser recogidas en la publicación pero que pueden resultar de interés para la lectura se adjuntan en el Anexo al final de este capítulo.

- 46 - Dificultad en la identificación de impactos

URBAN AND INDUSTRIAL LAND-USE CHANGES ALONGSIDE MOTORWAYS WITHIN THE PYRENEAN AREA OF NAVARRE, SPAIN CAMBIOS A USOS DE SUELO URBANOS E INDUSTRIALES EN TORNO A AUTOVÍAS EN EL ÁREA PIRENAICA DE NAVARRA (ESPAÑA)

ABSTRACT Road construction and improvement have long been studied as precursors of new development. The environmental impact assessment (EIA) of roads needs to gauge the phenomenon as long as possible, particularly across mountainous areas, because new urban and industrial uses on these valuable and fragile environments may cause significant impacts that should be counteracted to preserve their environmental quality. The aim of this article is to study and compare the occurrence of urban and industrial land-use changes, their rate and their distribution, between 1998 and 2010 and along two newly-built mountain motorways in Navarre (Spain), as a way to approximate the induction phenomenon. First, urban and industrial land-use changes have been identified, registered and mapped alongside each motorway. From these data, the maximum induction rate has been directly obtained, by hypothetically assuming that all of the new developments that took place alongside a route over a period of time had been induced by the newly-built motorway. This rate may be valuable in future environmental impact assessment scenarios. Land-use change data have been also set against the distance of the new developments to the motorway, the distribution of formerly existing urban and industrial settlements, and the steepness of the terrain, in order to make a preliminary approximation to how these factors may intervene in land use change processes around the studied motorways.

KEYWORDS: Environmental impact assessment (EIA), environmental management, induced impact, land-use change, Pyrenees, road impact.

RESUMEN Desde hace algún tiempo, distintos estudios analizan el papel de los proyectos de construcción y mejora de carreteras como precursores del desarrollo urbano. La Evaluación de Impacto Ambiental de estos proyectos debe ser capaz de estimar el alcance de este fenómeno en la medida de lo posible y especialmente en áreas montañosas, puesto que éstas son particularmente sensibles a los impactos que estos cambios de usos de suelo pueden ocasionar y que deben ser contrarrestados para preservar la calidad ecológica del entorno. El objetivo de este artículo es estudiar y comparar los datos acerca de la magnitud y la tasa de cambio a usos urbanos e industriales entre 1998 y 2010 en los alrededores de dos autopistas localizadas en áreas montañosas de Navarra (España), para obtener indicios sobre este hipotético fenómeno de inducción.

- 47 - Dificultad en la identificación de impactos

En primer lugar, se identifican, registran y delimitan los cambios a usos urbanos e industriales en las zonas próximas a cada autopista. A partir de estos datos se calcula la tasa de inducción máxima, que asume hipotéticamente que la construcción de una nueva vía es la única causa del desarrollo que tiene lugar durante un cierto periodo en torno a la misma. Esta tasa se propone como una herramienta útil de cara a futuras evaluaciones de impacto en proyectos de similares características. Los datos recogidos se analizan también en relación a la distancia a la vía, la distribución de los asentamientos preexistentes y la pendiente del terreno, para explorar la posible influencia de estos factores en los procesos de cambio de uso de suelo alrededor de las autopistas estudiadas.

PALABRAS CLAVE: Evaluación de Impacto Ambiental (EIA); gestión ambiental; impacto inducido; cambio de uso de suelo; Pirineos; impactos de carreteras.

1. INTRODUCTION

Do newly developed motorways induce urban and industrial land-use changes alongside their route after their completion? And, if so, at what a rate they do it, and what environmental variables are involved, particularly in mountain areas? These questions are of high interest, among others, for those involved in assessing the indirect impact of roads, particularly across valuable and sensitive environments, wherein significant impacts should be either avoided or compensated.

It is common believe that the construction and improvement of roads can be a precursor of landscape change by stimulating new development (Bürgi et al., 2004; Riitters and Wickham, 2003; Zenou and Patacchini, 2006). More specifically, it has been argued that the construction of transportation facilities causes both direct and indirect impacts, such as those resulting from land used for transportation infrastructures (direct impacts) or those derived from the effects an improvement of transportation has on development patterns (indirect impacts) (Litman, 1995). In fact, some authors consider urbanization to be the last phase of road development (Angermeier et al., 2004). There is a strong link between transportation and urban and industrial facilities, since accessibility is one of the most important success factors for the development of urban, commercial and industrial projects (Antrop, 2000). For this reason, investment in better accessibility through road and highway improvement will influence where the growth occurs (Handy, 2005; Hansen, 1959).

- 48 - Dificultad en la identificación de impactos

In order to gauge the phenomenon of land-use change induction for impact assessment purposes, the occurrence of land-use changes that had place after a given road was completed should first be identified, registered and mapped alongside the route. Once the occurrence of changes is confirmed, further research could focus on exploring what environmental features may be associated with them. But even though declining trends with the distance from motorways have been described for urban growth in some places (Müller et al., 2010), we may find difficult or even impossible to isolate the motorway as the leading causal factor of change. Many possible causes, apart from roads, may converge in causing changes alongside certain routes (Lambin et al., 2001; Handy, 2005; Verburg et al., 2004). In addition, the methodological problems that arise when designing a research for establishing causalities make this task even more difficult (Giuliano, 2004).

In any case, as long as cause-effect links remain unclear, landscape managers and those involved in Environmental Impact Assessment (EIA) may keep the cause-effect debate aside and still get valuable insight for impact assessment, by focusing on land-use changes that have actually been verified after a given motorway has been built, over a certain period. Once the actual land-use changes have been registered, the maximum induction rate for a certain period may be directly obtained by hypothetically assuming that all of the new land use changes of some specific sort that have occurred alongside a route have been induced by the newly-built motorway.

Land-use changes to urban and industrial uses stand out as some of the most significant impacts on the environmental value of natural and semi-natural areas (Dale et al., 2000; Hansen et al., 2005; Kalnay and Cai, 2003; Meyer and Turner, 1992; Pielke et al., 2002; Vitousek et al., 1997). At present, the constant growth of built areas (especially urban areas) is a matter of major concern across many countries (Zenou and Patacchini, 2006). Consequently, the maximum induction rate of these uses by newly-built roads may offer to environmental managers guidance in anticipating potential induced impacts for future motorways, e.g. during EIA processes, which have been sometimes criticized for ignoring such indirect impacts (Wheeler et al., 2005). In any case, even though data on past changes are valuable, impact assessment professionals must bear in mind that past potential induction data do not set strict rules on how the future will evolve, least of all alongside different roads.

- 49 - Dificultad en la identificación de impactos

The assessment of potential urban and industrial induction may be of particular interest for those motorways crossing ecologically sensitive zones, such as mountain areas. These areas have significance not only for those living there, but also for people living beyond (Schild, 2008), and they actually provide the life-support base for about 10% of humankind (Jansky, 2000). Due partly to their low accessibility (Jodha, 1992), mountain areas are frequently characterized by a high natural richness (Lynch and Maggio, 1997; UNCED, 1992) and environmental vulnerability (Virginia, 2009; United Nations, 1992), for example to the impacts caused by human developments. In fact, “access [and] communications […] are very powerful agents of change, not only (but especially) in mountain areas” (Kohler et al., 2004). In the Pyrenees, the development of transport facilities has accelerated land-use change processes in the last years (Comín and Martínez- Rica, 2007). At the same time, improvements in accessibility to mountain areas also carry positive outcomes for people living in those areas (Kohler et al., 2004). Consequently, their inhabitants may alternatively fear or desire the potential land transformation that might come with the development of a new motorway.

The primary aim of this article is to study and compare main urban and industrial land-use change rates that had place between 1998 and 2010 alongside two newly-built mountain motorways in Navarre, Spain, both completed in 1995. Land-use changes will be identified, registered and mapped. The maximum induction rate will be obtained for each of the studied motorways and is proposed as a good means of anticipating and assessing what might be the extent of future road impacts. Complementarily, land-use change data will be set against the distance of the new developments to the motorway, the distribution of formerly existing urban and industrial settlements, and the steepness of the terrain, in order to make a preliminary approximation to how these factors may intervene in land use change processes around the studied motorways.

2. CASE STUDY

2.1. STUDY AREA

A-10 and A-15 motorways cross the mountainous area of northwest Navarre, between the westernmost side of the Pyrenees and the Basque Mountains. AP-15 motorway, completed in 1980 (see Figure 1) has been also selected to serve as a counterpoint to the A-10 and A-15 features and surroundings, in search of a sounder

- 50 - Dificultad en la identificación de impactos interpretation of data from the motorways completed in 1995. Forests across the area crossed by A-10 and A-15 motorways consist mainly of beech (Fagus silvatica), with common oaks (Quercus robur) in the valleys and white oaks (Quercus humilis) on the sunniest slopes. A-10 runs along the flat bottom of a wide valley surrounded by steep mountain sides, and A-15 across a rugged topography. Figure 1d shows the different orography for A-10 and A-15. Conversely, the AP-15 motorway runs along the Mediterranean area of Navarre, dominated by crops, and holm oak (Quercus ilex) and Kermes oak (Quercus coccifera) forests and shrublands. The frequency of exits from and entrances to this motorway is much lower than for the A-10 and A-15 motorways (see Figure 1c).

A-10 and A-15 motorways have been studied from nearby the town of to the Navarre border, completing 30 and 28 km-long stretches, respectively. A small portion of the A-15 watershed close to Irurtzun has been excluded because of its topographical continuity with A-10 watershed (see Figure 3). Beyond this excluded area, the A-15 and A-10 stretches run along sharply divided neighboring watersheds. The AP- 15 stretch under study starts near the town of Tiebas, in order to make the three areas under study equally distant to , by far the biggest city in Navarra. The AP-15 stretch is 42 km-long because a 30 km-long stretch would end far away from any of the exits of the motorway, making the stretch much shorter.

- 51 - Dificultad en la identificación de impactos

Fig. 1. A and B: location of the studied areas. C: topography surrounding AP-15 motorway, and exit locations along the studied stretch. D: Main mountainous formations in the A-10 and A-15 study areas, and motorway exits within each stretch.

Fig. 2. a. Landscape surrounding A-10 motorway. b. Landscape surrounding A-15 motorway. Photos: Luis Sanz Azcárate.

- 52 - Dificultad en la identificación de impactos

Fig. 3. Delimitation of the study areas for A-10 and A-15 motorways, and delimitation of proximity classes within A-15 motorway study area. The extent of the impact of a road alongside its route may vary with the environmental factor under study in each case. Impact area has been said to reach from the 100 m closest to the edge of the road to even some kilometers from it, when dealing with such impacts as noise and its effects on animal populations, pollution on aquatic ecosystems, or invasive species dispersal. (e.g.: Forman and Alexander, 1998; Forman et al., 2003).

The extent to which a motorway may induce land-use changes alongside its route remains unclear. In this study, we have looked for them up to a maximum of 10 km away from each motorway exit, provided the respective areas so delimited for each of the motorways did not overlap. To avoid overlapping, the sharp topographical divide between the A-10 and A-15 neighbouring watersheds has been taken as a limit of each of the motorway’s potential area of influence over industrial and urban land-use change. Regarding AP-15, no overlap limited the 10 km-wide band along each side of the motorway. Data have been retrieved from the IDENA regional government geographic database.

- 53 - Dificultad en la identificación de impactos

2.2. METHODOLOGY

ArcGIS 9.1 (ESRI) was employed to identify, register, map and eventually compare the urban and industrial settlements across the study area in 1998 and 2010. Urban and industrial land units occurring within 10 km from any exit/entrance motorway junction were delimited. The land-use classification followed the criteria set by the CORINE Land Cover database, a component of the CORINE (Co-ordination of Information on the Environment) Program, proposed in 1985 by the European Commission, and amply used in scientific literature (Müller et al., 2010; Zenou and Patacchini, 2006).

Thus, urban land uses correspond to CORINE land cover class 1.1 (urban fabric), and industrial/commercial land uses correspond to class 1.2 (industrial, commercial and transport units) (Bossard et al., 2000). Instead of using available CORINE maps, these were newly drawn using orthophotographs provided by the regional government of Navarra (Gobierno de Navarra, n.d.), in order to work at a suitable scale. This work of mapping was executed at a 1:5000 scale.

Each of the mapped urban and industrial units was assigned to a “proximity class to the motorway”, ranging from the “0 to 1 km”, to the “9 to 10 km” proximity classes. Distances were not calculated to the motorway route, but to its accesses, since this was considered a more realistic approach. Thus, distance classes were built around the road as buffers using ArcMap, taking motorway exits and entrances as their central points. Following the criteria set by Müller et al. (2010) an exit and an entrance to the motorway separated by less than 1 km were considered together as a sole exit/entrance point. Whenever homogeneous distance classes, or buffers, of neighboring junctions intersected, they were combined using the ArcMap “Merge” tool, in order to make sure that every unit was assigned just once to a proximity class, and to the distance class closest to the motorway (see Figure 3).

Finally, the total surface of urban and industrial uses alongside each of the motorways for every proximity class was calculated for 1998 and 2010. Land-use change data so obtained were set against the distribution of formerly existing urban and industrial areas, and the steepness of the terrain. On one hand, as Antrop (2000) stated, not only road accesses but also central places are considered as the ‘initiators’ of urbanization processes in the countryside, a phenomenon already registered in other studies (Verburg

- 54 - Dificultad en la identificación de impactos et al., 2004; Müller et al., 2010). On the other hand, not all of the area within 10 km of the motorway junctions is suitable for urban and industrial developments, due to the steepness of the mountain sides. Müller et al. (2010) consider that those slopes steeper than 15% are not suitable for new industrial and urban developments. As available land is a prerequisite of new construction, induced changes to urban and industrial land-uses are more likely to occur in areas with vacant land that is physically suitable for this kind of development (Giuliano, 2004). Since induced urban and industrial land-use changes happen mainly on lower inclines, we choose to relate maximum induction rates to the area under 20% incline, not taking into account the area represented by steeper terrain.

3. RESULTS

While delimiting the new urban and industrial areas on the map, we realized that, from 1998 to 2010, urban and industrial growth alongside the studied A-10, A-15 and AP-15 stretches occurred only adjacent to already existing settlements. No new settlement was developed during this time period. Figure 4 shows the total area of land (in hectares) that changed into urban and industrial uses around each of the motorways, and within each of the ten proximity classes.

Fig. 4. Total area of land that changed into urban and industrial uses. Industrial and urban growth around the mountain motorways, A-10 and A-15, clusters within the three first proximity classes. This is not the case for AP-15, where no apparent link can be found between land use change total area, and distance class to the road.

- 55 - Dificultad en la identificación de impactos

Urban and industrial land use change around AP-15 is notably higher than for any of the other motorways in almost all of the distance classes considered except for the first one, where it is equaled by the data for the A-15 and doubled by the results for the A-10.

Figure 5 shows the total growth within each proximity class as a percentage of the area of each buffer. So, we see that for A-15 motorway and during the period of study, around 1% of the total area closer to 1km of any of the junctions has been developed into new urban and industrial uses. As we move away from the junctions, the rate of new developments (expressed as a percentage of the total area of the proximity class) drops notably for A-10 and A-15. AP-15 case differs from the mountain motorways.

Fig. 5. Increase in urban and industrial land uses as a percentage of the total area of the proximity class. Complementarily to these results, and having in mind that available land is a prerequisite for construction (Giuliano, 2004; see section 2.2), Figure 6 shows the rate of land-use change as a function of the area below 20% incline within the different proximity classes. So, we see that for A-15 motorway and during the period of study, around 3,5% of the area under 20% incline and closer to 1km of any of the junctions has been developed into new urban and industrial uses. As we move away from the junctions, the rate of new developments (expressed as a percentage of the area below 20% incline of the proximity class) drops notably for A-10 and A-15. AP-15 case differs from the mountain motorways.

- 56 - Dificultad en la identificación de impactos

Fig. 6. Increase in urban and industrial land uses as a percentage of the total area suitable for them. The highest rates for the three motorways were obtained for the first proximity classes. Values for buffers 1 to 3 are shown in Table 1, expressed now as percentage of newly develop hectares per year. So we see that within A-10 proximity class “1”, 0,102 hectares are transformed into urban and industrial uses each year for every 100 hectares of land under 20% incline. It can be noticed that the maximum land-use change rates were all obtained for the first distance class to the motorway; this is to say, across the land closer to 1km to the motorway junctions.

Motorway Proximity class Absolute land-use change rate Relative land-use change rate (ha/100ha·year) (ha/100ha·year) A-10 1 0,096 0,102 2 0,01 0,017 3 0,001 0,003 A-15 1 0,085 0,29 2 0,036 0,125 3 0,004 0,014 AP-15 1 0,129 0,142 2 0,085 0,101 3 0,037 0,044 Table 1. Land-use change rates for the first three proximity classes. The rate in the third column expresses the growth in relation to the total area of the buffer (ha/100ha·year), while the rate in the fourth column expresses the growth in relation to the area under 20% incline within each buffer (ha/100ha·year). Due to the fact that urban and industrial growth alongside the studied A-10, A- 15 and AP-15 stretches occurred only next to already existing settlements, land use change rates have been also set against the number of existing urban and industrial settlements. After dividing the total newly developed area within each distance class by the number of settlements within it, we obtained the data presented in Figure 7. We see that, for A-15 and A-10 motorways, the mean growth in urban and industrial area for each settlement decreases with the distance to motorway exits, generally. Once again,

- 57 - Dificultad en la identificación de impactos data for AP-15 around distance classes 7 and 8 stand out, demanding a particular interpretation.

Fig. 7. Average land use change per existing settlement.

4. DISCUSSION

Albeit preliminary, this study has allowed us to gain interesting insights and a first set of data on how new urban and industrial developments occur alongside newly built motorways across mountain areas in the Pyrenean area of Navarre. Data here obtained, even limited due to their very own nature, can be counted among the very few sets of data available that may help in anticipating and assessing the potential impact of new roads across the Pyrenees, and how it compares to other environments.

Main urban and industrial land-use changes that had place between 1998 and 2010 alongside two newly-built mountain motorways in Navarre, Spain, have been identified, registered and mapped. This task is a prerequisite for any attempt at assessing these potential indirect impacts of roads on the environment they cross, and is undertaken using of different GIS tools and databases (see e.g. Aljoufie et al., 2011; Day, 2006; Hess et al., 2001; Jianzhong et al., 2002; Müller et al., 2010).

Urban and industrial growth alongside the studied A-10, A-15 and AP-15 stretches occurred only adjacent to already existing settlements. No new settlement was developed during this time period. This is the first result that we noticed and that confirms results registered in other studies (Müller et al., 2010; Serneels and Lambin,

- 58 - Dificultad en la identificación de impactos

2001; Verburg et al., 2004). The least urbanized and industrialized areas around the motorways have a lower probability of experiencing changes.

The urban and industrial land-use change rates obtained show us the maximum induction rate alongside the three studied motorways, for the 1998-2010 interval. A-10 and A-15 rates show that no intense urban and industrial land-use change may be automatically anticipated immediately after a new mountain motorway has been completed. Even though highly variable, all these data together provide some criteria on what may be the range of maximum induction rates across varying environments, and so help in anticipating and assessing how variable might be the extent of these potential road impacts.

As different studies have shown, the physical characteristics of the landscape have a great influence on the land-use changes that may occur in a certain area (e.g. Pan et al., 1999). A rugged topography may influence the change to urban and industrial land- uses nearby a motorway in two different ways, as our data seem to show. On the one hand, AP-15 does not follow the declining trend of land-use change as distance to the motorway grows that A-10 and A-15 show (see Figures 5, 6 and 7), already described for other mountainous places (Müller et al., 2010). This contrast would support the hypothesis that the steepness of topography limits the extent of the area affected by the potential inductive power of a new motorway crossing mountain areas, acting differently close to the motorways than away from them. A rugged topography may be limiting completely urban and industrial uses away from the motorway, and only gradually when close to it.

On the other hand, rates for the land-use change in relation to the area below 20% incline (Figure 6) seem to point out that the lower absolute rates observed for mountainous motorways within the first distance classes may be explained mainly by a lower availability of land suitable for urban and industrial uses in this kind of landscape. For that reason, although the absolute land-use change around A-15 is small when compared to the other motorways, the calculated rates across the area under 20% incline within the 3 km closer to the mountain motorway junctions are higher for that motorway than for the other two. This means that all of the available land for urban and industrial use around A-15 might be completely occupied before the available land around A-10 and AP-15 is.

- 59 - Dificultad en la identificación de impactos

All in all it can be said that, although physical constraints have an important influence on land-use change, there may be other different factors influencing this phenomenon (Reger et al., 2007).

Interestingly, the hypothesis of the limiting effect of rugged topographies over land use change finds its own limitations when A-10 and A-15 are compared to each other. A-10 land use change rates (related to the total area of the buffer, see Figure 5) surpass A-15 rates for distance class 1, as could be expected due to the flatness of immediate A-10 surroundings, and the steep slopes of the A-15. Nevertheless, the results are the opposite for distance class 2, where land use change rate for A-15 is higher than the rate for A-10. An unexpected outcome, having in mind that topography within buffer 2 for A-15 is more abrupt than for A-10. This finding corroborates, once more, the idea that some other mechanisms are at work, apart from topography, regarding land use change rates.

The land-use change across AP-15 distance classes 7 and 8 cluster around the regional center for logistics and transport activities, and around Beriain (a dormitory town of Pamplona). As a consequence, it is reasonable to state that some other areas that have changed into urban and industrial land uses around the relatively flat surroundings of AP- 15 may be more associated with previously existing settlements than with the distance to the motorway. As well as this two mentioned factors, other mechanisms may be intertwining with the potential inductive effect of the motorway proximity (Reginster and Rounsevell, 2006).

5. CONCLUSIONS

One of the few sets of data on urban an industrial land-use change alongside two recently built Pyrenean motorways has been obtained. They reduce the uncertainty on the impacts potentially induced by these or similar motorways, but can not guarantee completely the impact assessment accuracy.

From 1998 to 2010, urban and industrial growth alongside the studied motorway stretches in Navarre took place only adjacently to already existing settlements, confirming a phenomenon that has already been registered in other studies.

- 60 - Dificultad en la identificación de impactos

The maximum induction rates obtained within the area under 20% incline were: 0,29 ha/100ha·year for A-15 motorway; 0,142 ha/100ha·year for AP-15 motorway, and 0,102 ha/100ha·year for A-10.

Exclusively from the point of view of land use, and for the period of time under study, the impact of the studied mountain motorways on the land they cross has been mainly direct, caused by the land occupation and transformation implemented already during the motorways construction. These recently-built motorways have directly transformed and occupied a much wider area than the maximum potential induction rates obtained for them. This is a very meaningful outcome for environmental impact assessment purposes.

The study of urban and industrial land use change around the motorways confirms that the potential induction effect caused by the proximity to the motorways, if existing, cannot easily be set apart from other influencing factors such as topography and pre-existing settlements.

A consistently higher land use change has been registered within the 3 km closer to the mountain motorway junctions. The steep topography areas showed no new urban and industrial uses at a certain distance from the mountain motorways.

Land use change data for AP-15, which crosses an area not surrounded by steep topographies, suggest a stronger relation of new developments to pre-existing settlements than to the proximity to the motorway.

These first conclusions confirm that it may be not possible to prove an isolated induction phenomenon by the road, but provide useful information to environmental assessment, and back the opportunity of using the concept of maximum induction rate.

ACKNOWLEDGEMENTS We would like to thank Mr. Arturo H. Ariño and Mr. David Galicia for their advice on data management. Special thanks to Mr. Javier Otegui for his dedication and help with data processing, and to Mr. Luis Sanz for his photos of the study area. The corresponding author is supported by a doctoral fellowship provided by the Department of Science, Technology and Universities of the Government of the Autonomous region of Aragón.

- 61 - Dificultad en la identificación de impactos

REFERENCES Angermeier P.L., Wheeler A.P., Rosenberger A.E., (2004). A Conceptual Framework for Assessing Impacts of Roads on Aquatic Biota, Fisheries, 29 (12), 19-29. Antrop M., (2000). Changing patterns in the urbanized countryside of Western Europe, Landscape Ecology, 15 (3), 257—270. Bossard M., Feranec J., Otahel J., (2000). CORINE land cover technical guide—Addendum 2000. European Environment Agency. On line at: http://www.dmu.dk/fileadmin/Resources/DMU/Udgivelser/CLC2000/technical_guide_addenum.pdf Bürgi M., Hersperger A.M., Schneeberger N., (2004). Driving forces of landscape change-current and new directions, Landscape Ecology, 19 (8), 857—868. Comín F.A., Martínez-Rica J.P., (2007). Los Pirineos en el contexto de las montañas del mundo: rasgos generales y peculiaridades. (In Spanish), Pirineos, 162, 13-41. Dale V.H., Brown S., Haeuber R.A., Hobbs N.T., Huntly N., Naiman R.J., Riebsame W.E., Turner M.G., Valone T.J., (2000) Ecological principles and guidelines for managing the use of land, Ecological Applications, 10 (3), 639-670. Forman R.T.T., Alexander L.E., (1998). Roads and their major ecological effects, Annual Review of Ecology and Systematics, 29, 207-231. Forman R.T.T., Sperling D., Bissonette J.A., Clevenger A.P., Cutshall C.D., Dale V.H., Fahrig L., France R., Goldman C.R., Heanue K., Jones J.A., Swanson F.J., Turrentine T., Winter T.C., (2003). Road ecology: Science and Solutions. Island Press, Washington DC. Giuliano G., (2004). Land Use Impacts of Transportation Investments. In: The Geography of Urban Transportation, Hanson S., Giuliano G. (Eds.), The Guilford Press, New York, 237-273. Gobierno de Navarra (n.d.). Infraestructura de Datos Espaciales de Navarra (IDENA). On line at: http://idena.navarra.es/busquedas/catalog/main/home.page Handy S., (2005). Smart Growth and The Transportation-Land Use Connection: What Does the Research Tell Us? International Regional Science Review, 28 (2), 146-167. Hansen W.G., (1959). How Accesibility Shapes Land Use, Journal of the American Institute of Planners, 25 (2), 73-76. Hansen A.J., Knight R.L., Marzluff J.M., Powell S., Brown K., Gude P.H., Jones K., (2005). Effects of Exurban Development on Biodiversity: Patterns, Mechanisms, and Research Needs, Ecological Applications, 15 (6), 1893-1905. Jansky L., (2000). UNU and Sustainable Mountain Development, Mountain Research and Development, 20 (2), 188—189. Jodha N.S., (1992). Mountain perspective and sustainability: a framework for development strategies, In: Sustainable Mountain Agriculture, Jodha N.S., Banskota M., Partap T. (Eds.), Oxford & IBH Publishing Co, New Delhi, 42-82 . Kalnay E., Cai M., (2003). Impact of urbanization and land-use change on climate, Nature, 423, 528-531. Kohler T., Hurni H., Wiesmann U., Kläy A., (2004). Mountain infrastructure: Access, communications and energy, In: Key Issues for Mountain Areas, Price M.F., Janksy L., Iastenia A.A. (Eds.) United Nations University Press, Tokyo, 38-62. Lambin E.F., Turner B.L., Geist H.J., Agbola S.B., Angelsen A., Bruce J.W., Coomes O.T., Dirzo R., Fischer G., Folke C., George P.S., Homewood K., Imbernon J., Leemans R., Li X., Moran E.F., Mortimore M., Ramakrishnan P.S., Richards J.F., Skanes H., Steffen W., Stone G.D., Svedin U., Veldkamp T.A., Vogel C., Xu J., (2001) The causes of land-use and land-cover change: moving beyond the myths, Global Environmental Change, 11 (4), 261—269. Litman T., (1995). Land use impact costs of transportation, World Transport Policy and Practice, 1 (4), 9-16. Lynch O.J., Maggio G.F., (1997). Mountain Laws and Peoples: Moving towards sustainable development and recognition of community-based property rights, Proc. Mountain Policy and Law E-Conference: Promising Examples and Innovative Legal Mechanisms for Conservation and Sustainable

- 62 - Dificultad en la identificación de impactos

Development. Washington DC. On line at: http://europe.mtnforum.org/rs/econfreports/MountainLawsAndPeoples.pdf Meyer W.B., Turner B.L., (1992). Human Population Growth and Global Land-Use/Cover Change, Annual Reviev of Ecology and Systematics, 23, 39-61. Müller K., Steinmeier C., Küchler M., (2010). Urban growth along motorways in Switzerland, Landscape and Urban Planning, 98 (1), 3-12. Pan D., Domon G., Blois S.D., (1999). Temporal (1958 — 1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec , Canada) and their relation to landscape physical attributes, Landscape Ecology, 14, 35-52. Pielke R.A., Marland G., Betts R.A., Chase T.N., Eastman J.L., Niles J.O., Niyogi D.S., Running S.W., (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360 (1797), 1705-1719. Reger B., Otte A., Waldhardt R., (2007). Identifying patterns of land-cover change and their physical attributes in a marginal European landscape, Landscape and Urban Planning, 81 (1-2), 104-113. Reginster I., Rounsevell M., (2006). Scenarios of future urban land use in Europe, Environment and Planning B: Planning and Design, 33 (4), 619-636. Riitters K.H., Wickham J.D., (2003). How far to the nearest road? Frontiers in Ecology and the Environment, 1 (3), 125—129. Schild A., (2008). ICIMOD’s Position on Climate Change and Mountain Systems, Mountain Research and Development, 28 (3/4), 328-331. Serneels S., Lambin E.F., (2001). Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model, Agriculture, Ecosystems and Environment, 85 (1-3), 65—81. United Nations Conference on Environment and Development (UNCED), (1992). Agenda 21. Chapter 13: Managing fragile ecosystems: sustainable mountain development. On line at: http://www.regency.org/earth_summit_92/chapter13.pdf United Nations, (1992). Convention on biological diversity. On line at: http://www.cbd.int/doc/legal/cbd- en.pdf Verburg P.H., Eck J.R.R.V., Nijs T.C.M.D., Dijst M.J., Schot P., (2004). Determinants of land-use change patterns in the Netherlands, Environment and Planning B: Planning and Design, 31 (1), 125-150. Virginia R.A., (2009). An Ecosystem Approach to Mountain Resorts, In: Mountain Resorts Ecology and the Law, Milne J.E., Lemense J., Virginia R.A. (Eds), Ashgate Publishing Group, Abingdon, 23-38. Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M., (1997). Human domination of Earth’s ecosystems, Science, 277 (5325), 494. Wheeler A., Angermeier P., Rosenberger A., (2005). Impacts of New Highways and Subsequent Landscape Urbanization on Stream Habitat and Biota, Reviews in Fisheries Science, 13 (3), 141-164. Zenou Y., Patacchini E., (2006). Urban Sprawl in Europe. European Environment Agency. On line at: http://swepub.kb.se/bib/swepub:oai:DiVA.org:su-45034?tab2=abs&language=en

- 63 - Dificultad en la identificación de impactos

ANEXO CAPÍTULO II

Figura 1. Detalle de la identificación y delimitación de los cambios a usos urbanos e industriales.

Figura 2. Registro del crecimiento urbano e industrial alrededor de la A-15.

- 64 - Dificultad en la identificación de impactos

Figura 3. Registro del crecimiento urbano e industrial alrededor de la A-10.

Figura 4. Registro del crecimiento urbano e industrial alrededor de la AP-15.

- 65 - Dificultad en la identificación de impactos

Figura 5. Localización de los núcleos urbanos e industriales existentes alrededor de la A-15 antes de la construcción de la autovía.

Figura 6. Localización de los núcleos urbanos e industriales existentes alrededor de la A-10 antes de la construcción de la autovía.

- 66 - Dificultad en la identificación de impactos

Figura 7. Localización de los núcleos urbanos e industriales existentes alrededor de la AP-15 antes de la construcción de la autopista. Figura 8. Clasificación de pendientes

mayores y menores del 20% alrededor de la A-15.

- 67 - Dificultad en la identificación de impactos

Figura 9. Clasificación de pendientes mayores y menores del 20% alrededor de la A-10.

Figura 10. Clasificación de pendientes mayores y menores del 20% alrededor de la AP-15.

- 68 - Dificultad en la identificación de impactos

Rango de Lugar Área 1998 (ha) Área 2010 (ha) Diferencia 1998-2010 (ha) distancia a salida Albiasu 3 0,71 0,71 0,00 Aldatz 3 4,81 5,04 0,23 Alli 2 1,98 2,26 0,28 2 5,25 5,72 0,47 Arrarats 8 2,26 2,31 0,05 Arribe 3 2,97 3,11 0,14 Arruitz 1 2 3,17 3,17 0,00 Arruitz 2 2 0,20 0,44 0,24 Arruitz 3 2 0,69 0,83 0,14 Arruitz 4 2 0,44 0,47 0,04 Astitz 3 1,92 2,27 0,35 Atallu 3 2,06 1,35 -0,71 Azpirotz 3 2,46 2,46 0,00 Baraibar 4 4,40 4,46 0,06 Beramendi 3 1,35 1,45 0,10 Beruete 6 5,91 6,34 0,43 4 14,47 14,58 0,12 Eraso 2 1,49 1,74 0,25 Erbiti 7 1,00 1,04 0,04 Errazkin 5 1,76 1,76 0,00 Etxaleku 1 4 3,99 4,25 0,26 Etxaleku 2 4 0,72 0,72 0,00 Etxarri 1 2 3,75 3,89 0,14 Etxarri 2 2 0,52 0,67 0,15 Etxeberri 1 1,04 1,18 0,14 Gaintza 6 1,44 1,74 0,31 Gartzaron 7 1,71 1,88 0,17 Goldaratz 1 1,63 2,17 0,54 Gorriti 1 1 3,18 3,44 0,25 Gorriti 2 1 0,36 0,46 0,09 Igoa 9 1,75 1,87 0,11 Ihaben 4 1,63 1,63 0,00 Illarregi 9 2,02 2,02 0,00 Inbas 3 2,31 2,31 0,00 Itxaso 4 1,65 2,11 0,46 Jauntsarats 5 2,73 3,41 0,69 Latasa 1 1,98 2,53 0,55 3 27,64 30,38 2,74 Lekunberri 2 24,51 50,68 26,17 Lezaeta 3 0,37 0,37 0,00 Mugiro 1 1 1,59 1,59 0,00 Mugiro 2 1 0,00 0,44 0,44 Muskitz 7 1,67 2,31 0,64 Oderitz 4 2,40 2,49 0,09 Orokieta 9 1,15 1,21 0,05 Oskotz 1 4 2,61 2,72 0,11 Oskotz 2 5 2,76 3,09 0,33 Pol. Ind. de Lekunberri 1 2 0,66 0,66 0,00 Pol. Ind. de Lekunberri 3 2 24,85 33,34 8,49 Pol. Ind. de Lekunberri 4 2 1,56 3,18 1,62 Pol. Ind. Eluseder 1 1 4,53 13,68 9,15 Pol. Ind. Eluseder 2 1 3,00 3,00 0,00 Pol. Ind. Landa 3 14,69 19,49 4,81 Suarbe 10 0,97 0,97 0,00 Udabe 2 1,82 1,84 0,02 Uitzi 4 4,07 4,52 0,45 Urritza 1 0,65 0,65 0,00 Uztegi 1 5 0,68 0,68 0,00 Uztegi 2 5 0,42 0,49 0,07 Zarrantz 4 0,64 0,65 0,01 Tabla 1. Datos sobre el crecimiento de los distintos asentamientos y su distancia a la salida de autovía más próxima para la A-15.

- 69 - Dificultad en la identificación de impactos

Rango de Lugar Área 1998 (ha) Área 2010 (ha) Diferencia 1998-2010 (ha) distancia a salida Aguinaga 7 0,88 0,88 0,00 Aizpún 9 2,02 2,02 0,00 Alsasua 1 2 10,40 10,40 0,00 Alsasua 2 2 44,07 48,56 4,49 Alsasua 3 3 3,26 3,26 0,00 Alsasua 4 2 4,35 4,39 0,04 Alsasua 5 2 1,80 1,80 0,00 Alsasua 6 2 3,19 3,19 0,00 Alsasua 7 1 4,18 4,18 0,00 Alsasua 8 1 4,07 4,07 0,00 1 1 0,23 0,36 0,13 Arakil 2 1 0,12 0,12 0,00 1 19,13 22,73 3,60 Ariz 10 0,97 1,03 0,06 1 3,23 3,37 0,14 Arteta 6 2,17 2,21 0,05 Azanza 10 4,13 4,23 0,09 1 1 8,93 9,82 0,89 Bakaiku 2 1 2,74 2,77 0,03 Beasoain 9 1,03 1,03 0,00 Compañía 8 1,03 1,03 0,00 Dorrao 5 3,02 3,64 0,61 Egiarreta 2 1,87 2,83 0,96 Egilor 9 4,05 4,69 0,64 Ekai 1 1,17 1,17 0,00 Erice 9 2,63 3,42 0,80 Etxarren 1 3,28 3,53 0,26 Etxarri-Aranatz 1 1 24,21 27,10 2,89 Etxarri-Aranatz 2 2 1,98 1,98 0,00 Etxarri-Aranatz 3 2 4,91 4,99 0,08 Etxarri-Aranatz 4 2 4,07 6,75 2,68 Etxeberri 2 1,23 3,29 2,06 Goñi 8 2,61 2,70 0,09 Gulina 6 1,08 1,08 0,00 Ihabar 1 1 3,65 4,02 0,37 Ihabar 2 1 2,16 2,16 0,00 Irañeta 1 5,33 6,70 1,37 1 1 8,70 10,35 1,65 Iturmendi 2 1 0,54 0,94 0,40 Izurdiaga 4 1,10 1,10 0,00 1 1 1,42 4,46 3,05 Lakuntza 2 1 19,16 20,45 1,29 Lakuntza 3 1 3,83 7,05 3,22 Lakuntza 4 1 3,65 3,65 0,00 Lakuntza 5 1 0,48 1,13 0,65 Lakuntza 6 1 0,54 0,83 0,29 Lakuntza 7 1 0,99 1,71 0,72 Larumbe 1 8 0,68 0,95 0,27 Larumbe 2 8 0,70 0,78 0,08 Lete 8 1,22 1,24 0,03 Lizarraga 1 4 6,40 6,46 0,06 Lizarraga 2 3 2,04 2,04 0,00 Lizarragabengoa 2 1,16 1,19 0,03 Madotz 3 1,08 1,08 0,00 Ochovi 8 1,50 2,39 0,88 Olazti 1 4 24,83 25,48 0,65 Olazti 2 3 16,23 16,23 0,00 Olazti 3 4 23,97 26,53 2,56 Olazti 4 5 26,05 42,70 16,65 Olza 9 2,23 2,26 0,04 Osinaga 9 0,92 0,92 0,00 Pol. Ind. Arkinorruti 5 18,03 18,03 0,00 Pol. Ind. Ibarria 1 3 26,16 26,16 0,00 Pol. Ind. Ibarria 2 3 1,56 1,56 0,00 Pol. Ind. Ibarria 3 3 0,59 0,59 0,00 Pol. Ind. Isasia 2 3,52 5,65 2,12 Pol. Ind. Ondarria 1 22,66 22,85 0,20 Pol. Ind. Ulzubar 1 1 4,45 Joins PI Ulzubar 2 -4,45 Pol. Ind. Ulzubar 2 1 3,83 18,47 14,64 Pol. Ind. Ulzubar 3 1 1,08 Joins PI Ulzubar 2 -1,08 Pol. Ind. Zumurdineta 1 8,97 11,11 2,14 Saldise 8 0,70 0,70 0,00 Sarasa 1 9 2,56 4,29 1,73 Sarasa 2 9 1,80 2,14 0,34

- 70 - Dificultad en la identificación de impactos

Rango de Lugar Área 1998 (ha) Área 2010 (ha) Diferencia 1998-2010 (ha) distancia a salida Sarasate 8 2,04 2,04 0,00 Satrustegi 1 1,80 1,95 0,15 Uharte-Arakil 1 1 12,10 12,21 0,11 Uharte-Arakil 2 1 2,68 2,68 0,00 Uharte-Arakil 3 1 7,68 8,25 0,57 Uharte-Arakil 4 1 8,90 13,37 4,47 Ultzurrun 7 1,77 2,30 0,54 Unanu 4 4,04 4,55 0,51 Urdánoz 9 1,98 1,98 0,00 1 1 11,01 12,02 1,01 Urdiain 2 1 0,97 0,97 0,00 Urdiain 3 1 3,33 3,33 0,00 Urdiain 4 1 0,67 0,67 0,00 Urdiain 5 1 2,59 2,70 0,10 Urritzola 3 0,69 0,88 0,19 Villanueva 1 1 3,81 4,86 1,06 Villanueva 2 1 0,88 0,88 0,00 1 6 7,63 9,05 1,42 Ziordia 2 7 27,88 38,18 10,30 Zuasti 9 7,13 7,13 0,00 Zuhatzu 1 0,92 1,19 0,27 Tabla 2. Datos sobre el crecimiento de los distintos asentamientos y su distancia a la salida de autovía más próxima para la A-10.

- 71 - Dificultad en la identificación de impactos

Rango de Lugar Área 1998 (ha) Área 2010 (ha) Diferencia 1998-2010 (ha) distancia a salida Adiós 7 8,36 8,84 0,48 Amátriain 8 1,00 1,07 0,06 Amunarrizqueta 10 0,40 0,38 -0,01 Añorbe 1 5 12,14 17,48 5,35 Añorbe 2 5 0,80 0,80 0,00 Arlegui 8 5,84 6,26 0,42 10 1,97 1,97 0,00 Artariáin 9 1,33 1,51 0,18 Barásoain / Garinoain 6 25,00 30,73 5,73 Barásoain 1 6 1,40 1,40 0,00 Barásoain 2 6 1,22 1,22 0,00 Bariáin 8 1,17 1,17 0,00 Barrio de la Azucarera 2 7,99 6,59 -1,40 8 11,00 12,32 1,32 Benegorri 4 0,46 0,46 0,00 Beriáin 1 7 10,80 46,42 35,62 Beriáin 2 7 0,75 1,22 0,47 Beriáin 3 8 19,21 27,20 7,99 Beriáin 4 7 42,68 66,22 23,54 Beriáin 5 8 3,85 Joins Beriáin 4 -3,85 Beriáin 6 8 47,17 61,86 14,69 Beriáin 7 8 18,13 Joins Beriáin 6 -18,13 Bézquiz 5 0,59 0,59 0,00 Biurrun 3 8,37 10,06 1,70 Campanas 1 3 3,55 3,55 0,00 Campanas 2 2 6,44 7,82 1,38 Campanas 3 2 2,63 3,49 0,86 Camping 3 4,47 5,91 1,43 1 7 1,76 2,82 1,05 Caparroso 2 7 50,58 51,00 0,42 Caparroso 3 7 1,21 1,21 0,00 Caparroso 4 7 3,41 3,41 0,00 Centro Comercial La Toscana 1 4,84 4,97 0,13 Ciudad del Transporte 7 31,80 67,64 35,84 Echagüe 6 1,25 1,25 0,00 Elorz 10 1,45 1,97 0,52 Enériz 6 17,11 22,11 4,99 Esparza de Galar 1 10 5,19 7,66 2,47 Esparza de Galar 2 10 2,37 2,37 0,00 Ezperun 1 8 0,94 0,94 0,00 Ezperun 2 8 0,85 0,85 0,00 Ezperun 1 8 1,24 1,71 0,47 Ezperun 2 8 1,23 1,39 0,16 1 9 42,73 43,26 0,53 Falces 2 9 1,74 1,74 0,00 Falces 3 8 12,46 14,41 1,95 Falces 4 9 1,03 1,03 0,00 Falces 5 8 2,41 2,41 0,00 Funes 1 7 12,72 15,02 2,30 Funes 2 7 16,86 17,86 1,00 Funes 3 6 4,59 4,59 0,00 Funes 4 6 1,34 1,34 0,00 Guerendiáin 6 0,63 0,88 0,25 Imárcoain 1 8 1,51 9,00 7,48 Imárcoain 2 8 3,66 Joins Imárcoain 1 -3,66 Iracheta 10 1,48 2,14 0,66 La Estación 1 9 2,41 2,41 0,00 La Estación 2 9 0,00 4,66 4,66 La Torre 2 5,42 7,49 2,06 Maquirriain 7 1,28 1,28 0,00 1 2 35,41 37,53 2,13 Marcilla 2 3 0,93 0,93 0,00 Marcilla 3 2 0,54 0,54 0,00 Marcilla 4 1 7,66 9,65 1,99 Marcilla 5 2 1,30 14,63 13,33 Marcilla 6 1 4,07 5,17 1,10 Marcilla 7 1 0,41 0,41 0,00 Mendivil 1 7 2,10 2,38 0,28 Mendivil 2 7 1,11 1,11 0,00 Mendivil 3 6 0,57 0,57 0,00 Muruarte de Reta 1 2,82 2,86 0,04 Muruzábal 1 10 10,56 10,99 0,43 Muruzábal 2 10 5,40 6,01 0,61 Olaz 1 4 1,46 1,51 0,05

- 72 - Dificultad en la identificación de impactos

Rango de Lugar Área 1998 (ha) Área 2010 (ha) Diferencia 1998-2010 (ha) distancia a salida Olaz Subiza 2 5 1,85 1,51 -0,34 Olcoz / Olkotz 1 3 2,62 2,96 0,34 Olcoz / Olkotz 2 3 0,59 0,68 0,08 Olite 1 4 54,01 77,60 23,60 Olite 2 3 0,85 0,85 0,00 Olite 3 3 3,83 3,83 0,00 Olite 4 3 0,70 2,21 1,52 Olite 5 4 2,85 3,20 0,35 Olite 6 5 6,81 9,27 2,46 Olite 7 5 0,66 0,66 0,00 Olite 8 1 6,81 9,73 2,92 Olleta 10 2,06 2,12 0,07 Olóriz 6 2,89 3,97 1,08 Oricin 5 1,46 1,46 0,00 Orisoain 6 2,56 2,65 0,08 Otano 9 0,77 0,81 0,04 Peralta 1 7 48,93 64,85 15,92 Peralta 2 7 4,29 Joins Peralta 1 -4,29 Peralta 3 6 1,65 2,62 0,97 Peralta 4 5 1,99 5,61 3,62 Peralta 5 5 2,13 Joins Peralta 4 -2,13 Peralta 6 4 1,27 6,32 5,05 Peralta 7 5 1,15 1,24 0,09 Pitillas 10 0,51 0,78 0,27 Pol. de los Almacenes 7 1,35 4,88 3,52 Pol. Ind. Abaco 3 9,05 9,05 0,00 Pol. Ind. Barranquiel 1 5,14 12,21 7,07 Pol. Ind. de Barásoain 7 4,84 9,88 5,04 Pol. Ind. Garantúa/Escopar 1 8 60,62 87,92 27,31 Pol. Ind. Garantúa/Escopar 2 8 0,50 0,50 0,00 Pol. Ind. La Nava 1 13,25 30,36 17,11 Pol. Ind. Torres de Elorz 1 10 6,93 9,29 2,36 Pol. Ind. Torres de Elorz 2 10 2,53 4,95 2,42 Pueyo 1 2 13,60 16,50 2,90 Pueyo 2 2 1,18 Joins Pueyo 1 -1,18 San Martín de Unx 1 8 12,24 13,97 1,73 San Martín de Unx 2 9 0,28 0,90 0,62 Sánsoain 1 5 0,48 1,07 0,60 Sánsoain 2 4 0,94 0,94 0,00 Sansomáin 4 1,25 1,25 0,00 Solchaga 8 2,47 2,67 0,20 Subiza 5 4,64 6,20 1,56 1 2 88,01 104,36 16,35 Tafalla 2 3 1,48 1,48 0,00 Tafalla 3 3 5,69 5,69 0,00 Tafalla 4 2 1,04 1,19 0,16 Tafalla 5 3 2,60 7,49 4,89 Tiebas 1 3 8,16 10,16 2,00 Tiebas 2 1 9,84 14,06 4,22 Tiebas 3 3 23,20 49,49 26,30 Tiebas 4 2 21,17 36,05 14,88 Tiebas 5 1 25,49 36,53 11,04 Tiebas 6 1 5,37 6,93 1,57 Tiebas 7 1 6,74 Joins Tiebas 6 -0,35 Tiebas 8 1 2,73 Joins Tiebas 6 -2,73 5 3,12 3,22 0,09 Torres de Elorz 1 9 6,50 9,89 3,39 Torres de Elorz 2 9 2,75 2,75 0,00 Torres de Elorz 3 9 1,03 1,03 0,00 Traibuenas 1 10 2,37 2,37 0,00 Traibuenas 2 10 1,06 1,06 0,00 Ucar 1 4 7,02 9,98 2,96 Ucar 2 4 2,60 3,18 0,58 Unzué 1 3 5,32 5,54 0,21 Unzué 2 4 4,08 5,05 0,97 10 8,63 9,22 0,59 1 7 43,05 44,38 1,32 Villafranca 2 6 4,00 5,78 1,78 Villafranca 3 8 5,75 12,57 6,81 Villafranca 4 4 0,87 1,15 0,28 Villafranca 5 4 5,22 8,66 3,44 Villafranca 6 6 1,30 1,69 0,39 Yárnoz 10 0,79 0,92 0,13 Zabalegui 1 9 2,30 3,24 0,94

- 73 - Dificultad en la identificación de impactos

Rango de Lugar Área 1998 (ha) Área 2010 (ha) Diferencia 1998-2010 (ha) distancia a salida Zabalegui 2 9 0,28 Joins Zabalegui 1 -0,28 Zabalegui 3 9 0,49 0,49 0,00 Zabalegui 4 9 0,34 0,34 0,00 Zariquiegui 1 10 1,34 2,39 1,04 Zariquiegui 2 10 0,00 3,08 3,08 Zariquiegui 3 10 0,38 Joins Zariquiegui 1 -0,38 Tabla 3. Datos sobre el crecimiento de los distintos asentamientos y su distancia a la salida de autopista más próxima para la AP-15.

- 74 -

CAPÍTULO III LA PÉRDIDA ACEPTADA DE CALIDAD ECOLÓGICA

Puig J, Villarroya A. Ecological quality loss and damage compensation in estuaries: clues from a lawsuit in the Basque Country, Spain. Enviado a Ocean and Coastal Management

Pérdida aceptada de calidad ecológica

La escasa puesta en práctica de la compensación ecológica observada para proyectos que habitualmente provocan impactos residuales en el entorno hace que el logro del objetivo de no pérdida neta sea esperable en muy pocos casos. Sin embargo, la baja aplicación de medidas compensatorias no parece ser percibida como un problema en la mayoría de las ocasiones, puesto que muchos proyectos son aprobados por la EIA sin incluir ningún tipo de compensación ecológica. Así, habitualmente los impactos residuales parecen ser admitidos como algo inevitable o, simplemente, pasados por alto. Los resultados obtenidos a partir de las revisiones de DIAs de los artículos III (no incluidos en el texto del artículo, ver anexo a este capítulo) y V parecen apoyar esta hipótesis, puesto que solamente un pequeño porcentaje de los documentos (12% y 9%, respectivamente) hace referencia a estos impactos.

El artículo III trata de poner el foco sobre esta aparente admisión de pérdidas ecológicas, una de las posibles causas conceptuales (es decir, derivada de cómo es concebido el desarrollo) que puede haber detrás de la escasa puesta en práctica de la compensación ecológica detectada en el capítulo I. Por otro lado, los datos sobre compensación ecológica en proyectos costeros que recoge este estudio ofrecen un contrapunto a los resultados descritos para compensación ecológica en torno a carreteras (ver capítulos I y II).

Con la intención de obtener algún indicio sobre las causas de esta aparente aceptación de pérdida ecológica, se compara la compensación ecológica y la compensación socioeconómica para un mismo proyecto, teniendo en cuenta la distinta percepción de ambas que parece reflejarse en las anteriores revisiones de DIAs. El caso descrito muestra un ejemplo de cómo el esfuerzo por contrarrestar impactos ecológicos no siempre es equivalente al empleado para paliar otros efectos, como los socioeconómicos. Ante un proyecto que provocó daños tanto económicos como ecológicos, los afectados por los primeros pusieron gran empeño en conseguir una compensación, mientras que no se realizó ningún esfuerzo comparable para lograr contrarrestar los impactos sobre el medio natural.

La comparación del modo en que se gestionan ambos tipos de impactos puede aportar algún indicio sobre el tipo de obstáculos que pueden originar la baja compensación de impactos ecológicos registrada en tantos casos. Por un lado, cuando un proyecto provoca pérdidas económicas éstas afectan a un grupo concreto de personas, que perciben el problema como propio y de gran importancia, y de tal forma buscan los

- 76 - Pérdida aceptada de calidad ecológica medios para remediarlo. En cambio, los daños ecológicos afectan a todo el mundo por igual y a nadie en concreto, por lo que la responsabilidad de trabajar por su compensación queda diluida y a merced, en última instancia, de las obligaciones que establezca la ley (en los casos en que corresponda) o de la voluntad del promotor del proyecto. A este primer obstáculo se le añade habitualmente el problema del cálculo de impactos y, por consiguiente, de medidas compensatorias, como ya se apuntaba en el artículo II.

En el caso presentado, podría decirse que el daño económico causado por la construcción del dique pudo ser fácilmente estimado una vez admitida judicialmente como plausible la relación causa-efecto. Y esa estimación, realizada en términos económicos, se traduce con cierta facilidad en una compensación de la misma naturaleza. Sin embargo, los daños ecológicos no son fácilmente mensurables, y aunque se lograse esbozar una medida, probablemente no sería sencillo decidir qué acciones compensatorias serían necesarias y suficientes (Rowe et al., 2009). Subyace en toda esta cuestión el problema de cuál es el valor de los valores ambientales.

Este último problema de valoración de impactos y cálculo de medidas compensatorias constituye el centro de la siguiente parte, donde se estudia más a fondo y se elaboran propuestas para buscar posibles soluciones.

- 77 - Pérdida aceptada de calidad ecológica

ECOLOGICAL QUALITY LOSS AND DAMAGE COMPENSATION IN ESTUARIES: CLUES FROM A LAWSUIT IN THE BASQUE COUNTRY, SPAIN PÉRDIDA DE CALIDAD AMBIENTAL Y COMPENSACIÓN DEL DAÑO EN ESTUARIOS: CLAVES DE UN JUICIO EN EL PAÍS VASCO (ESPAÑA)

ABSTRACT This article presents an environmental impact assessment (EIA) controversial case, which was finally settled by the passing of a sentence. The sentence enforced a payment to compensate for the economic damage caused to a fish farm through local environmental changes in Urola river estuary, located in the Basque Country. The damage was allegedly caused by a breakwater extension built at the mouth of an estuary nearby the farm, and linked to a recreation port project located within the estuary. While the sentence settled the meaning of compensation from an economic perspective, it raised by contrast some questions on the difficulty of undertaking ecological compensation within EIA practice, using of this particular case. Maybe these difficulties account for the lack of compensation in coastal development projects, which we have observed in a variety of cases in Spain, particularly for coastal development projects. KEYWORDS: Environmental Impact Assessment (EIA); ecological compensation; economic compensation; coastal development; turbot fish farm.

RESUMEN Este artículo describe un caso polémico de Evaluación de Impacto Ambiental (EIA), finalmente resuelto tras la aprobación de una sentencia legal. La sentencia imponía a la compañía promotora un pago como compensación al daño económico que los cambios ambientales originados por el proyecto causaron a una piscifactoría localizada en el estuario del río Urola, en el País Vasco. El daño fue supuestamente ocasionado por la ampliación de un dique construido en dicho estuario, proyectado para mejorar el acceso a un puerto recreativo próximo. A raíz de este caso se plantean y discuten ciertas cuestiones en torno a la dificultad de implantar medidas de compensación ecológica a través de la EIA, utilizando lo ocurrido en torno a la compensación económica como contrapunto. Tales dificultades pueden ser la causa de la escasa compensación que se aplica en proyectos costeros, registrada en este artículo para varios casos en España. PALABRAS CLAVE: Evaluación de Impacto Ambiental (EIA); compensación ecológica; compensación económica; desarrollo costero; piscifactoría de rodaballo.

- 78 - Pérdida aceptada de calidad ecológica

1. INTRODUCTION

Environmental impact assessment (EIA) aims at improving the sustainability of certain environmentally regulated projects, by identifying and valuing their significant environmental impacts and proposing measures to counter them (IAIA, 2009; IAIA and UK Institute of Environmental Assessment, 1999; Jay et al., 2007). Once they are identified and valued in advance, impacts may be counteracted through avoidance, minimization or compensation techniques. Of these techniques, compensation aims at achieving environmental positive outcomes after impacting projects have been implemented (BBOP, 2009; EPA, 2006; Finkelstein et al., 2008; Pope et al., 2004; van Merwyk and Daddo, 2007; Weaver et al., 2008).

The concept of “compensation” shares some formal similarity with the concept of “sustainability”: both are at first glance easier to be understood from a conceptual point of view, than to be translated into practical implementations on particular cases. Several articles may be found, among the current literature, that refer to some practical difficulties that arise when trying to implement compensatory measures (Hayes and Morrison- Saunders, 2007; Kiesecker et al., 2009; Kiesecker et al., 2010a; Kiesecker et al., 2010b; McKenney, 2005). Consequently, the choice and design of specific offsets to be implemented in each development project usually becomes a harder task than that of simply pointing out their need. This constraint is inherent to the nature of compensation, as there is always a wide, open range of suitable measures potentially fitting in each particular compensation case.

In order to eventually compensate for them, impacts caused on the environment may be valued using of two main complementary approaches: ecological valuation, and socio-economic valuation (Efroymson et al., 2008; Smith and Theberge, 1986; Van der Ploeg and Vlijm, 1978). Seemingly, environmental compensation may be understood and implemented in either one of two broad complementary ways. The monetary approach foresees payments as a compensation to balance out damages caused mainly to the socio-economic values of the impacted environment, but also to its ecological quality (Hendriks, 2001; Wood, 2003). From a different perspective, ecological compensation can be implemented attempting at “the substitution of ecological functions or values that are impaired by development” (Cuperus et al., 2001). This approach does not use the monetary solution to counterbalance the ecological impacts caused by the project

- 79 - Pérdida aceptada de calidad ecológica implementation, seeking to preserve as far as possible the overall ecological quality of the environment, as a way to approach or attain sustainability.

This article presents an EIA controversial case, which was finally settled by the passing of a sentence. The sentence enforced a payment to compensate for the economic damage caused to a fish farm through local environmental changes. The damage was allegedly caused by a breakwater extension built at the mouth of an estuary nearby the farm, and linked to a recreation port project located within the estuary. While the sentence settled the meaning of compensation from an economic perspective, it raises by contrast some questions on the difficulty of undertaking ecological compensation within EIA practice, using of this particular case. Maybe these difficulties account for the lack of compensation in coastal development projects, which we have observed in a variety of cases in Spain (see Section 5).

2. STUDY AREA: FISH FARM AND BREAKWATER PROJECT LOCATIONS

The turbot farm (Psetta maxima Linnaeus, 1758 [Scophthalmidae]) started operating in 1992. It was located in a hollow by the coastline, close to the town of Zumaia, and nearby the mouth of the small estuary of Urola river, (Basque Country, Spain, Figure 1). The farm was built after obtaining from the regional government the permit required to make use of the marine water to operate.

Apart from the building containing the pools to feed and grow the fish, a small pumping facility supplied the marine water along two underground pipes. The water intake was originally build North of the farm, some 400 m further away than the main facility from the estuary mouth, seeking to reduce the potential and variable influence of the river water on the quality of the marine water to be taken into the farm (Figure 1, d). The 59 km-long Urola River shows a torrential character of variable volume of flow ranging from around 1 to 196 m3s-1.

- 80 - Pérdida aceptada de calidad ecológica

Fig. 1. Location of the study area. The breakwater was intended to enlarge the sheltered area for those boats and small vessels intending to access or leave the Zumaia river port during rough-sea conditions, which are quite frequent around the mouth of the Urola estuary, mainly in winter time. Figure 2 shows the breakwater that was finally completed in 1995, and compares it to the reach of the pre-existing one.

Fig. 2. Overview of the study area before (1991) and after (2001) the completion of the new breakwater. Significantly, the image of 1991 was taken during a lower tide than the image of 2001. An even so, the beach extension is clearly shown.

- 81 - Pérdida aceptada de calidad ecológica

3. EVENTS, CONTROVERSY, SENTENCE.

The first notable anomalies in fish productivity were recorded by the farm managers in summer 1994. They were coincident in time with the progressive development of the breakwater extension works. Significant amounts of turbot died with no apparent reason to the owners but the change in water quality associated to, and allegedly caused by, the new breakwater under construction. Changes in the farm were registered as growingly important, although not in a constant way, as the mixing of fresh and marine waters varies heavily depending on the changing Urola river flow and water temperature, the weather and, particularly, on the wind conditions and the sea roughness at the area, and the beating strength of the waves against the shore.

As problems began to grow in the farm (decrease in water salinity, blocking of pumps by sand intakes…) their managers decided to demand funds to relocate the water intake mouth, as a way to ensure future productivity. The new intake mouth would be further away from the shoreline, and opening into a deeper level in the sea. The request was not granted, and problems for the fish farm repeated in July 1995. Finally they reached their peak in August 1995, when the farm managers denounced that around 95% of the turbot stock growing in their production pools had suddenly perished due to a critical change in the quality of coastal water at the intake point, allegedly caused by the breakwater extension newly built, and its related works. The mortality of the turbot stock was independently verified.

A discussion on the cause of the turbot mortality ensued, and finally litigation began. It was a long process. All of the possible standpoints could be reduced to two main approaches: was the breakwater construction to be held responsible, or not, of the critical change in water quality, and so of the registered turbot mortality? The farm managers alleged that the construction of the breakwater had changed the variable quality of the waters at the intake to a critical point where new occasional low quality episodes caused the turbot mortality. Alternative arguments pointed out at causes other than any change caused by the building of the breakwater, such as pre-existing variable conditions in water quality, occasionally critical, that were not originated by the newly built structure and had not showed themselves up during the first operating years of the farm. Had these critical conditions been detected and taken into account by the farm managers, the intake should have been located elsewhere. There were also allegations of mortality being caused by an epidemic spread across the pools due to bad management at the facility.

- 82 - Pérdida aceptada de calidad ecológica

Litigation ended up with a sentence passed in July 2004 that enforced the insurance company for the breakwater construction works to pay around 12.5 million € to the farm managers, in compensation for the economic damage caused at the farm.

4. ECONOMIC VS. ECOLOGICAL COMPENSATION

Ecological changes along the shorelines, particularly in estuaries, may pass even more unnoticed than on land, particularly when located underwater. Perception is a pre- requisite for reaction to damage or value loss. The ocean and estuarine waters seem to cast a blanket hiding most of the local ecological impacts other than water pollution, hampering not only perception, but also estuary ecology knowledge.

In our case, during the litigation process, a good feasible picture of how the estuary processes operated during the mortality peak was put together. The unfolding of the case gave the opportunity to improve perception, and direct general knowledge on estuarine ecology to detail how the particular estuary under study works. Actually, all this knowledge was instrumental in passing the final sentence.

The link between the breakwater works and the damage suffered by the fish farm could only be legally demonstrated using of the knowledge on the allegedly impacted dynamic ecological features of the estuary, as linked to turbot physiology. To pass the sentence it had to be known that the sand level at the intake point was raising (as it was blocking the pumps and pipes) and that the shoreline of the nearby beach was also advancing to the sea (allegedly, as a consequence of the shelter effect provided by the breakwater), that the volume of water at the now more enclosed mouth of the estuary had probably been reduced due to sand deposition (Figure 2) and that, in a calm ocean during summertime, fresh water from the river may build up at the mouth of the estuary to a surface layer of significant low salinity separated sharply by a halocline from the denser layer below, made up mainly of sea water. Both layers of water, on these stratification conditions, could now alternatively reach the turbot farm intake depending on the tide. Low salinity water entrance during low tide followed the higher salinity water pumping during high tide. The sudden changes in salinity registered at the water intake point, which coincided with the tide schedule and rhythm, evidenced this water stratification. The repeated sharp changes in the water salinity interfered critically with the turbot physiology, causing a stress worsened by the high water temperature, which

- 83 - Pérdida aceptada de calidad ecológica increases the metabolism of fish and reduces the dissolved oxygen contents, even to reach eventually a physiological stress death point.

And yet, no compensation other than the economic to the farm has been thought of along the process. Interestingly, none of the ecological mechanisms operating in court were effective, not even eventually, in developing a derived practical care for the ecology of the area, and for those residual impacts other than economic, which remained uncared for after the completion of the breakwater and the passing of the sentence. Why so?

5. ECOLOGICAL COMPENSATION PRACTICE AND COASTAL DEVELOPMENT PROJECTS UNDER SPANISH EIA REGULATION

This is not an isolated case. Ecological compensation is not a common practice in EIA implementation in Spain (Villarroya and Puig, 2010). The review of 75 EIA records of decision (RODs)5 publicized during the last 10 years revealed a worsened situation for coastal development projects (see Figure 3). If ecological compensation is neglected in EIA, we can scarcely hope to find it elsewhere.

Fig. 3. Results of the review of coastal development projects RODs in Spain publicized between 2001 and 2011. Most of the documents did not even mention the term “ecological compensation” or any other equivalent expression. The argument of this paper is not that ecological changes or even damages have to be always avoided. We intend to point out that currently we simply accept their accumulation doing nothing but take advantage of the quality of the coastal environments to foster development, while rending them less valuable in ecological terms. We keep

5 An ROD is the document where the main factors to reach the final environmental authorization decision on a project are presented by the approving agency. - 84 - Pérdida aceptada de calidad ecológica taking up the ecological values, using them, and not thinking of how to keep them at least at an overall constant quality level. As long as low levels of compensation practice last, it seems timely to remind that ecological compensation is necessary to fight back impact occurrence and accumulation, to attain the preservation of ecological values eventually (Hayes and Morrison-Saunders, 2007; ten Kate et al., 2004).

What are the reasons leading to compensation practice neglect, particularly in coastal development projects? Arguably, low levels of compensation practice gauge how much (or little) we value in fact ecological values as compared to alternative ones, particularly to those that come around development projects. Environmental values are not felt as urging us to preserve them, and much less as the prevalent when compared to alternative ones, sometimes grouped as socio-economic, particularly when facing development decision-making. In most cases, ecological compensation is not thought of as a way to fight back present-day accumulating impacts. Unfortunately, not even when we have or get a fairly good knowledge of how the ecology of an area has been impacted.

Alternatively, coastal environments may be developed, perhaps somehow unconsciously, as if they were very far away from depletion and safe from any significant loss. Partly due to the hiding effect of marine waters on all that happens underneath them, or to the fact that observation points from the coastline to open sea prevail over those allowing to observe the development on the coastline itself. So has development been implemented along the Mediterranean coast in Spain, up to the point of earning a particularly formal warning from the European Union on the impressive accumulated loss of the quality of these environments6.

The accumulation mechanisms work also at a local scale over longer periods of time (European Commission, 1999; Race and Fonseca, 1996; Therivel and Ross, 2007). Even when projects and other human developments transforming the shoreline seem not to change the land significantly when separately considered, the change is evident

6 “whereas the natural Mediterranean island and coastal areas of Spain have suffered extensive destruction in the last decade as cement and concrete have saturated these regions in a way which has affected not only the fragile coastal environment — much of which is nominally protected under the Habitats/Natura 2000 and Birds Directives, such as urbanisations in Cabo de Gata (Almería) and in Murcia — but also the social and cultural activity of many areas, which constitutes a tragic and irretrievable loss to their cultural identity and heritage as well as to their environmental integrity, and all this primarily because of the absence of supra-municipal planning or regional planning guidelines placing reasonable limits on urban growth and development, set on the basis of explicit criteria of environmental sustainability, and because of the greed and speculative behavior of certain local and regional authorities and members of the construction industry who have succeeded in deriving massive benefits from their activities in this regard, most of which have been exported” (European Parliament 2009). - 85 - Pérdida aceptada de calidad ecológica eventually, as small impacts build up. A sequence of old photographs up to the present shows how the Urola estuary was in 1870, and how it compares to present day. (Figure 4).

Fig. 4. Urola estuary: past and present. (A) 1870; (B) around 1910, low tide; (C) around 1910, high tide; (D) around 1930; (E) and (F) at present time. Source for figures 4A to 4D: http://usuarios.multimania.es/fotoantigua/index.html Similar processes have transformed in the past decades many of the estuaries in the Basque Country, to their present state (Figure 5).

But the drawbacks may be found not only in the way present-day society deals with ecological losses. They are also internal to the theory (and practice) of compensation, whose frailties show up mainly when some particular cases, or particular impacts, are faced. In the case here presented, how to compensate for the damage caused in the studied area? Moreover, what is ecological damage, and what is ecological change? Up to what a point an environmental change is an ecological damage? The building of the seawall has changed the water dynamics in the estuarine area, the areas and rate of sand deposition, the shoreline front at the nearby beach, and the way freshwater and marine water mix when meeting at the mouth of the estuary. The coastal landscape has changed also, as well as the views and viewsheds, particularly from the beach. How to measure the loss of value, and how to measure the value to compensate them, especially if we do not have detailed studies of the ecological state of the estuary prior to the last development?

- 86 - Pérdida aceptada de calidad ecológica

Fig. 5. Current appearance of different estuaries in the Basque Country, including the studied area and places nearby: (A) Urdaibai, one of the best preserved estuaries (B) Deba, (C) Urola, (D) Oria, (E) Urumea, (F) Oiarzun. It seems that we keep reverting to socio-economic compensation only, when any. Apart from environmental opponents, the breakwater construction and port improvement were well received by the local population, as they expected an improved quality of the port facilities and accesses. And, complex as we are as a society, this is but a new example of how we build our development upon the quality loss of the environment.

6. CONCLUSIONS

The historical ecological quality loss of the small Urola River estuary in the Basque Country, Spain, has been graphically shown as an example of the progressive ecological quality loss experienced along coastal environments in this country, enlightening some potential reasons that underlay this phenomenon.

The ecological quality loss takes place both during long-lasting periods of time acting on small places, and during shorter periods over long stretches of coastline, even to the point of completely changing the original environments.

The contrast between how we react, as a society and in the case-study presented, either to economic value loss or to ecological value loss may gauge the relative weight we assign to each of these value classes.

- 87 - Pérdida aceptada de calidad ecológica

The relatively lower importance we assign to ecological values, as compared to economic ones, may be linked either to a lack of perception of ecological impact, particularly on estuarine environments, or to the assumption of being far away from any risk of significant loss or depletion.

In any case, ecological compensation seems to be underdeveloped partly because we do not think in terms of recovering the overall ecological value of impacted environments; we act, rather, transforming ecological values into economic ones, frequently at the expense of the former.

This explanation is consistent with the data obtained on the low ecological compensation performance for coastal development projects in Spain. Overall, ecological compensation is not practiced as a necessary component of sustainability, as the low rates of it that we have found in Spanish EIA procedures confirm.

But even if ecological compensation was accepted as a necessity, it would encounter new obstacles to overcome. Given the complexity of natural dynamisms, it is not easy either to distinguish between ecological change and ecological damage, or to assess or appraise the ecological value lost, and how to replace it.

Further development on ecological valuation methodologies would facilitate the assessment of those residual impacts that currently go unnoticed in most cases, thus setting a first necessary step for the implementation of compensatory measures.

REFERENCES Business and Biodiversity Offsets Programme (BBOP), 2009. Business, Biodiversity Offsets and BBOP. An Overview. Washington, D.C. URL: http://bbop.forest-trends.org/guidelines/overview.pdf [last accessed 21 February 2012] Cuperus, R., Bakermans, M.M.G.J., Udo de Haes, H.A., Canters, K.J., 2001. Ecological Compensation in Dutch Highway Planning. Environ. Manage. 27(1), 75-89. doi:10.1007/s002670010135 Efroymson, R.A., Peterson, M.J., Welsh, C.J., Druckenbrod, D.L., Ryon, M.G., Smith, J.G., Hargrove, W.W., Giffen, N.R., Kelly Roy, W., Quarles, H.D., 2008. Investigating habitat value to inform contaminant remediation options: Approach. J. Environ. Manag. 88, 1436-1451. doi:10.1016/j.jenvman.2007.07.023 Environmental Protection Authority, 2006. Environmental Offsets Position Statement No. 9. Environmental Protection Authority, Perth. URL: http://www.epa.wa.gov.au/docs/1863_PS9.pdf [last accessed 21 February 2012] European Commission, 1999. Guidelines for the Assessment of Indirect and Cumulative Impacts as well as Impact Interactions. Brussels. URL: http://ec.europa.eu/environment/eia/eia-studies-and- reports/guidel.pdf [last accessed 21 February 2012] European Parliament, 2009. Report on the impact of extensive urbanisation in Spain on individual rights of European citizens, on the environment and on the application of EU law, based upon petitions received (2008/2248(INI)).

- 88 - Pérdida aceptada de calidad ecológica

Finkelstein, M., Bakker, V., Doak, D.F., Sullivan, B., Lewison, R., Satterthwaite, W.H., McIntyre, P.B., Wolf, S., Priddel, D., Arnold, J.M., Henry, R.W., Sievert, P., Croxall, J., 2008. Evaluating the potential effectiveness of compensatory mitigation strategies for marine bycatch. PloS one. 3(6):e2480. doi: 10.1371/journal.pone.0002480 Hayes, N., Morrison-Saunders, A., 2007. Effectiveness of environmental offsets in environmental impact assessment: practitioner perspectives from Western Australia. Impact Assessment and Project Appraisal. 25(3), 209-218. doi:10.3152/146155107X227126 Hendriks, C.F., 2001. Sustainable Construction. Æeneas, Boxtel. International Association for Impact Assessment (IAIA), 2009. What Is Impact Assessment? URL: http://www.iaia.org/publications/ [last accessed 21 February 2012] International Association for Impact Assessment (IAIA), UK Institute of Environmental Assessment, 1999. Principles of Environmental Impact Assessment best practice. URL: http://www.iaia.org/publications/ [last accessed 21 February 2012] Jay, S., Jones, C., Slinn, P., Wood, C., 2007. Environmental impact assessment: Retrospect and prospect. Environ. Impact Asses. 27, 287-300. doi:10.1016/j.eiar.2006.12.001 ten Kate, K., Bishop, J., Bayon, R., 2004. Biodiversity offsets: Views, experience, and the business case. IUCN, Gland, Switzerland and Cambridge, UK and Insight Investment, London, UK. URL: http://cmsdata.iucn.org/downloads/bdoffsets.pdf [last accessed 21 February 2012] Kiesecker, J.M., Copeland, H.E., McKenney, B.A., Pocewicz, A., Doherty, K.E., 2010a. Energy by Design: Making Mitigation Work for Conservation and Development, in Naugle, D.E. (Ed.), Energy Development and Wildlife Conservation in Western North America. Island Press, Washington, D.C., pp. 157-182. Kiesecker, J.M., Copeland, H., Pocewicz, A., McKenney, B., 2010b. Development by design: blending landscape-level planning with the mitigation hierarchy. Frontiers Ecol. Env. 8(5), 261-266. doi:10.1890/090005 Kiesecker, J.M., Copeland, H., Pocewicz, A., Nibbelink, N., McKenney, B., Dahlke, J., Holloran, M., Stroud, D., 2009. A Framework for Implementing Biodiversity Offsets: Selecting Sites and Determining Scale. BioScience. 59(1), 77-84. doi:10.1525/bio.2009.59.1.11 McKenney, B., 2005. Environmental offset policies, principles, and methods: a review of selected legislative frameworks. Biodiversity Neutral Initiative. URL: http://www.forest-trends.org/publications.php [last accessed 21 February 2012] Van Merwyk, T., Daddo, S., 2009. Structuring environmental offsets for a sustainable advantage. Forest Trends. URL: http://bbop.forest-trends.org/library.php [last accessed 21 February 2012] Pope, J., Annandale, D., Morrison-Saunders, A., 2004. Conceptualising sustainability assessment. Environ. Impact Asses. 24, 595-616. doi:10.1016/j.eiar.2004.03.001 Race, M.S., Fonseca, M.S., 1996. Fixing Compensatory Mitigation: What Will it Take? Ecol. Appl. 6(1), 94- 101. Smith, P.G.R., Theberge, J.B., 1986. A review of criteria for evaluating natural areas. Environ. Manage. 10(6), 715-734. Therivel, R., Ross, B., 2007. Cumulative effects assessment: Does scale matter? Environ. Impact Asses. 27(5), 365-385. doi:10.1016/j.eiar.2007.02.001 Van der Ploeg, S.W.F., Vlijm, L., 1978. Ecological evaluation, nature conservation and land use planning with particular reference to methods used in the Netherlands. Biological Conservation. 14, 197-221. Villarroya, A., Puig, J., 2010. Ecological compensation and Environmental Impact Assessment in Spain. Environ. Impact Asses. 30(6), 357-362. doi:10.1016/j.eiar.2009.11.001 Weaver, A., Pope, J., Morrison-Saunders, A., Lochner, P., 2008. Contributing to sustainability as an environmental impact assessment practitioner. Impact Assessment and Project Appraisal. 26(2), 91- 98. doi:10.3152/146155108X316423 Wood, C., 2003. Environmental impact assessment: a comparative review. Pearson-Prentice Hall, Harlow.

- 89 - Pérdida aceptada de calidad ecológica

WEB REFERENCES http://usuarios.multimania.es/fotoantigua/index.html [last accessed 21 february 2012]

- 90 - Pérdida aceptada de calidad ecológica

ANEXO CAPÍTULO III

Proyectos costeros 2001-2011 Proyectos de carreteras 2009-2011

No mencionados Mencionados

Figura 1. Referencias a impactos residuales en las DIAs de proyectos costeros y de carreteras.

- 91 -

SEGUNDA PARTE PROPUESTAS PARA PROMOVER LA COMPENSACIÓN ECOLÓGICA EN LA EIA EN ESPAÑA

Como se desprende de los primeros artículos de la tesis, y como afirman algunos autores, parte del problema de la puesta en práctica de la compensación ecológica puede derivarse de las dificultades que surgen en torno a la valoración del impacto residual (ecológico), y la subsiguiente estimación de las medidas compensatorias necesarias para contrarrestarlo (Darbi et al., 2009; Rowe et al., 2009).

En esta parte se tratan con más profundidad estos temas a través de tres artículos que, continuando la línea iniciada en la primera parte de la tesis, giran en torno a proyectos de vías de transporte, aunque en muchos aspectos son aplicables a otros tipos de proyectos.

La propuesta concreta de medidas de compensación ecológica necesarias para acercar un proyecto al objetivo de sostenibilidad debe fundamentarse en el valor de su impacto ecológico residual. A su vez, éste último se basa en la valoración ecológica del medio, antes y después de la actuación prevista. En cada uno de los capítulos que siguen, se ha centrado la atención, sucesivamente, en uno de tres grandes temas, diferenciados pero siempre tratados según la estrecha relación recíproca que sostienen.

El artículo IV se centra en el papel del método de valoración ecológica del medio dentro de la EIA, especialmente en cuanto a su utilidad para revelar los impactos ecológicos residuales de forma que constituyan una base sólida a partir de la que promover la compensación. Complementariamente, el artículo V analiza el grado de atención a los impactos ecológicos residuales mismos, en una selección de Declaraciones de Impacto Ambiental de proyectos de vías de transporte en España, señalando posibles puntos a mejorar. Finalmente, el artículo VI se centra en torno a la propuesta concreta de medidas de compensación ecológica, revisando las orientaciones que existen actualmente en la bibliografía y elaborando una propuesta para complementarlas en el caso de proyectos de carreteras y autopistas.

- 93 -

CAPÍTULO IV UN MÉTODO ADECUADO PARA LA VALORACIÓN ECOLÓGICA DEL MEDIO Y DE LOS IMPACTOS RESIDUALES

Villarroya A, Puig J. 2012. Valuation of residual impacts of roads on landscape ecological units in Navarre, Spain. Journal of Environmental Planning and Management; 55(3):339-353. doi: 10.1080/09640568.2011.597974

Método de valoración ecológica

Este capítulo presenta un método de valoración ecológica por unidades de paisaje, y su potencial para abordar la valoración de impactos residuales en el marco de la EIA. Sin embargo, la atención no está centrada en el método concreto que se presenta, sino en cómo alcanzar los requisitos de sencillez y transparencia que debe cumplir. Lo que se busca con el artículo es ilustrar cómo un método de valoración puede emplearse para reforzar, en especial de cara al público y su deseable intervención, los argumentos a favor de la práctica de la compensación, facilitando la percepción, registro y valoración de impactos ecológicos residuales, mediante un método que busca ser lo sencillo y transparente que el complejo objeto de valoración (los elementos naturales de un lugar) permite. En cualquier caso, el capítulo propone, teniendo en cuenta el marco de decisión para el que lo hace (la EIA), un modo de trabajo que busca sencillez y transparencia en la evaluación, ejemplificadas mediante un método concreto. No busca, de ningún modo, “establecer” un método único de evaluación.

El trabajo parte de la observación, a través de la bibliografía, de que durante los últimos 25 años se han desarrollado numerosos métodos de valoración ecológica del medio (ver, p. ej., Tabla 1 en artículo IV). A la hora de buscar formas de valorar adecuadamente los impactos (residuales) ecológicos, una primera idea podría haber sido recurrir a estos métodos, que buscan —por lo general— la precisión e idoneidad científica en las estimaciones de los valores que obtienen.

Sin embargo, la EIA se desarrolla en un contexto de participación y de toma de decisiones, condicionada habitualmente por limitaciones de tiempo y recursos propias de este procedimiento. Todo esto hace que metodologías demasiado complejas no sean adecuadas para este procedimiento, como ocurre a menudo con los métodos de valoración propuestos desde el ámbito científico.

Por este motivo, el artículo IV, así como los que le siguen, trata de elaborar propuestas que buscan, en la medida de lo posible, un equilibrio entre la precisión científica que la toma de decisiones requiere y las exigencias prácticas del procedimiento de EIA.

- 95 - Método de valoración ecológica

VALUATION OF RESIDUAL IMPACTS OF ROADS ON LANDSCAPE ECOLOGICAL UNITS IN NAVARRE, SPAIN VALORACIÓN DE IMPACTOS RESIDUALES DE CARRETERAS EN UNIDADES ECOLÓGICAS DE PAISAJE EN NAVARRA (ESPAÑA)

ABSTRACT Road construction generally reduces the ecological value of the environment. To recover it, the value of the residual ecological impacts should be counterbalanced by compensation measures, within the Environmental Impact Assessment (EIA) procedure. Ecological valuation and impact valuation are central to EIA performance. As long as residual impacts are valued, the rationale behind specific compensation proposals may be strengthened. This paper proposes a simple, transparent and adaptable approach to ecological and impact valuation. It aims at improving the perception, compilation and valuation of certain residual ecological impacts, as a means to encourage compensation practice within EIA.

KEYWORDS: ecological valuation; residual impacts; ecological compensation; environmental impact assessment (EIA); impact valuation; landscape units.

RESUMEN La construcción de carreteras reduce el valor ecológico del medio. Para recuperarlo, los impactos ecológicos residuales han de ser contrarrestados a través de la aplicación de medidas compensatorias, dentro del procedimiento de Evaluación de Impacto Ambiental (EIA) que tiene como núcleo la valoración ecológica y la valoración de impactos. Así, la valoración de impactos residuales es la base para la propuesta de medidas compensatorias adecuadas. Este artículo elabora una propuesta simple, transparente y adaptable de valoración ecológica del medio y los impactos, con el objetivo de mejorar la percepción, registro y valoración de ciertos impactos residuales y fomentar así la práctica de la compensación dentro de la EIA.

PALABRAS CLAVE: valoración ecológica; impactos residuales; compensación ecológica; Evaluación de Impacto Ambiental (EIA); valoración de impactos; unidades de paisaje.

1. INTRODUCTION

Road construction causes notable impacts on the ecological value of the environment. Some of these impacts (such as noise, pollutant emissions or land use changes) cannot be completely avoided or reversed through the implementation of either

- 96 - Método de valoración ecológica preventive or corrective measures, thus becoming what we call residual impacts. Road construction should provide for appropriate ecological compensation of these impacts, in order to preserve the overall ecological value undiminished.

The valuations are simply the relative weights we give to the various aspects of the decision problem (Costanza 2000). When decisions have to be made on whether or not a project ought to be implemented, the environment and the impacts caused on it may be valued using of two main complementary approaches: ecological valuation, and socio-economic valuation (Van der Ploeg and Vlijm 1978; Smith and Theberge 1986, Efroymson et al. 2008). This article focuses in the ecologic side of the value of the environment and of the impacts on it.

Once the decision to compensate is taken, the definition of ecological compensatory measures faces an added problem to that of selecting either preventive or corrective measures. Compensation practice should counterbalance the residual impact, the lost ecological value. Yet, the rationale behind the proposal of compensatory measures lacks frequently systematization, such as an appropriate reference to residual impacts, as it has been occasionally reported in Environmental Impact Assessment (EIA) frameworks (Villarroya and Puig 2010).

The selection and design of compensation measures should seek to balance the value of the residual ecological impacts. Correspondingly, the value assigned to the residual impacts should match the irretrievable loss of ecological value after the project and all of the possible corrective measures have been implemented. Both ecological evaluation and impact evaluation have long been under discussion (Beattie 1995, Bingham et al. 1995, Geneletti 2002, Nakagoshi and Kondo 2002, Cloquell-Ballester et al. 2006, Efroymson et al. 2008, Niemeijer and de Groot 2008). But, as Costanza et al. (1997) point out:

“[…] although ecosystem valuation is certainly difficult and fraught with uncertainties, one choice we do not have is whether or not to do it. […] as long as we are forced to make choices, we are going through the process of valuation.” Ecological valuation and ecological impact valuation are central to EIA performance. The difference between the ecological value of the environment with or without the project implementation shows us the value of the ecological impact. As long

- 97 - Método de valoración ecológica as residual ecological impacts are valued, the rationale behind specific compensation proposals may be strengthened.

Focusing on roads, this paper proposes a simple, transparent and adaptable approach to ecological valuation and impact valuation. Based on land units valuation (see section 3) and orthophotograph interpretation, it aims to improve the perception, compilation and valuation of residual impacts, as a means to encourage compensation practice within EIA. In any case, no attempt is made in this article at systematizing the choice of compensation measures once the residual impact has been pointed out.

Our approach does not pay attention to all of the residual impacts. It rather focuses on the record and graphic representation of some ecological values and impacts that can be expressed through mappable land units. We focus on those residual impacts, as they can be easily perceived, understood, and presented to the public through maps and orthophotography. More ambitious and demanding attempts that might prove impractical at present should be reserved for EIA contexts more committed to the preservation of the overall ecological value. This approach, although limited, may foster the practice of well-reasoned compensation initiatives in those EIA frameworks where residual impacts are frequently admitted, or even unnoticed, and remain uncompensated.

2. ECOLOGICAL VALUATION IN EIA

Subjectivity is a main challenge any valuation approach has to face. It is an inherent component of each evaluation and cannot be eliminated (Geneletti 2003). But it can be delimited, distinguishing as much as possible objective components (as those allowing to prepare classifications) from subjective components (as those assessing the relative value of each category) throughout the valuation process, as Wathern et al. (1986) advise to do.

Not being a problem in itself, the subjective components of the valuation process ought to be made as transparent as possible in participatory frameworks such as EIA. Assuming that all assessment decisions, and their basis, should be open and accessible (Ridgway et al. 1996 cited Morrison-Saunders and Bailey 2000), we adopt the approach that the reader should be able to follow the investigation step by step (Hylmö and Skärbäck 2006), as we agree with Costanza (2000) that “Society can make better choices about ecosystems if the valuation issue is made as explicit as possible.”

- 98 - Método de valoración ecológica

Transparency calls for simple methods (i.e., easy to be understood and to be implemented), because “In short, transparency assumes the availability of “user-friendly” information that is not misleading, cannot be misunderstood, nor is easily misinterpreted” (Kakonge 1998). In EIA practice, transparency in the decision making process becomes one of the fundamental principles to reach an effective implementation (Sadler 1996). In addition, although subjectivity can never be eliminated, the results of an evaluation may become more credible to the public if they are obtained by the application of an a-priori defined methodology (Antunes et al. 2001), provided it is made entirely explicit to the public.

Any environment contains unique and specific ecological features, people and values. It seems not possible or sensible to propose a completely standardized, closed or rigid valuation approach. In 2002 Nakagoshi and Kondo came even to state that “Standard methods for the evaluation of natural environments […] have not been established”. Valuation systems should adapt to the particularities of the ecology, the people and the values of every particular environment.

Many methodologies have been proposed to assess the value of the environment. A review of selected approaches that might be of use in EIA (even though they might have been designed primarily for other purposes) has been conducted (see Table 1). Bearing particular aspects of these methodologies in mind, we designed a valuation approach to strengthen the rationale behind impact evaluation and compensation practice in EIA.

Our proposal presents its results both as valued land units (see section 3) on orthophotographs and as data tables, to fit within the EIA framework. Maps and orthophotographs allow impact location and provide a basis for impact quantification, as well as for public participation1. The proposal seeks also to be easily implemented, while avoiding an oversimplification beyond the minimum acceptable requirements of precision and resolution. Following Munda et al. (1994):

“In choosing a set of evaluation criteria, two main tendencies can be distinguished. On one hand, one may wish to build a decision model as close as possible to the real-world problem; this may increase the number of evaluation criteria to a level such that its applicability becomes almost impossible. On the other hand, one may wish to use a small number of

- 99 - Método de valoración ecológica

criteria so that the model is simpler and faster to use; this may bring to an oversimplification of the model used.” The coming sections clarify the criteria and rationale followed to proceed with the valuation approach here presented.

What seeks to value the method? Examples Ecology and ecosystems Tubbs and Blackwood 1971 Yapp 1973 Ten Brink et al 1991 — General Method for Description and Evaluation of Ecosystems (AMOEBE) Rossi and Kuitunen 1996 IUCN 1991 in Ruijgrok 2000 — Ecosystem Classification Method (ECM) Bureau Waardenburg 1993 in Ruijgrok 2000 — Visualisation of Quality of Roadsides method (VQRS) Dutch Ministry of Agriculture, Nature Management and Fisheries 1996 in Ruijgrok 2000 — Ecological loss due to roads method A73 Ruijgrok 2000 — Multi-Criteria Valuation method (MCV) Gómez-Sal et al 2003 White and Maurice, u.d. in Efroymson et al 2008 — Critical Ecosystem Assessment Model (CrEAM) Missouri Resource Assessment Partnership, 2004 in Efroymson et al 2008 — Critical Ecosystem Assessment Model (CrEAM) Efroymson et al 2008 — Habitat Evaluation Procedures Efroymson et al 2008 Landscape Anglieri and Toccolini 1993 Lee et al 1999 Martínez-Vega et al 2003 Martínez-Vega et al 2007 Conservation suitability Gehlbach 1975 Goldsmith 1975 Wright 1977 Giménez-Luque and Gómez-Mercado 1999 Nakagoshi and Kondo 2002 Biodiversity Ten Brink 2000; Van der Perk and de Groot 2000; ten Brink 2007— Natural Capital Index (NCI) Impacts Dutch Ministry of Agriculture, Nature Management and Fisheries 1996 in Ruijgrok 2000 — Ecological loss due to roads method A73 Nunes et al 2001 — Ecological effect measurement method Table 1. Valuation methods and approaches selected.

3. DESCRIPTION OF THE ECOLOGICAL VALUATION APPROACH

3.1. INTRODUCTION

Usually, no piece of land is internally homogeneous. Consequently, within any delimited area, zones of different assigned ecological value can be pointed out and mapped or drawn on orthophotographs. Our approach starts by enclosing the land directly affected by the proximity of the road project within a band alongside the road. Secondly, smaller zones are delimited within it, usually irregular in shape. Each of these zones shares an important ecological trait that makes it different from those around. The ecological feature chosen to delimit these smaller and relatively homogeneous zones has

- 100 - Método de valoración ecológica been the dominating vegetation and/or land use, which deeply characterize their ecological quality (see Figure 2).

Each zone is differently perceived to the surrounding ones, and can be readily mapped or drawn. People with no particular environmental expertise may do it, as well as understand and interpret the resulting map or orthophotograph to the extent of their knowledge of the land. These zones have been called land units, and are delimited either by the surrounding units or by the limits of the band.

An ecological value is assigned to each land unit, through two consecutive steps:

(1) As we deal with natural and semi-natural environments, each land unit is assigned a base value class according to the dominant vegetation. (2) When necessary, the base value is modified to obtain a final value class, according to secondary traits that may add up to the formerly assigned base value, or take away from it. Ecological value classes have been defined ranging from class “A” (maximum ecological quality value) to class “J” (minimum value). This classification does not apply to urban environments and similar ones (a small fraction of our study area), which are assigned a specific class, “U”. Those units having been assigned the lowest class may still have some ecological value, and they keep the potential to be ecologically improved. The specific valuation criteria may be changed, as above mentioned, to adapt to specific ecological features that differ from the ones we face in our particular case application.

3.2. BASE VALUE

Table 2 shows the base value assigned to the land units within the area of study. Base values range from class “B” to class “I”. “A” (maximum value) and “J” (minimum value) classes are excluded here. Class “A” and “J” may not be assigned paying attention only to dominant vegetation, but also to some of the value modifiers dealt with below. Again, alternative tables might be elaborated for differing environments.

- 101 - Método de valoración ecológica

BASE VALUE CLASS ASSIGNMENT Vegetation characteristics Value Class Climax B Sub-climax C Other High land cover Forest and woodland D (neither climax nor Shrub land E sub-climax Pasture / herbaceous G vegetation) Medium land cover Forest and woodland E Shrub land F Pasture / herbaceous G Low land cover H Scant land cover I

Table 2. Base value classes assigned to the land units within the area of study. The highest base values apply to those units showing climax vegetation, which may be defined for our purposes as the most mature state that vegetation would eventually reach on a given site in the absence of human action. Sub-climax vegetation units follow them in assigned value, as sub-climax vegetation may be understood as the stage immediately preceding a climax. The recovery after the loss of the climax and sub- climax vegetation in any of these units would either be very difficult, or take a long period of time to restore, thence their assigned high value. Even though real land units could rarely meet the climax or sub-climax definition requirements, we do find in our region vegetation areas that are usually tagged as “climax vegetation”, as it happens with well- preserved forests (even though they may have experienced some use in the past), in contrast to crops or pastures.

The remaining units are classified paying attention firstly to the vegetation cover rate they present (see Table 3). Four categories can be distinguished:

 Scant vegetation cover: Vegetation covers less than 15% of the unit.  Low vegetation cover: Vegetation covers between 15% and 30%.  Medium vegetation cover: Vegetation covers between 30% and 70%.  High vegetation cover: Vegetation covers more than 70%. Those units with scant or low vegetation cover (≤30%) are assigned the lowest base value. When the vegetation cover exceeds 30%, the base value is assigned according to the vegetation physiognomy within the unit. Three physiognomies have been distinguished in our case, following the criteria set by the available vegetation map of the area (Olano et al. 2003):

- 102 - Método de valoración ecológica

 Forest: tree species cover > 20% of the land surface.  Shrub land: shrubs cover > 20%, tree cover  20%.  Pasture: herbaceous formations dominate; tree and shrub cover  20%.

Land Cover / Physiognomy High (+ +) Medium (+) Forest and Woodland (+ + + + + + + (D) + + + + (E) +) Shrub land (+ +) + + + + (E) + + + (F) Pasture / Herbaceous + + (G) + (G)

Table 3. Base value assignment criteria. The sign “+” indicates comparative added contribution to ecological quality. “High” land cover adds ecological quality when compared to “medium” land cover. Seemingly, forests and woodland usually add ecological quality when compared to shrub land. Setting aside other criteria, usually the bigger the size of the vegetation, the longer it has taken to reach its present appearance, the higher its ecological complexity, and the longer it takes to recover it when lost. So the highest value is assigned to forest, followed by shrub land. The lowest value is assigned to pasture.

The value assigned to those units showing high and medium vegetation cover has been obtained by combining the variables ‘land cover’ and ‘dominating vegetation physiognomy’, as detailed in Table 3. ‘Land cover’ acts as a modifier of the value set primarily by ‘physiognomy’, except for pastures, which are always assigned the same base value.

3.3. BASE VALUE MODIFIERS

The base value class of each unit is assigned by its dominating vegetation. But the final value class depends also on complementary criteria, elements or features that do not exclude each other. They may complement, and add up together and to the base value to get the final value for each unit. Notwithstanding, and in order to simplify the following explanations, each modifier is going to be considered by itself.

i. Elements, criteria and features that may add up ecological value to land units.

a. Ecological protection status. When a unit belongs to land protected for ecological reasons (wildlife, biodiversity…), it may be assigned to a higher ecological value class, even the highest (class ‘A’).

- 103 - Método de valoración ecológica

b. Natural features of ecological interest. They may add up to the base value class because they improve, e.g., the habitat characteristics (caves that may act as a shelter place for highly valuable wildlife species, ponds and lakes, streams and rivers…). The value assigned to a unit will increase with the number, extension or importance of such features (see Table 4).

ii. Elements, criteria and features that may take away ecological value to land units.

b. Poor phytosanitary state. Plant diseases, pests, recent wildfires, and other causes may diminish the ecological value of a unit in varying degrees:

i. Plant diseases / Pests. When incidental, they may lower the unit value from the base value to a lower class. If prevalent across the area, they may lower the value to any of the two following classes.

ii. Recent wildfire. If the unit shows no evident and prevalent signs of regeneration after a wildfire, its value may be lowered to any of the 5 classes following the base value class. If widespread regeneration can be observed, the value assigned will be lowered in up to two classes.

c. Presence of invasive species. Following IUCN (2010), they are “species introduced outside its normal distribution. Its establishment and spread modify ecosystems, habitats, or species”. In an incipient state of invasion, they may lower the value to a lower class. If prevalent across the area, they may lower the value in two classes.

d. Impacting human activities. Some human activities diminish the naturalness and ecological value of the unit. The human impact depends on the activity and its timing. Three cases are considered here:

i. Tree plantation of non-native species.

1. When native species have almost completely and naturally substituted the non-native species originally planted, the assigned base value is not modified.

2. Recent non-native tree plantations are assigned up to two quality classes lower than the base value class.

- 104 - Método de valoración ecológica

ii. Grazing. When the unit hosts grazing cattle, the final value class assigned may be up to two quality classes lower than the base value class.

iii. Agriculture. When the unit contains crops or farm fields, the final value class assigned may be up to two quality classes lower than the base value class.

iv. Housing and other buildings and infrastructures, other than roads (see following section) and urban areas (which are assigned ‘U’ class).

1. When they are scarce in number and area occupied, the base value class remains as the final value class of these units.

2. When they are frequent either because of their relative size or for any other reason, the class assigned to the unit by the base value may be lowered to the following class.

v. Distance to the nearest road. Roads are mentioned apart because they are a special concern of this work. Many of their effects fade as the distance to the road increases. No agreement has been reached on how to map such decreasing influence. Having in mind this background, we distinguish between three categories:

1. When the unit is located farther away than 75 m from the road, the base value remains as the final value (75 m is the smallest distance of affection proposed for high density traffic roads, following Reijnen et al. 1997).

2. When the unit is located within 75 m from the road, the final value class may be lowered to the following class.

3. When the unit is crossed by the road, the final value class may be lowered to the two following classes.

At this point we would like to insist on the adaptability of the approach. We do not intend these criteria should be strictly followed. We rather wish to reason and make our criteria explicit, to make possible to change them when needed.

- 105 - Método de valoración ecológica

BASE VALUE POTENTIAL MODIFIERS Assigned Final Value Environmental feature / element Class (FVC) Ecological protection e.g.: National Parks, Nature reserves, Protected landscapes, Sites of FVC: Class “A” status (variable Community Importance (SCIs), Special Areas of Conservation regulatory frameworks) (SACs), Important Plant Areas (IPAs), Special Protection Areas (SPAs), (…) Natural features of Singular rock outcrops, waterfalls, special features improving the FVC: BV, BV+1 or interest habitat characteristics for wildlife valuable species… BV+2

(FVC: Base Value Class, BV, or up to 2 classes higher: BV+1, BV+2) Phytosanitary state Diseases / pests Incidental or non-prevalent FVC: BV or BV-1 Prevalent FVC: BV, BV-1 or BV- 2 Recent wildfire No widespread regeneration FVC: BV, BV-1, BV-2, observed BV-3, BV-4 or BV-5 Widespread regeneration in FVC: BV, BV-1 or BV- process 2 Presence of invasive Incidental or non-prevalent FVC: BV or BV-1 species Prevalent FVC: BV, BV-1 or BV- 2 Some impacting human Tree plantation of non-native Already close to a natural state FVC: BV activities species Non close to a natural state FVC: BV, BV-1 or BV- 2 Grazing FVC: BV, BV-1 or BV- 2 Agriculture FVC: BV, BV-1 or BV- 2 Housing, buildings… Occasional FVC: BV Frequent FVC: BV or BV-1 Distance to the nearest road >75 m FVC: BV <75 m FVC: BV or BV-1 The road crosses the unit FVC: BV, BV-1 or BV- 2 Table 4. Some base value potential modifiers. FVC = Final Value Class. BV: Base Value. The signs (+) and (-) indicate the class change range caused by the modifiers. So BV+2 indicates that a given land unit may be assigned to a final value class two classes above the base value class, due to the presence of modifiers.

- 106 - Método de valoración ecológica

3.4. PRESENTATION OF THE VALUATION RESULT: NA-411 ROAD CASE STUDY

As it has been anticipated, the results of the valuation approach are presented both in orthophotograph, and table formats. As above mentioned, maps and orthophotos allow the visualization and understanding of results, and locate those units with the highest and lowest ecological values and residual impacts. Tables complement the orthophotos, and sum up some of their features, such as the number of land units fragmented by roads.

Figure 1 locates the area of study in the NW of Navarre (Spain), and shows a general view of the area. The road stretch selected unites the points of coordinates 42º57’48”N; 1º49’37”W and 43º0’21’N; 1º46’49”W. We have delimited ninety-nine land units within two 500 m-wide bands alongside the road. The units are shown in Figure 2. A distinction is made between riparian area (RP), natural forest (NF), tree plantations (TP), crops and pastures (CP), rural building areas (RB), uncultivated land patches (UN) and urban areas (UR) units. The valuation of each delimited land unit has been done following the above mentioned directions, and using of the information provided by orthophotos and field trips. As a result, every type of unit is coloured differently, according to their ecological value. Figures 3, 4 and 5 show an application example of the approach here outlined. A sample of the valuation results is shown in Table 5.

Fig. 1. Location of the study area.

- 107 - Método de valoración ecológica

Fig. 2. Land units within the study area.

Fig. 3. Value assigned to each land unit before project implementation.

- 108 - Método de valoración ecológica

Fig. 4. Value assigned to each land unit after project implementation.

Fig. 5. Changes in value class caused by the project implementation.

- 109 -

Unit Id Base value Value modification rate Causes of value addition Causes of value subtraction Final value NF06 B +1 River proximity A TP04 D -2 Tree plantation F CP16 F -1 Agriculture G RP03 B +1 River proximity A RP04 B 0 River proximity Phytosanitary condition B RP05 B -1 River proximity Phytosanitary condition C RP06 B +1 River proximity A RP07 B -2 River proximity Phytosanitary condition; rural buildings; road proximity D RP08 B +1 River proximity A CP17 F 0 River proximity Agriculture F CP18 F -2 Agriculture H CP19 F -1 Agriculture G NF07 B 0 B CPG20 E -1 Agriculture F CP21 F -3 Agriculture; road proximity I CP22 F 0 River proximity Agriculture F CP23 F 0 River proximity Agriculture F RP05 D -1 River proximity Tree plantation, phytosanitary condition E NF08 B -1 River proximity Tree plantation C CP24 F 0 River proximity Agriculture F NF09 B +1 River proximity A CP25 F 0 River proximity Agriculture F CP26 F 0 River proximity Agriculture F UR04 ------CP27 F -2 Agriculture H CP28 F -1 River proximity Agriculture; road proximity G TP06 D -2 Tree plantation F CP29 F 0 River proximity Agriculture F Table 5. Some examples of the land unit valuation approach.

Método de valoración ecológica

Residual ecological impact is the loss of the ecological value caused by a project once all the corrective measures have been implemented. In our case-study we approximate part of it. By applying the ecological valuation approach twice, with and without project implementation, we can register which units will be affected, and to what a degree. We only reach impact approximations, as no methodology can take into account all of the residual impacts caused by project implementation. But even though they are approximations, they may be efficient in fostering residual impact awareness and, consequently, ecological compensation practice.

Two differently drawn orthophotos can represent the assigned value for every land unit, either with (Figure 4) or without (Figure 3) the project implementation. The differences between those orthophotos show and locate some of the particularities of the ecological impact.

4. CONCLUSIONS

The ecological evaluation and impact evaluation approach presented may efficiently contribute to highlight ecological residual impacts.

Orthophotographs provide important ecological value data that may be efficiently used in ecological valuation and impact valuation within EIA participatory frameworks.

Dominant vegetation, as recorded on orthophotographs, has proved an adequate ecological feature to delimit land units affected by the impacting activity, and to approximate their ecological value, which has to be refined with complementary criteria appropriate of each environment.

Land units have been proved a useful tool to represent some of the main ecological values and ecological impacts contained within the area of study. The definition of land units characterized by dominant vegetation allows our approach to be adopted in different environments, and adapted to their ecological value particularities. The detailed explanation of the criteria used in our case study to assess the ecological value of land units allows the discussion and modification of the approach.

Land units delimited on orthophotographs give a quick and precise location of areas with different ecological value, so indicating where the ecological value concentrates or distributes across the area under study. Seemingly, they have been used satisfactorily to

- 111 - Método de valoración ecológica show those areas where the ecological value changes as a result of the impacting activity, and where they concentrate or distribute. As the ecological value changes recorded on the orthophotographs reflect ecological impacts, the use of land units allow to locate them.

The maps produced from orthophotographs in our case study increase the awareness of road ecological residual impacts that at present go mostly unnoticed. These maps provide a base for future ecological impact quantification, even though we have not explored this option in this work. The data tables presented help in interpreting the maps.

Finally, we hope that the display of ecological impacts through land units drawn on orthophotographs may help in increasing the awareness of residual ecological impacts, and provide a firm basis to promote ecological compensation practice.

NOTES 1. Natori et al. (2004) propose the use of maps to narrow the communication gaps between research, policy formation, and policy implementation. Maps allow “for clearer delivery of messages from researchers to government officials and residents”, contain “much less ambiguity than written administrative policies” and provide “a graphical presentation that allows for intuitive understanding of what will be attempted”. Maps “allow the government to invite local participation in nature conservation” and “allow residents to feel it would be easier to get involved, as a map would help them to consider the policy in the context of their daily lives more readily”. We understand that orthophotographs share all of these advantages for our purposes.

ACKNOWLEDGEMENTS Ana Villarroya is supported by a doctoral fellowship provided by the Department of Science, Technology and Universities of the Government of the Autonomous region of Aragón. Special thanks to Mr Carlos Villarroya for his help and support with field work.

REFERENCES Angileri, V., Toccolini, A., 1993. The assessment of visual quality as a tool for the conservation of rural landscape diversity. Landscape and Urban Planning, 24, 105-112. Antunes, P., Santos, R., Jordão, L., 2001. The application of Geographical Information Systems to determine environmental impact significance. Environmental Impact Assessment Review, 21, 511-535.

- 112 - Método de valoración ecológica

Beattie, R.B., 1995. Everything you already know about EIA (but don't often admit). Environmental Impact Assessment Review, 15, 109-114. Bingham, G., et al., 1995. Issues in ecosystem valuation: improving information for decision making. Ecological Economics, 14, 73-90. Cloquell-Ballester, V.A., et al., 2006. Indicators validation for the improvement of environmental and social impact quantitative assessment. Environmental Impact Assessment Review, 26, 79-105. Costanza, R., 2000. Social Goals and the Valuation of Ecosystem Services. Ecosystems, 3, 4-10. Costanza, R., et al., 1997. The value of the world's ecosystem services and natural capital. Nature, 387, 253- 260. Efroymson, R.A., et al., 2008. Investigating habitat value to inform contaminant remediation options: Approach. Journal of Environmental Management, 88, 1436-1451. Gehlbach, F.R., 1975. Investigation, evaluation, and priority ranking of natural areas. Biological Conservation, 8, 79-88. Geneletti, D., 2002. Ecological evaluation for environmental impact assessment. Utrecht: Netherlands Geographical Studies. Geneletti, D., 2003. Biodiversity Impact Assessment of roads: an approach based on ecosystem rarity. Environmental Impact Assessment Review, 23, 343-365. Giménez-Luque, E., Gómez-Mercado, F., 1999. Valoración naturalística del Paraje Natural Punta Entinas - Sabinar. In: E. Cano-Carmona et al., eds. Valoración y gestión de espacios naturales. XVII Jornadas de Fitosociología. 21-24 September 1999 Jaén. Jaén: Servicio de Publicaciones de la Universidad de Jaén, 143-151. Goldsmith, F.B., 1975. The evaluation of ecological resources in the countryside for conservation purposes. Biological Conservation, 8, 89-96. Gómez-Sal, A., Belmontes, J.A., Nicolau, J.M., 2003. Assessing landscape values: a proposal for a multidimensional conceptual model. Ecological Modelling, 168, 319-341. Hylmö, K., Skärbäck, E., 2006. Transparency in Road Planning Documents: A Case Study of Two Swedish Projects. Environmental Practice, 8, 49-57. IUCN, 2010. Biodiversity Glossary [online]. Available from: http://www.iucn.org/iyb/about/bio_glossary/ [Accessed 20 December 2010]. Kakonge, J.O., 1998. EIA and good governance: issues and lessons from Africa. Environmental Impact Assessment Review, 18, 289-305. Lee, J.T., Elton, M.J., Thompson, S., 1999. The role of GIS in landscape assessment: using land-use-based criteria for an area of the Chiltern Hills Area of Outstanding Natural Beauty. Land Use Policy, 16, 23-32. Martínez-Vega, J., Martín-Isabel, M.P., Romero-Calcerrada, R., 2003. Valoración del paisaje en la Zona de Especial Protección de Aves Carrizales y Sotos de Aranjuez (Comunidad de Madrid). GeoFocus (Artículos), 3, 1-21. Martínez-Vega, J., Romero-Calcerrada, R., Echavarría, P., 2007. Valoración paisajística y ecológica de la Comunidad de Madrid: su integración en un índice sintético de riesgo de incendios forestales. Revista de Teledetección, 28, 43-60. Morrison-Saunders, A., Bailey, J., 2000. Transparency in environment impact assessment decision-making: recent developments in Western Australia. Impact Assessment and Project Appraisal, 18(4), 260- 270. Munda, G., Nijkamp, P., Rietveld, P., 1994. Qualitative multicriteria evaluation for environmental management. Ecological Economics, 10, 97-112. Nakagoshi, N., Kondo, T., 2002. Ecological land evaluation for nature redevelopment in river areas. Landscape Ecology, 17(Suppl 1), 83-93. Natori, Y., Fukui, W., Hikasa, M., 2005. Empowering nature conservation in Japanese rural areas: a planning strategy integrating visual and biological landscape perspectives. Landscape and Urban Planning, 70, 315-324.

- 113 - Método de valoración ecológica

Niemeijer, D., de Groot, R.S., 2008. A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8, 14-25. Nunes, P.A.L.D., Van den Bergh, J.C.J.M., Nijkamp, P., 2001. Integration of economic and ecological indicators of biodiversity. In: OECD, ed. Valuation of Biodiversity Studies: Selected Studies. Paris: OECD, 153- 182. Olano, J.M., et al. 2003. Cartografía de hábitats en los Lugares de Importancia Comunitaria (LICs) de Navarra (Red Natura 2000). In: VII Congreso Nacional de la Asociación Española de Ecología Terrestre. 2-4 July 2003 Cerdanyola del Vallès. Barcelona: 1094-1110. Reijnen, R., Foppen, R., Veenbaas, G., 1997. Disturbance by traffic of breeding birds: evaluation of the effect and considerations in planning and managing road corridors. Biodiversity and Conservation, 6, 567- 581. Rossi, E., Kuitunen, M., 1996. Ranking of habitats for the assessment of ecological impact in land use planning. Biological Conservation, 77, 227-234. Ruijgrok, E.C.M., 2000. Valuation of nature in coastal zones. Thesis (PhD). Free University of Amsterdam. Sadler, B., 1996. International Study of the Effectiveness of Environmental Assessment, Final Report, Environmental Assessment in a Changing World: Evaluating Practice to Improve Performance. Canada: Minister of Supply and Services. Smith, P.G.R., Theberge, J.B., 1986. A review of criteria for evaluating natural areas. Environmental Management, 10(6), 715-734. Ten Brink, B.J.E., 2000. Biodiversity indicators for the OECD Environmental Outlook and Strategy: a feasibility study. Globo Report Series no. 25. Bilthoven: National Institute of Public Health and the Environment. Ten Brink, B.J.E., 2007. Contribution to Beyond GDP "Virtual Indicator Expo": The Natural Capital Index framework (NCI). In: Beyond GDP International Conference, 19-20 November 2007 Brussels. Ten Brink, B.J.E., Hosper, S.H., Colijn, F., 1991. A Quantitative Method for Description & Assessment of Ecosystems: the AMOEBA-approach. Marine Pollution Bulletin, 23, 265-270. Tubbs, C.R., Blackwood, J.W., 1971. Ecological Evaluation of Land for Planning Purposes. Biological Conservation, 3(3), 169-172. Van der Perk, J., de Groot, R., 2000. Towards a Method to estimate Critical Natural Capital: An inventory of methods to determine critical natural capital in the Netherlands. Discussion paper for second meeting of the CRITINC-project. 30 November — 1 December 1998 Saint Quentin en Yvelines, Paris. Van der Ploeg, S.W.F., Vlijm, L., 1978. Ecological evaluation, nature conservation and land use planning with particular reference to methods used in the Netherlands. Biological Conservation, 14, 197-221. Villarroya, A., Puig, J., 2010. Ecological compensation and Environmental Impact Assessment in Spain. Environmental Impact Assessment Review, 30, 357-362. Wathern, P., et al., 1986. Ecological evaluation techniques. Landscape Planning, 12, 403-420. Wright, D.F., 1977. A site evaluation scheme for use in the assessment of potential nature reserves. Biological Conservation, 11, 293-305. Yapp, W.P., 1973. Ecological Evaluation of a Linear Landscape. Biological Conservation, 5(1), 45-47.

- 114 -

CAPÍTULO V LA CONVENIENCIA DE SUBRAYAR LOS IMPACTOS ECOLÓGICOS RESIDUALES

Villarroya A, Puig J. A proposal to improve ecological compensation practice in road and railway projects in Spain. Enviado a Environmental Impact Assessment Review

Método de valoración ecológica

El artículo V revisa cómo se aborda la valoración de impactos ecológicos residuales en la EIA de proyectos de vías de transporte, relacionando este aspecto con la propuesta de medidas compensatorias en estos casos.

Para ello, se recurre de nuevo a las DIAs como indicadores tanto de lo que ocurre a lo largo del procedimiento de EIA como de la importancia que se le da a cada parte del proceso.

En este caso, se prestó especial atención a las alegaciones presentadas por el público, buscando detectar referencias a la valoración ecológica del medio y los impactos residuales. Asimismo, se evaluó también el peso otorgado al valor del impacto residual en la toma de decisiones.

Tras evaluar estos aspectos, el artículo elabora propuestas que se centran en promover la percepción y valoración de los impactos residuales dentro de los procesos actuales de EIA, siempre con el fin de fomentar la compensación.

Por un lado, la participación del público en la valoración podría verse favorecida por la utilización de metodologías relativamente sencillas y transparentes, que permitan comprender el proceso de principio a fin, como la vista en el capítulo anterior. Este modo de proceder facilitaría la propuesta por parte del público interesado de mejoras relativas a la valoración de impactos, abriendo más la puerta a la posibilidad de enriquecer este aspecto de la EIA, dirigida por personal técnico, con los conocimientos locales y la perspectiva de los afectados por el proyecto. En relación a la posterior propuesta de medidas compensatorias, las aportaciones del público en materia de valoración ayudarían a discernir aquellos valores o elementos prioritarios que merecen un mayor esfuerzo compensador.

Por otro lado, para facilitar la propuesta de medidas compensatorias adecuadas la valoración de impactos debe ofrecer una estimación clara del impacto ecológico residual. Puesto que no todos los efectos de un proyecto sobre el medio presentan las mismas dificultades en cuanto su evaluación, se propone empezar en una primera etapa por los impactos más fácilmente identificables y mensurables, como son aquellos con representación geográfica. Una vez logrado esto, en un siguiente paso se puede abordar paulatinamente la valoración de impactos más complejos.

- 116 - Impactos residuales

A PROPOSAL TO IMPROVE ECOLOGICAL COMPENSATION PRACTICE IN ROAD AND RAILWAY PROJECTS IN SPAIN PROPUESTA DE MEJORA DE LA PRÁCTICA DE LA COMPENSACIÓN ECOLÓGICA EN PROYECTOS DE CARRETERAS Y VÍAS FERROVIARIAS EN ESPAÑA

ABSTRACT To reduce ecological impacts caused by development projects, avoidance, minimization and compensation techniques have to be taken together into consideration along Environmental Impact Assessment (EIA) procedures. This paper explores the particular role that ecological compensation has had in recent road and railway EIA processes in Spain, as seen through the review of a set of recent EIA Records of Decision (RODs) that confirms precedent findings. Noticing indicators that residual impacts are not paid much attention, and that there is no evidence of a solid public participation in ecological impact evaluation, it advances a reasoned proposal focused particularly in promoting an increased awareness of residual impacts, as a way to make easier the access to public participants to the allegedly most sensitive moment of EIA implementation: (residual) impact evaluation.

KEYWORDS: Impact evaluation; public participation; transparency; sustainability; residual impact.

RESUMEN Dentro del procedimiento de Evaluación de Impacto Ambiental (EIA) se incluye la aplicación de medidas preventivas, correctoras y compensatorias para neutralizar los impactos ecológicos causados por la implementación de proyectos de desarrollo. Este artículo explora el papel actual de la compensación ecológica a través de la revisión de una serie de Declaraciones de Impacto Ambiental (DIAs) de proyectos recientes de carreteras y vías de tren, que confirma resultados anteriores en este campo. Los resultados indican que en la mayoría de los casos no se presta atención a los impactos residuales, y que la participación del público no aborda la valoración ecológica de impactos. Partiendo de esto, se elaboran propuestas centradas en promover una valoración más explícita y visible de los impactos residuales, como forma de facilitar el acceso del público al núcleo de la EIA: la valoración de impactos (residuales).

PALABRAS CLAVE: evaluación de impactos; participación pública; transparencia; sostenibilidad; impacto residual.

- 117 - Impactos residuales

1. INTRODUCTION

Environmental impact assessment (EIA) aims at improving the sustainability of certain environmentally regulated projects, by identifying their significant environmental impacts and proposing measures to counter them (IAIA and UK Institute of Environmental Assessment, 1999). This last step may be achieved through impact avoidance, minimization or compensation techniques. Of these, compensation is the only tool capable to counter residual impacts: those impacts that will remain after the project and all impact avoidance and minimization techniques have been implemented. EIA practice cannot spare compensation practice, if it really aims at increasing levels of sustainability.

Impact compensation practice within EIA has been reported as the most neglected technique in Spain when compared to avoidance and minimization ones (see Villarroya and Puig, 2010). Recent data have corroborated the precedent ones (see Section 3). How an EIA system where compensation practice is occasional, as compared to an always-present minimization effort, could be spurred into implementing increasing levels of compensation, starting almost from nought? How could the “minimization culture” of certain EIA contexts evolve through compensation techniques into a “no net loss” culture?

To engage well-established, even inertial administrative procedures and personnel into new practices is not an easy task, even when no new concepts are involved. Certainly, compensation is not a new concept for EIA professionals in Spain. But its habitual implementation across Spanish EIA procedures at comparable levels to those of minimization would certainly be a novelty, the one that is here pursued. This is a point to insist on: new practices in EIA have to be fostered together with new conceptualizations if we want to attain more sustainable projects. We do not need only new concepts, but also new practices, and specific proposals to push them to be undertaken across real EIA contexts. Impact avoidance and minimization are presently not only in the mindset of EIA professionals in Spain but also in their everyday practice. Something similar should be promoted for compensation.

How to push present EIA practice in Spain, or in other comparable EIA contexts, towards increased levels of compensation? The aim of this article is to advance a reasoned proposal in this direction, which focuses particularly in promoting an increased awareness

- 118 - Impactos residuales of residual impacts, as a way to make easier the access to public participants to the allegedly most sensitive moment of EIA implementation: (residual) impact evaluation. Before putting forward the proposals some conceptual clarifications will be made, with the aim to clarify all the conceptual background required to justify and frame the proposals here advanced, aimed at fostering compensation in Spanish EIA.

1.1. THE MEANING OF “COMPENSATION”

Different definitions are provided for the term ‘compensation’ within the existing literature. Kuiper (1997) defined environmental compensation as the creation of new values, which are equal or as similar as possible to the lost ones. Complementary views would label this approach as “in-kind” compensation, while admitting the creation of other kinds of values than those lost (“out-of-kind” compensation) (Brinson and Rheinhardt, 1996; Cuperus et al., 1999).

Within the context of EIA, compensation measures (also called offsets or mitigation measures, depending on the context) are the last step of the so-called ‘mitigation hierarchy’ (avoid, reduce/minimise, offset/compensate) (CEC, 1985; Darbi et al., 2009; Dolan et al., 2006; ten Kate et al., 2004; United States Congress, 2002). We should avoid all avoidable impacts. When avoidance is not possible, we should reduce or minimise them. Finally, we should compensate only those impacts remaining after avoidance and reduction possibilities have been fully implemented. Compensation should not be a tool to compromise with those inadmissible impacts that can be avoided (Burgin, 2008).

1.2. SUSTAINABILITY REQUIRES OF COMPENSATION PRACTICE IN EIA

Sustainability has been proposed as one of the main pursuits of EIA practice worldwide (IAIA and UK Institute of Environmental Assessment, 1999; IAIA, 2009). Sustainability is a fuzzy concept, not easy to define neither to address in practice. The adoption of compensatory measures is proposed as a means to get down to specifics in EIA contexts, by compensating for the residual, unavoidable harm caused by development projects to the environment (Norton, 2009; ten Kate et al., 2004; Treweek, 2009). To the extent that these impacts are not compensated, sustainability will remain partially meaningless in EIA practice.

At present, it is becoming increasingly accepted the idea of achieving sustainability through positive change, rather than only by minimisation of the negative effects of human activities (Pope et al., 2004). There is the new challenge of promoting positive outcomes - 119 - Impactos residuales when projects with significant effects on the environment are implemented in spite of their unavoidable residual impacts (BBOP, 2009; EPA, 2006; van Merwyk and Daddo, 2007; Weaver et al., 2008). Although it is not mainstream yet, offset implementation is increasingly employed for achieving net environmental gains in specific cases in many countries (McKenney, 2005, Middle and Middle, 2010).

1.3. THE FOCUS OF THIS PAPER: ECOLOGICAL COMPENSATION. ROADS AND RAILWAYS

Many are the potentially impacted environmental features that may require compensation in EIA: ecological, economic, social… The ecological component of the environment plays one of the main sustainability roles within the overall compensation practice, and it is the one that has been paid attention in this article. Ecological compensation may be defined as “the substitution of ecological functions or values that are impaired by development” (Cuperus et al., 2001), or also as the action of “creating, restoring or enhancing nature qualities in order to counterbalance ecological damage caused by infrastructure developments” (Iuell et al., 2003).

Transport infrastructure projects have long been studied as activities causing significant ecological impacts that cannot be completely avoided or minimized (Forman and Alexander, 1998; Forman et al., 2003; Spellerberg, 1998; Trombulak and Frissell, 2000). For this reason, road and railway projects have been a common target for ecological compensation proposals within scientific literature (e.g. Cuperus et al., 2001). We decided to follow this line of expertise.

1.4. ECOLOGICAL COMPENSATION PRACTICE REQUIRES OF ECOLOGICAL IMPACT EVALUATION

When the decision is taken to implement ecological compensation, the attention has to be turned into residual impacts and their ecological value. Residual impacts (those that remain after mitigation measures have been fully undertaken) may jeopardize the pursuit of meaningful sustainability, and more so when projects, and their uncompensated ecological impacts accumulate in a given environment or region (Hayes and Morrison- Saunders, 2007).The higher the definitive loss of ecological value caused upon an environment due to a project implementation, the worst the residual ecological impact on it. The ecological significance of residual impacts indicates how important should be the

- 120 - Impactos residuales actions required to compensate for them, in order to preserve the overall value of the environment in the long run.

Burger (2008) defined ecological evaluation as the process of “evaluating natural resources within a community and ecosystem context”. Ecological evaluation may be performed through different methods (monetary, non-monetary, quantitative, qualitative…) responding to specific needs and contexts (MA, 2005), but it will always include irreducible subjective components (Antunes et al., 2001; Geneletti, 2003; Lawrence, 1993; Wathern et al., 1986). For these reasons, it can be said that there are no standard methodologies for the ecological evaluation of the environment, as Nakagoshi and Kondo (2002), and Geneletti (2006) observed. In fact, the number of valuation exercises keeps growing, as Wathern et al. and Pearce already noticed in 1986 and 1993.

Even though the terms “evaluation” and “valuation” have been and remain amply discussed, we will use “evaluation” to refer to the whole process undertaken to obtain eventually a given “value”, or a “valuation” result. In any case, quotations will respect the terms originally chosen by the authors in their writing contexts.

1.5. ECOLOGICAL IMPACT EVALUATION, AT THE CORE OF EIA PRACTICE

Generally speaking, it can be said that “the valuations are simply the relative weights we give to the various aspects of the decision problem” (Costanza, 2000). Focusing on the specific case of EIA, impact evaluation may be defined as “the systematic identification of the effects positive or negative, intended or not on individual households, institutions, and the environment caused by a given development activity such as a program or project” (The World Bank, 2007). A parallel definition is provided by the US Environmental Protection Agency (2011), which specifies that “impact evaluation is a form of outcome evaluation that assesses the net effect of a program by comparing program outcomes with an estimate of what would have happened in the absence of a program”. With this context in mind, in this work we identify ecological impact evaluation primarily with the process of weighing the significance of the main ecological impacts caused by a project.

It is evident then that ecological impact evaluation, which we pointed out formerly as a pre-requisite for ecological compensation, has a more important role assigned than that of just evaluating residual impacts. It belongs to the core of EIA theory and practice: the rationale that precedes decision making. As Geneletti (2002) pointed out, ecological

- 121 - Impactos residuales evaluation may be of use at least in three different aspects of EIA performance: determining the pre-project ecological significance of the area (baseline study), selecting suitable indicators to express changes in such an ecological significance (impact prediction), and estimating the post-project ecological significance (impact assessment). It can so be said that ecological evaluation influences the entire impact assessment procedure.

1.6. PUBLIC PARTICIPATION MUST REACH THE CORE OF EIA

The importance of public participation in decision-making was first emphasized in Europe through the Aarhus Convention (UNECE, 1998), and later on in European Directives 2003/4/EC and 2003/35/EC. Within this context, it can be said that environmental problems may and should no longer be solved only by small groups of experts, as they also need the participation of the affected communities (Evans et al., 2006; Ludwig, 2001), what is also a precondition to good governance (Ianni et al., 2009). Moreover, public involvement in decision-making is a requirement for achieving sustainable development (Iyer-Raniga and Treolar, 2000; Morrison-Saunders and Early, 2008). Public participation is thus essential to EIA (André et al., 2006; Hartley and Wood, 2005), as it is stated in European specific regulation from its inception (CEC, 1985). To serve this purpose, ecological impact evaluation methodologies in EIA should be transparent, simple and manageable, and so contribute to decision-making performance.

To avoid creating perceptions of subjectivity, assessors must base their judgements and explain their positions clearly (Bojórquez-Tapia and García, 1998). And precisely because subjectivity can not be completely avoided in ecological evaluation (Antunes et al., 2001; Geneletti 2003; Lawrence, 1993; Wathern et al., 1986), it has to be controlled and debatable inasmuch as possible. Too often, wrong management of subjectivity throughout the different stages of the decision-making process has damaged the image of the EIA process (Wilkins, 2003). At the end, as stated by Lawrence (1993), “the issue is not objectivity or subjectivity, but how well the subjective judgements are substantiated”.

Transparency is a particularly important principle to achieve effective EIA (Palerm, 1999; Sadler, 1996), and it is claimed to be an attribute of legitimate processes (Webler et al., 2001). Transparency assumes the availability of ‘user-friendly’ information that is easy to understand and to interpret (Kakonge, 1998). To make possible a good participation process, information has to be shared openly and readily (Plottu and Plottu, 2009; Webler

- 122 - Impactos residuales and Tuler, 2006), including the way decisions are reached (Morrison-Saunders and Bailey, 2000). In short, transparency means that the reader should be able to follow the process step by step (Hylmö and Skärbäck, 2006).

1.7. FRAMING THE RESEARCH TOPIC AND PROPOSAL

If sustainability is an important goal of EIA practice, should not residual impacts be considered a main aspect of project implementation analysis? As impact evaluation is conceptually situated at the core of EIA, residual impact evaluation should seemingly be. But, are ecological residual impacts valued and shown to the public with transparency, so as to reach decision making duly? We think they are not, at least for some EIA contexts.

The announced aim of this article was to advance a reasoned proposal to push present EIA practice in Spain, or in other comparable EIA contexts, towards increased levels of compensation. We knew that ecological compensation practice in Spanish EIA was low. After confirming that this remains true, and noticing also indicators that residual impacts are not paid much attention, and that there is no evidence of a solid public participation in impact evaluation (Sections 3 and 4), we decided (Section 5) to focus our proposal particularly in promoting an increased awareness of residual impacts, as a way to make easier the access to public participants to the allegedly most sensitive moment of EIA implementation: (residual) impact evaluation.

2. METHODOLOGY: ECOLOGICAL EVALUATION AND ECOLOGICAL COMPENSATION IN ROAD AND RAILWAY RODS IN SPAIN

As Rundcrantz (2006) stated, the implementation of compensatory measures (as well as of preventive and minimization ones) depends on those measures appearing in legally binding documents that set the bases for more sustainable practices. Following this line of thought, and in order to get an indication on how ecological evaluation and ecological compensation are respectively made transparent and addressed within EIA decision making in Spain, 72 Records of Decision (RODs) on transport infrastructure projects publicized during the years 2009 and 2010 were reviewed.

An ROD is the public document where the approving agency presents the main factors contemplated to reach the final environmental authorization decision on a project. Apart from the Environmental Impact Statement (EIS), it is the main and only publicly available documentary source on EIA decision making, and it is also legally binding. In

- 123 - Impactos residuales

Spain, it usually contains a summary of the EIS prepared during the EIA procedure, a summary of the allegations received during public participation, and those impact mitigation measures to be adopted beyond the ones specified by the EIS. The ROD reflects the priorities set down by each environmental authority, and so provides an indirect indication of the role given to ecological evaluation and compensation within the EIA decision making process. At the same time it is the most concrete legally binding document on environmental issues at project-level.

Following the line of expertise in compensation for transport infrastructure projects above announced, we decided to select all the 2009 and 2010 accessible RODs on road and railway projects in Spain. Of the 72 RODs obtained (41 national-level, and 31 regional-level RODs), 12 referred to railway projects, and 60 to roads and highways.

Three were the main questions made during the review of the selected RODs: (1) to what an extent did they show that EIA public participants explicitly engage in or refer to ecological evaluation and impact evaluation; (2) were residual impacts or not explicitly addressed, and to what an extent; and (3) how frequently was the practice of impact avoidance and minimization made explicit as compared to that of impact compensation?

3. RESULTS

Regarding the first inquiry (to what an extent did the analyzed RODs show that EIA public participants explicitly engage in or refer to ecological evaluation and impact evaluation) we found that 10% of the projects undergoing EIA received no allegations during the public participation period, 18% received them, but these were not included in the ROD, and 59% received allegations whose summary in the ROD made no explicit mention to ecological evaluation or impact evaluation. Finally, only the remaining 13% received allegations whose summary in the ROD made explicit reference to some of the evaluations performed within the EIS (see Figure 1).

- 124 - Impactos residuales

Fig. 1. Results of the review of RODs regarding public engagement in ecological evaluation and impact evaluation.

Beyond the public participation summaries contained in the RODs, we found not any direct mention to the value of the potentially affected environment in any ROD, and only 18% of these records made use of the categories set by the national law to categorize the value of impacts (RDL 1/2008).

Fig. 2. Proportion of RODs with some explicit Fig. 3. Proportion of RODs with some explicit reference to avoidance and minimization reference to compensatory measures in the measures in the RODs, or none. RODs, or none.

- 125 - Impactos residuales

Regarding question 2, it was found that only 6 of the reviewed RODs (9% of the total) mentioned the term ‘residual impacts’, and just 2 of them valued these impacts in some way. When it comes to question 3, almost all the documents (71 out of 72) included some description of avoidance and minimization measures, as shown in Figure 2. By contrast, only 16 of the 72 reviewed RODs made reference to the adoption of compensatory measures (see Figure 3).

All in all these findings show not only that most RODs (and, consequently, EIA procedures) in Spain prioritize the description of impact avoidance and minimization measures over compensation, but also that residual impact evaluation, which should provide the base and measure for compensation practice, is weaker than desirable, if not missing. Complementarily, public participation regarding all these issues is very low, which may constitute an important weakness of the EIA process.

4. DISCUSSION

The evidence of public involvement in ecological and impact evaluation, the core of EIA decision making, is very low across the reviewed RODs. In addition, if one of the two main publicly available documentary sources on EIA decision making in Spain makes explicit references to ecological evaluation and impact evaluation only occasionally, there is a strong indication that they are not considered as relevant as they should to decision making publicity. A rather stronger derivation could suggest that, similarly to what was reported some time ago in other countries such as Sweden (Seiler et al., 1997) and Italy (Geneletti, 2006), often ecological impacts tend to be just described, but not valued. Similarly, it could be suggested with some basis that, in general, there is a risk that evaluation issues are not given a central role in EIA processes in Spain.

Avoidance and minimization measures got much greater attention than compensatory measures did, the last usually being not even mentioned across the publicized EIA decision making (the RODs). This last result might confirm some of the boldest interpretative suggestions mentioned above: it would not be surprising that if the values of the affected environment and the residual impacts are paid little attention, the resulting lack of guidance to assess and define specific ecological offsets would result in compensation neglect. How to change these tendencies? We propose to take exactly the

- 126 - Impactos residuales opposite way to improve compensation practice: evaluate residual impacts, counting as well with public participation.

When compensation practice is somehow neglected in a given EIA framework, to focus on some of the most obvious and undeniable residual impacts of the project under scrutiny, opening them and their evaluation to public scrutiny, may be a good strategy in the long run. Even if it may be provisionally limited in present-day environmental gains, as we do not know always how to make transparent the ecological value of all residual impacts, such a strategy may be progressively effective. More ambitious attempts, impractical at present, could be reserved for a more environmentally-demanding future (to be reached as a consequence of our limited present-day step).

Following this line of thought, we propose to systematically register and show (e.g., as a table, or a series of maps or orthophotographs) the main residual losses of ecological value caused by every project implementation, providing to all of the stakeholders a quick and clear report of some of the residual impacts that may be accepted in some EIA contexts without implementing any compensation effort (e.g.: the total natural or productive area lost when a new dam is filled, or the soil lost to a new extensive suburban development). We may so contribute to awaken among all of the stakeholders a deeper perception of residual impacts and of the need of compensation.

This proposal may not seem much innovative from a conceptual point of view, unless we notice that it pursues innovation not in concepts, but rather in practice. And practice, not sole theory, is what it counts in attaining sustainability eventually. At this point it may be remembered what it was stated above: to engage administrative procedures and personnel into new practices is not an easy task, even when no new concepts are involved. This reasoned and simple proposal on ecological residual impact evaluation keeps it in mind. And, if habitually implemented across Spanish EIA procedures, would certainly be a novelty towards the aim of sustainability, the one that is here pursued.

4.1. EXAMPLE APPLICATION

As an example application of the above proposal, we used a land-unit ecological evaluation method (Villarroya and Puig, 2012) to obtain table and cartographic outputs evidencing the residual impacts of a road project implementation. Although it is not the object of attention here, the method delimits and classifies land units in ecological quality

- 127 - Impactos residuales classes, according basically to the land use and vegetation present in each unit, while complementary criteria may raise or lower the land unit quality class firstly assigned. As the construction of a new road changes both some of the land uses and some of the criteria that may rise or lower the land unity class, so some land units change their value class accordingly.

The area of application was delimited immediately around a 5-km long stretch of the A-10 highway located in Navarra (Spain) (see Figure 4). This figure compares the area in 2006 and 2010, before and after the construction of the highway. The ecological value of the land units across the study area was estimated both before and after the project was completed. The valuation results were represented in maps to allow a quick and easy visualization (see Figures 5 and 6).

Fig. 4. Location of the study area and orthophotographs before and after the construction of the highway.

- 128 - Impactos residuales

Fig. 5. Land units and their value-classes alongside the future highway. The tags on each land unit indicate the land-use and the ecological value class.

Fig. 6. Land-units and their value-classes alongside the recently-built highway.

- 129 - Impactos residuales

In order to highlight the residual impacts, the assigned land-unit value-classes before and after the project implementation were compared. Thus, a new table and map were generated (see Table 1 and Figure 7), which showed the variation (loss) in ecological value-class that resulted eventually, after avoidance and minimization measures had been implemented, i.e. the residual impact.

Fig. 7. Mapping of the changes in value-class of each land-unit caused by the project implementation. The colour indicates the value-class drop. Value class variation Area (ha) 0 52,40 -1 276,97 -2 102,95 -3 29,31 -4 6,87 -5 22,85 -6 0 -7 0 -8 0 -9 0,89 Table 1. Total value class variations due to the project construction, and after the implementation of the avoidance and minimization measures (where “-x” means a “drop from the original land-unit ecological value class to x classes lower”). Right column indicates the total amount of hectares that have dropped ”x” value classes.

We wish to insist that our focus in not in advancing this evaluation method, but rather in using it to our purpose. Apart from this land-unit ecological evaluation method,

- 130 - Impactos residuales many other methods may serve to the purpose of approaching the ecological value of an area, and estimate or represent the significance of residual impacts. So, the focus of this proposal is not the specific method and criteria here presented as an application and described elsewhere, but rather how to use an evaluation methodology to make more visible to the public eyes the existence of residual impacts, and the ecological evaluation criteria underlying their evaluation. Unless we highlight residual impacts first, we will find difficulty in promoting compensation and, in the end, meaningful sustainability in EIA contexts.

5. CONCLUSIONS

The central role of ecological evaluation and the way it operates in EIA procedures may pass more unnoticed than it should, mainly to the public. As a result, ecological impact remains partly shadowed, particularly regarding residual impacts, and ecological compensation neglected in some EIA contexts, as it has been proved to be the case in Spain.

The review of 72 road and railway Records of Decision (RODs) in Spain showed that most RODs (and, consequently, EIA) in Spain prioritize impact avoidance and minimization measures over compensation, and also that ecological evaluation and residual impact evaluation, which should provide the base and measure for ensuing compensation practice, are very weak, if not missing in one of the main legally binding, publicly available documentary sources on EIA decision making.

To respond to this situation and promote improved sustainability through compensation practice, a recommendation has been advanced, which may be of use to other EIA contexts: that the ecological value of residual impacts be explicitly shown to the public, allowing all of the stakeholders to reach this core aspect, frequently neglected, of EIA.

This proposal derives from an original analysis of the relationship between sustainability, residual impacts, compensation practice, and ecological impact evaluation. But the ensuing proposal itself may be considered not new from a conceptual point of view, as it intends to improve compensation practice in a real EIA context that lags behind theory development.

- 131 - Impactos residuales

In this sense, the systematic and explicit register of residual impacts through orthophotographs, albeit debatable in the method used and their assigned value, is proposed as a way to spread the consciousness of the residual impacts we actually admit and (contrarily to current practice in a variety of contexts) we should compensate.

Finally, a possible way to follow this recommendation has been shown, through a case study application. But it has to be reminded that the focus of this paper are not the specific ecological evaluation method and criteria used, but rather the need to develop methods to make more visible to the public eyes the existence of residual impacts and the ecological criteria used to evaluate them. Unless we highlight residual impacts and how they are valued, we will find difficulty in promoting and justifying the compensation measures to counter them and, in the end, meaningful sustainability in EIA contexts.

ACKNOWLEDGEMENTS The corresponding author is supported by a doctoral fellowship provided by the Department of Science, Technology and Universities of the Government of the Autonomous region of Aragón.

REFERENCES André PB, Enserink B, Connor D, Croal P. Public participation: International Best Practice Principles. 2006. Available at http://www.iaia.org/publicdocuments/special-publications/SP4 web.pdf. Last accessed: 16 November 2011. Antunes P, Santos R, Jordão L. The application of Geographical Information Systems to determine environmental impact significance. Environ Impact Assess Rev 2001;21: 511-35. BBOP (Business and Biodiversity Offsets Programme). Business, Biodiversity Offsets and BBOP: An Overview. 2009. Available at: http://bbop.forest-trends.org/guidelines/overview.pdf. Last accessed 20 March 2012. Bojórquez-Tapia LA, García O. An approach for evaluating EIAs - deficiencies of EIA in Mexico. Environ Impact Assess Rev 1998;18:217-40. Brinson MM, Rheinhardt R. The Role of Reference Wetlands in Functional Assessment and Mitigation. Ecol Appl 1996;6(1):69-76. Burger J. Environmental management: integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands. Sci Total Environ 2008;400(1-3): 6-19. Burgin S. BioBanking: an environmental scientist’s view of the role of biodiversity banking offsets in conservation. Biodivers Conserv 2008;17(4):807-16. CEC (Commission of the European Communities). Directive 2003/4/EC of the European Parliament and of the Council of 28 January 2003 on public access to environmental information and repealing Council Directive 90/313/EEC. Available at: http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:041:0026:0032:EN:PDF Last accessed: 20 March 2012.

- 132 - Impactos residuales

CEC (Commission of the European Communities). Directive 2003/35/EC of the European Parliament and of the Council of 26 May 2003 providing for public participation in respect of the drawing up of certain plans and programmes relating to the environment and amending with regard to public participation. Available at: http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:156:0017:0024:EN:PDF Last accessed: 20 March 2012. CEC (Council of the European Communities). Council Directive of 27 June 1985 on the assessment of the effects of certain public and private projects on the environment (85/337/EEC). Available at: http://ec.europa.eu/environment/eia/full-legal-text/85337.htm Last accessed: 20 March 2012. Costanza R. Social Goals and the Valuation of Ecosystem Services. Ecosystems 2000;3:4-10. Cuperus R, Canters KJ, Udo de Haes HA, Friedman DS. Guidelines for ecological compensation associated with highways. Biol Conserv 1999;90:41-51. Cuperus R, Bakermans MMGJ, Udo de Haes HA, Canters KJ. Ecological Compensation in Dutch Highway Planning. Environ Manag 2001; 27(1):75-89. Darbi M, Ohlenburg H, Herberg A, Wende W, Skambraks D, Herbert M. International Approaches to Compensation for Impacts on Biological Diversity: Final Report. 2009. Available at: http://www.forest-trends.org/publication_details.php?publicationID=522. Last accessed 16 November 2011. Dolan LMJ, van Bohemen HD, Whelan P, Akbar KF, O’Malley V, O’Leary G et al. Towards the sustainable development of modern road ecosystems. In: Davenport J, Davenport JL, editors. The Ecology of Transportation: Managing mobility for the Environment. Netherlands: Springer; 2006. p. 275-331. EPA (Environmental Protection Authority). Environmental Offsets Position Statement No. 9. Government of Western Australia. 2006. Available at: http://www.epa.wa.gov.au/docs/1863_PS9.pdf. Last accessed: 12 March 2012 Evans K, de Jong W, Cronkleton P, Sheil D, Lynam T, Kusumanto T et al. Guide to Participatory Tools for Forest Communities. Bogor: Center for International Forestry Research; 2006. Available at: http://sfrc.ifas.ufl.edu/geomatics/courses/SUR6427/evans_2006_CIFOR_participatory_methods.pdf. Last accessed 9 November 2011. Forman RTT, Alexander LE. Roads and their major ecological effects. Annu Rev Ecol Syst 1998;29:207-31. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, et al. Road ecology. Science and Solutions. Washington DC: Island Press; 2003. Geneletti D. Ecological evaluation for environmental impact assessment. Utrecht: Netherlands Geographical Studies; 2002. Geneletti D. Biodiversity Impact Assessment of roads: an approach based on ecosystem rarity. Environ Impact Assess Rev 2003;23:343-65. Geneletti D. Ecological evaluation of land: some considerations on approaches and shortcomings. Int J Sustain Dev Plan 2006;1(5):419-28. Hartley N, Wood C. Public participation in environmental impact assessment–implementing the Aarhus Convention. Environ Impact Assess Rev 2005;25(4):319-40. Hayes N, Morrison-Saunders A. Effectiveness of environmental offsets in environmental impact assessment: practitioner perspectives from Western Australia. Impact Assess Proj Apprais 2007;25(3):209-18. Hylmö K, Skärbäck E. Transparency in Road Planning Documents: A Case Study of Two Swedish Projects. Environ Pract 2006;8:49-57. IAIA (International Association for Impact Assessment). What Is Impact Assessment? 2009. Available at: http://www.iaia.org/publicdocuments/special-publications/What%20is%20IA_web.pdf. Last accessed 16 November 2011. IAIA (International Association for Impact Assessment), UK Institute of Environmental Assessment. Principles of Environmental Impact Assessment best practice. 1999. Available at: http://www.iaia.org/modx/assets/files/Principles of IA_web.pdf. Last accessed 16 November 2011. Ianni E, Feoli E, Marin VH, Delgado LE. Quantifying public perceptions on socio-economic development—an example from the Aysen Watershed, Chile. Int J Sustain Dev 2009;12(2):303—20.

- 133 - Impactos residuales

Iuell B, Bekker H, Cuperus R, Dufek J, Fry G, Hicks C, et al. Wildlife and Traffic: A European Handbook for Identifying Conflicts and Designing Solutions. Brussels: COST, European Co-operation in the Field of Scientific and Technical Research; 2003. Iyer-Raniga U, Treolar G. FORUM: A Context for Participation in Sustainable Development. Environ Manag 2000;26(4):349-61. Kakonge JO. EIA and good governance: issues and lessons from Africa. Environ Impact Assess Rev 1998;18:289-305. Kuiper G. Compensation of environmental degradation by highways: a Dutch case study. Eur Environ 1997;7:118-25. Lawrence DP. Quantitative versus qualitative evaluation: a false dichotomy? Environ Impact Assess Rev 1993;13:3-11. Ludwig D. The era of management is over. Ecosystems 2001;4(8):758-64. MA (Millennium Ecosystem Assessment) 2005. Concepts of Ecosystem Value and Valuation Approaches. Washington DC: Island Press. Available at: http://www.maweb.org/en/Framework.aspx. Last accessed 16 November 2011. McKenney B. Environmental offset policies, principles, and methods: a review of selected legislative frameworks. Amherst: Biodiversity Neutral Initiative; 2005. Middle G, Middle I. A review of the use of environmental offset as a policy mechanism in the environmental impact assessment process (EIA) in Western Australia. Impact Assess Proj Apprais 2010;28(4):313- 22. Ministerio de Medio Ambiente. Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación de Impacto Ambiental de proyectos. 2008;965(ii):4986- 5000. Available at: http://www.boe.es/boe/dias/2008/01/26/pdfs/A04986-05000.pdf. Last accessed: 20 March 2012 Morrison-Saunders A, Bailey J. Transparency in environment impact assessment decision-making: recent developments in Western Australia. Impact Assess Proj Apprais 2000;18(4):260-70. Morrison-Saunders A, Early G. What is necessary to ensure natural justice in environmental impact assessment decision-making? Impact Assess Proj Apprais 2008;26(1):29-42. Nakagoshi N, Kondo T. Ecological land evaluation for nature redevelopment in river areas. Landsc Ecol 2002;17(Suppl 1):83-93. Norton D. Biodiversity offsets: two New Zealand case studies and an assessment framework. Environ Manag 2009;43(4):698-706. Palerm JR. Public participation in public decisions: New skills and strategies for public managers. Impact Assess Proj Apprais 1999;17(4):259-71. Pearce DW . Valuing the Environment: Past Practice, Future Prospect. In: Serageldin I, Steer A, editors. Valuing the Environment. Proceedings of the First Annual International Conference on Environmentally Sustainable Development. Washington DC: The World Bank; 1993. p. 47-57. Plottu B, Plottu E. Approaches to Participation in Evaluation: Some Conditions for Implementation. Evaluation 2009;15(3):343-59. Pope J, Annandale D, Morrison-Saunders A. Conceptualising sustainability assessment. Environ Impact Assess Rev 2004;24:595-616. Rundcrantz K. Environmental compensation in Swedish road planning. Eur Environ 2006;16:350-67. Sadler B. Environmental Assessment in a changing world: Evaluating practice to improve performance. Canadian Environmental Assessment Agency and International Association for Impact Assessment. 1996. Available at: http://www.iaia.org/publicdocuments/EIA/EAE/EAE_10E.PDF. Last accessed 20 March 2012. Seiler A, Eriksson IM, Canters KJ, Piepers AAG, Hendriks-Heersma A 1997. New approaches for ecological consideration in Swedish road planning. In: Canters K, Piepers A, Hendriks-Heersma A, editors. Proceedings of the International Conference on ‘Habitat Fragmentation, Infrastructure and the Role

- 134 - Impactos residuales

of Ecological Engineering’. Delft: Ministry of Transport, Public Works and Water Management, Road and Hydraulic Engineering Division; 1995. p. 253—64. Spellerberg I. Ecological effects of roads and traffic: a literature review. Glob Ecol Biogeogr 1998;7(5):317— 33. ten Kate K, Bishop J, Bayon R. Biodiversity offsets: Views, experience, and the business case. Cambridge: IUCN; 2004. The World Bank. Impact Evaluation. 2007. Available at: http://www.worldbank.org/ieg/ie/. Last accessed 16 November 2011. Treweek J. Scoping study for the design and use of biodiversity offsets in an English Context: Final Report. London: Department for Environment, Food and Rural Affairs (Defra); 2009. Trombulak SC, Frissell CA. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conserv Biol 2000;14(1):18-30. UNECE (United Nations Economic Commission for Europe). Convention on access to information, public participation in decision-making and access to justice in environmental matters, 25 June 1998 (Aarhus Convention). Geneva: UNECE; 1998 United States Congress. Federal Water Pollution Control Act (as amended through P.L. 107-303, November 27, 2002). 2002. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1981970. Last accessed 16 November 2011. US EPA (United States Environmental Protection Agency). Program Evaluation Glossary. 2011. Available at: http://www.epa.gov/evaluate/glossary.htm, last accessed 16 November 2011. van Merwyk TV, Daddo S. Structuring environmental offsets for a sustainable advantage. 2007. Available at: http://forest-trends.org/publication_details.php?publicationID=582. Last accessed 16 November 2011. Villarroya A, Puig J. Ecological compensation and Environmental Impact Assessment in Spain. Environ Impact Assess Rev 2010;30:357-62. Villarroya A, Puig J. Valuation of residual impacts of roads on landscape ecological units in Navarre, Spain. J Environ Plan Manag 2012;55(3):339-53. Wathern P, Young SN, Brown IW, Roberts DA. Ecological evaluation techniques. Landsc Plan 1986;12:403- 20. Weaver A, Pope J, Morrison-Saunders A, Lochner P. Contributing to sustainability as an environmental impact assessment practitioner. Impact Assess Proj Apprais 2008;26(2):91-8. Webler T, Tuler S. Four perspectives on public participation process in environmental assessment and decision making: Combined results from 10 case studies. Policy Stud J 2006;34(4):699—722. Webler T, Tuler S, Krueger R. What Is a Good Public Participation Process? Five Perspectives from the Public. Environ Manag 2001;27(3):435-50. Wilkins H. The need for subjectivity in EIA: discourse as a tool for sustainable development. Environ Impact Assess Rev 2003;23:401-14.

- 135 -

CAPÍTULO VI SELECCIÓN DE MEDIDAS COMPENSATORIAS PARA IMPACTOS ECOLÓGICOS EN LA EIA

Villarroya A, Persson J, Puig J. Ecological compensation: from general guidance and expertise to specific proposals for road developments. Enviado a Environmental Impact Assessment Review

Selección de medidas compensatorias

Tras la valoración del impacto ecológico residual, las medidas compensatorias han de proponerse de manera que contrarresten suficiente y adecuadamente tales efectos. Sin embargo, la traducción de impacto estimado a medida compensatoria no es fácil, puesto que las posibilidades son muy variadas y no siempre se sabe con certeza cuál es la mejor opción. Además, de nuevo surge el problema de cómo concretar un objetivo general, como es la no pérdida neta de calidad ecológica, en acciones puntuales y condicionadas por las circunstancias de cada proyecto particular.

El artículo VI aborda ambas cuestiones de forma general y aplicada a proyectos de vías de transporte. Por un lado, revisa las orientaciones generales existentes en la bibliografía actual en torno a cómo resolver dos de las principales cuestiones a la hora de proponer medidas compensatorias: dónde deben localizarse respecto al proyecto, y qué semejanza deben tener con los elementos afectados. Complementariamente, propone objetivos concretos para facilitar la aplicación de la meta general de no pérdida neta a proyectos de carreteras y autopistas.

La idea de fondo es que, para promover un campo como la compensación ecológica, para el que no existen protocolos ni procedimientos estándar, la definición de pautas técnicas generales no basta, sino que conviene explorar y discutir propuestas que indiquen cómo proceder ante determinados tipos de proyectos. Por esto, la provisión de orientaciones más concretas, específicas de ciertos lugares y/o proyectos, puede complementar a las guías generales existentes sobre la compensación en la literatura científica especializada, y ayudar a la concreción de objetivos generales en acciones puntuales.

Al proponer unas metas básicas en materia de compensación, dirigidas a un cierto tipo de proyectos (vías de transporte), se pretende facilitar la puesta en práctica de este concepto que, como se señalaba en la Introducción, resulta más fácil de comprender en el plano teórico que de aplicar en los casos reales.

- 137 - Selección de medidas compensatorias

ECOLOGICAL COMPENSATION: FROM GENERAL GUIDANCE AND EXPERTISE TO SPECIFIC PROPOSALS FOR ROAD DEVELOPMENTS COMPENSACIÓN ECOLÓGICA: DE LAS RECOMENDACIONES GENERALES A PROPUESTAS ESPECÍFICAS PARA PROYECTOS DE CARRETERAS

ABSTRACT General guidance on ecological compensation has been examined through the review of main scientific literature addressing the rationale behind its practice. The literature reviewed contains interesting general guidance on how to implement compensation, and provides the basis for future compensation practice development. This paper proposes a further step in compensation practice, advancing compensation proposals or rules for specific kinds of projects and contexts, and it focuses on road projects in Spanish Environmental Impact Assessment (EIA). Three main residual impacts of roads are identified that usually remain uncompensated for: the loss of natural and semi-natural land use area, the increase in emissions that any new road favours, and the fragmentation severance or barrier effect on the landscape and its wildlife. In line with these, four proposals, or “rules”, have been advanced to start counteracting them: natural and semi-natural land use area conservation, dominant plant species physiognomy conservation, emissions compensation, and the rule of positive defragmentation. KEYWORDS: Environmental Impact Assessment; offsets; sustainability; no net loss; net ecological gain.

RESUMEN El artículo comienza con una revisión de las recomendaciones generales disponibles en la literatura científica para la implementación de la compensación ecológica y el desarrollo de prácticas compensatorias. Complementariamente, se propone un paso más en el desarrollo de la práctica de la compensación, elaborando una serie de reglas básicas para proyectos y contextos específicos, en este caso los proyectos de carreteras en la Evaluación de Impacto Ambiental (EIA) en España. Se identifican tres tipos principales de impactos causados por carreteras que habitualmente no son compensados: pérdida de terreno natural y semi-natural, aumento en las emisiones derivado del aumento de tráfico que conlleva la construcción de una vía, e incremento de la fragmentación o efecto barrera en el paisaje y las poblaciones silvestres. Para avanzar en la compensación de estos efectos, se proponen cuatro “reglas”: conservación del área natura o semi-natural total, conservación de la fisionomía vegetal dominante, compensación de emisiones, y desfragmentación positiva. PALABRAS CLAVE: Evaluación de Impacto Ambiental; compensación; sostenibilidad; no pérdida neta; ganancia ecológica neta.

- 138 - Selección de medidas compensatorias

1. INTRODUCTION

Human development often causes negative impacts on natural assets. Land use changes such as urbanization or road construction inevitably cause damage to the natural or ecological side of the environment, in a greater or lesser extent (Dale et al., 2000; Forman and Alexander, 1998; Forman et al., 2003; Hansen et al., 2005; Kalnay and Cai, 2003; Vitousek et al., 1997). For some areas it may be said that “we are creating a built infrastructure at the expense of natural infrastructure” (Madsen et al. 2010).

Existing regulation on nature conservation and Environmental Impact Assessment (EIA), among other regulatory tools, seek to restrict these negative impacts. Moreover, there is a growing sense that promoting positive change is a better way to walk towards sustainability than the mere minimization of the negative effects that development may cause on the natural environment (Pope et al., 2004).

Following this line of thought, it is growingly argued that development should attain ‘no net losses’ or even ‘net gains’ on the natural quality of the environment, so counteracting the cumulative impact of development that would otherwise gradually reduce this quality (Hayes and Morrison-Saunders, 2007; van Merwyk and Daddo, undated). Even if these impacts are not quite significant when regarded separately, their progressive accumulation in the environment leads to greater losses in the long term (Race and Fonseca, 1996).

The so-called ‘mitigation hierarchy’ has been widely advised as a way to seek no- net-loss on the natural quality of areas supporting development projects. It establishes that the optimal sequence to confront environmental impacts should be: (1) avoid, (2) minimize, and (3) compensate the damage that the project is expected to cause (European Union, 2001; Darbi et al., 2009; Dolan et al., 2006; United States Congress, 2002).

Compensatory measures are the last sequential step of this mitigation hierarchy. Thus, they are the last, unavoidable chance to achieve the ‘no net loss’ or ‘net gain’ goals (Gibbons and Lindenmayer, 2007; Iuell et al., 2003; McKenney, 2005; Moilanen et al., 2009; Rowe et al., 2009; ten Kate et al., 2004). Compensation may either recover the natural value that remains lost even after avoidance and minimisation have been thoroughly implemented (Cuperus et al., 1996; Iuell et al., 2003), or improve the original quality of the harmed environment (EPA, 2006; Kuiper, 1997; McKenney, 2005).

- 139 - Selección de medidas compensatorias

Although growingly accepted as an idea, present-day compensation practice is far from reaching these goals. E.g., recent studies on EIA Records of Decision (RODs)7 in Spain observed that compensation was frequently overlooked. And, when actually implemented, compensatory measures were not designed, chosen or selected in an adequately argued way (Villarroya and Puig, 2010). For instance, no attempt was found across the RODs at justifying the degree of equivalence between residual impacts (i.e. those impacts which cannot be avoided nor reversed) and the measures proposed to compensate them.

Although the concept and rationale of compensation may be easy to understand, the choice and design of specific offsets to be implemented in each development project usually becomes a harder task. This constraint is inherent to the nature of compensation, as there is a wide, open range of suitable measures for each case. When it comes to specify compensation measures, some of the main problems arise regarding two issues:

a. Location. Cuperus et al. (2002) stated that while mitigation measures are physically tied to the infrastructure, compensation may take place anywhere. May the reader agree or not with this view, an adequate place to implement compensatory measures has to be found, adapted to each case.

b. Equivalence to the damaged feature. The correspondence between the negative effects and the compensatory measures to counterbalance them may be difficult to argue (van Bohemen, 1998). It will depend on several factors (including environmental goals, impact characteristics…) which are not always easy to value and balance.

The design of compensatory measures seems to demand a case-by-case solution. At the same time, to address compensation practice as consistently as possible, some general accepted guidance and expertise is needed to somehow justify in a greater or lesser extent the decisions that are taken along the compensation process (see Kuiper, 1997).

This article focuses on ecological compensation, which can be defined as “the substitution of ecological functions or values that are impaired by development” (Cuperus et al., 2001). It examines published recommendations given to guide its implementation,

7 A ROD is the publicly available document where the approving agency presents the main factors that were contemplated to reach the final decision on every project, including the practical means to avoid or minimize environmental harm. - 140 - Selección de medidas compensatorias and the rationale behind them. It aims at collecting and discussing the guidance and expertise in compensation to channel it towards particular compensation processes. Even though mainly after the general discussion we will get down to specific problems that have been registered for Spain, our approach addresses general issues that may be of application to other contexts.

2. THEORY: LITERATURE GUIDANCE AND EXPERTISE ON THE DESIGN OF COMPENSATORY MEASURES

The design of compensatory measures has to fit the particularities of each case. Therefore, it is not easy to find valid and general guidance, suitable for a wide range of particular cases, on how to select the kind of compensation to implement. In fact, what Race and Fonseca (1996) observed several years ago remains true today, since it cannot be said that there is a universally accepted standard regarding this matter.

Several authors have provided some guidance on the design, choice or implementation of compensatory measures. With this aim, they have explained different rationale for choosing one option or another when it comes to offsets location and equivalence to the damaged features. Some recommend one option over the rest, while others just explain the advantages and/or disadvantages of each choice.

Regarding these issues (location and equivalency), current literature describes the following options:

o When it comes to the location of the offsets to implement, compensation may be labelled as “in-site” or “off-site”, depending on whether the measures are located within or outside the effect zone of the project (Brinson and Rheinhardt, 1996; Cuperus et al., 1999).

o Regarding the equivalency of habitats or species, compensation may be either in-kind or out-of-kind, depending on whether it involves replacement of the same habitat, species or functions that were impaired, or with different ones (Brinson and Rheinhardt, 1996; Cuperus et al., 1999).

With the aim of gathering the advantages and disadvantages that have been identified for each of these options, a bibliographic review was conducted.

- 141 - Selección de medidas compensatorias

16 scientific publications were found that included explanations of pros/cons and sometimes also recommendations on at least one of these issues. Only those documents arguing their proposals were selected. Other papers not specifying the rationale behind the proposals were set aside.

As a consequence, legal texts were not taken into account in this case, since although they sometimes provide some recommendations on offset location and/or equivalence, they do not focus on the rationale behind such guidance.

It was observed that general rules tend to be avoided in the reviewed texts. Commonly, authors do not give a priori preference to any specific kind of compensation. Most of them argue or exemplify separately individual compensation choices or proposals; either expressing their own point of view or gathering the reasoning from other sources.

Thirteen publications addressed how to choose the location of compensatory measures. While seven advise on-site over off-site compensation, two advise to the contrary.

Among the 16 documents reviewed, 8 were found to address what might be the equivalency for impacted habitats or species. Six of them included some clear recommendation, always prioritising in-kind over out-of-kind compensation.

The implementation of in-kind and on-site offsets, whenever possible, is the most widely advised recommendation among the reviewed publications. Nevertheless, no consensus has been reached, and discussion will continue on this matter.

Arguments for or against alternative compensation options, briefly summarized in Table 1, are reviewed below in more detail. Even when opposed to each other when considered in abstract, the joint consideration and final choice of which of these arguments should be prioritized in each case may contribute to strengthen the rationale for compensation proposals on specific cases.

- 142 - Selección de medidas compensatorias

Advantages of in-kind offsets:

o They have the greatest potential to minimize local disruption of ecological functions, especially when located on-site. This is of great importance in areas where significant ecological linkages and functions have not been completely lost (Race and Fonseca, 1996). This approach may be particularly of use when compensation seeks to prevent that certain species, habitats, or ecosystems be progressively degraded whereas other get all the gains of the compensatory measures (Hayes and Morrison- Saunders, 2007).

o They compare easily to the original situation. It is easier to dimension the adequate measures to implement when the proposed offsets are ecologically similar to the damaged features (ten Kate et al., 2004). It has been proposed, e.g., that the product of the surface of the impacted area by its natural value should remain constant, through compensation, when we compare this value before and after intervention. This kind of rules are easier to apply (including calculations) through in-kind compensation (van Bohemen, 1995). Also, when compensation aims at no-net-loss (Iuell et al., 2003), in-kind compensation seems the easier way to propose, justify and follow-up a full and equivalent replacement of losses (McKenney, 2005), also when carrying out offsets through conservation banks (Latimer and Hill, 2007)

o It is easier for the public to understand the rationale behind them. The more dissimilar the compensatory measure is to the impaired asset, the more justifying will be necessary before the public. Even straight-forward like-for-like offsets need frequently of scientific inputs and third party valuations to ensure their credibility. Out-of-kind measures will generally demand of a broader justification effort (ten Kate et al., 2004).

- 143 -

Compensation option Perspective Arguments in favor Arguments against Equivalence In-kind Ecological It has the greatest potential to minimize disruption of ecological There are natural elements which cannot be re-created damage - remaining functions compensation Technnical They compare easily to the original situation Not easy to define in practice what “in-kind” means Political It is easier for the public to understand

Out-of-kind Ecological Allows further flexibility to focus on conservation priorities Technical Difficulties to establish the correspondence between damaged features and compensatory measures

Location of the In-site Ecological It has the greatest potential to minimize disruption of ecological compensatory remaining functions measures Habitat conditions are already in place, which increases the possibilities of success Benefits accrue to the affected area Technical Depends completely on the availability of adequate places within the affected area Political It is easier to get public acceptance

Off-site Ecological Allows further flexibility to focus on conservation priorities and connecting to larger systems Compensation sites are not adversely influenced by proximity to human-altered places Technical Increases the chances of success through careful selection of Difficulties when choosing the location suitable areas and the linkage of several compensation projects in one single larger one Table 1. Summary of arguments for or against each compensation option, following the reviewed bibliography.

Selección de medidas compensatorias

Shortcomings regarding in-kind offsets:

o It may not be easy to define, in practice, what “in-kind” means. How similar should the implemented measure be to the damaged feature to be considered in-kind compensation? The technical difficulty for measuring some parameters (e.g. biodiversity values) may hamper the comparison between damaged features and offsets (Hayes and Morrison-Saunders, 2007).

o There are natural elements which cannot be technically re-created (Morris et al., 2006), wherein in-kind compensation is not possible at all.

Advantages of out-of-kind offsets:

o They allow conservation options other than strict replacement of the damaged values. Out-of-kind measures may be the only option when in- kind compensation is not possible, or be more appropriate when they offer the opportunity to concentrate all the compensation efforts either on one most important natural value among the damaged by the development (Iuell et al., 2003), or on boosting any natural value not even damaged by the development but of greater importance for the region than the recovery of the damaged ones (McKenney, 2005; ten Kate et al., 2004).

Shortcomings of out-of-kind offsets:

o The main difficulty regarding out-of-kind compensation usually arises when trying to assess the correspondence between the damaged feature and the compensatory measure. Usually, elaborated justifications are used. There are no fixed ratios for out-of-kind compensation, and most existing methods are not fully developed yet (McKenney, 2005; Morris et al., 2006; ten Kate et al., 2004). This problem may also affect in-kind compensation (see above), although less importantly.

- 145 - Selección de medidas compensatorias

Advantages of on-site offsets:

o They hold a big potential to recover precisely the disrupted ecological functions (Race and Fonseca, 1996). Location, in landscape, may be of utter importance to recover the impaired values (Race and Fonseca, 1996), as it is the case when we try to re-connect severed environments or wildlife routes (Brinson and Rheinhardt, 1996).

o They take advantage of the habitat conditions a priori demanded for in- kind compensation, which increase the possibilities of success. These conditions may be necessary to get the best like-for-like replacement (Latimer and Hill, 2007).

o Compensation benefits accrue to the affected area. A rule widely accepted by most offset policies (McKenney, 2005), and other authors (Morris et al., 2006).

o They get public acceptance or support more easily. Even when focused on recovering natural values, the compensation process should pay attention to social issues such as fairness and the sense of ownership by local communities, to increase its chances of success (ten Kate et al., 2004).

Shortcomings of on-site offsets

o The carrying out of on-site compensation will depend always on the availability of adequate places where to implement it within the affected area. Since the range of locations may be very limited, to find an appropriate one cannot always be guaranteed.

Advantages of off-site offsets:

o They may boost ecological values beyond the affected area (McKenney, 2005; ten Kate et al., 2004). The enlargement of valuable off-site ecosystems through compensation may yield more ecological benefits than the mere sum of ‘patchy’ or isolated on-site compensation practices (Hashisaki, 1996; McKenney, 2005; Reijnen et al., 2006). Moreover, off-site compensation makes it possible to bring together into a chosen area of ecological value the compensation effort corresponding to several projects, which has been proposed as a potentially successful strategy (Cuperus, 2004; Reijnen et al., 2006) that may be put into practice also through

- 146 - Selección de medidas compensatorias

mitigation banking (NRC, 2001). Landscape-level planning of conservation priorities is a key element to decide the location in these cases.

o They allow locating compensation sites away from present or future human-altered places. Some species are sensitive to anthropogenic disturbances such as visual contact, noise, fires, and domestic pet encounters (Cuperus, 2004; Latimer and Hill, 2007; McKenney, 2005; Mitsch and Wilson, 1996). The attempt at improving bird habitat nearby a road, e.g., may have limited effect (Reijnen et al., 2006). Future nearby developments induced by present-day projects may threaten today’s on- site compensation efforts (Latimer and Hill, 2007).

Shortcomings of off-site offsets

o The difficulty of location choice. A central question when designing off-site compensatory measures is how to decide their location. It is frequently advised to choose it in accordance with national or regional conservation plans or initiatives (Kiesecker et al., 2010), which should (ideally) identify and prioritize the best locations for nature conservation or improvement. But actually few countries have developed functional tools to link compensation practice to conservation strategies effectively (Blundell and Burkey, 2006). The same problem may be applied to out-of-kind compensation in most cases. Habitat banking could be another useful tool in this sense, but it has not been developed in many countries yet.

- 147 - Selección de medidas compensatorias

3. DISCUSSION: FROM GENERAL GUIDANCE AND EXPERTISE TO MORE SPECIFIC PROPOSALS

The above-described arguments may be summarized in two broad, general recommendations:

o In-kind and on-site compensation may be more adequate when the priority is to keep or retrieve the local natural or ecological conditions as close as possible to their original state. This option gets commonly a higher local public acceptance, and so it is more easily put into practice.

o Out-of-kind and off-site compensation provides the flexibility to make measures converge with broader (i.e. national, regional…) conservation strategies. They also allow compensation when in-kind and on-site compensation is not possible.

But the reach of these general recommendations grows limited, as long as we focus on specific situations.

To translate the ‘no-net-loss’ or ‘net-gain’ general objectives into specific compensation practice in particular projects, it must be further clarified how these general goals have to be particularly interpreted and applied.

When specific cases are confronted, “one-size-fits-all” solutions may not be desirable since they would not be realistic (BBOP, 2009b). But some guidance may be of help insofar as it may clarify the rationale behind specific proposals (why, how, and to what an extent compensation is necessary), and so strengthen gradually the practice of compensation. In any case the compensation process should be flexible and allow coming up with solutions that are site-specific to some extent (ten Kate et al., 2004).

How can, then, general guidance be further specified into considering particular circumstances of country, scale, ecology, project, public or site?

Although less frequently than it may be desirable, certain regulations do provide some recommendations on the location and/or equivalency of ecological compensation measures for certain projects or places, by giving preference to some of the options described above (Madsen et al., 2010; McKenney and Kiesecker, 2010; ten Kate et al., 2004).

- 148 - Selección de medidas compensatorias

In Europe, Directive 2004/35/CE (on environmental liability) specifies that when designing offsets (which are referred to as ‘compensatory remediation’), in-kind compensation must be considered first, thus prioritising those actions which provide “natural resources and/or services of the same type, quality and quantity as those damaged” (European Union, 2004).

On the other hand, Directive 92/43/EEC establishes that compensatory measures shall guarantee the overall coherence of Natura 2000, what is mostly interpreted as a demand for in-kind compensation (European Union, 1992; Madsen et al., 2010).

These attempts, debatable as they may be, provide a second level of guidance to the examined scientific literature on compensation practice, which might be of application for certain projects (see Annex III in Directive 2004/35/CE) and across Natura 2000 spaces in Europe, respectively.

But these cases do not seem to be much frequent. In fact, it has been recently reported that current laws and public policies rarely provide the explicit interpretation of ‘no-net-loss’ or ‘net-gain’ broad objectives (BBOP, 2009a; Brownlie and Botha, 2009).

Moreover, in order to move towards improved sustainability, effective compensation should be progressively extended to all projects that cause residual impacts on natural assets, and not only to certain projects or areas (see Penny Anderson Associates, 1993).

If we do not get down to specifics, general objectives (e.g. “sustainability”) remain meaningless. Further specification on the objectives of ecological compensation should be developed for each of those impacting project types that currently lack well-developed guidance or practice. For as long as we contribute to clarify the way ‘no-net-loss’ or ‘net- gain’ broader aims may be interpreted into practice, it will become easier to choose and justify appropriate compensatory actions to attain these general objectives. And in case these specific proposals, or other equivalent ones, are not followed, we will have clear indicators of how we keep away from attaining sustainability in particular projects, due to compensation neglect.

In the following section we make some proposals on this direction, choosing and focusing specifically, as an example, on proposals for road construction projects that cause negative residual impacts on areas not belonging to Natura 2000 network. As specific recommendations may vary from one country to another, we have designed the

- 149 - Selección de medidas compensatorias proposals having in mind the case of Spain. They may need to be adapted to the needs or contexts of other countries. For instance, wetlands are common natural features in countries like Sweden, but not in Spain. If this approach was made for Sweden, basic goals would probably regard wetlands more specifically.

4. PROPOSALS ON COMPENSATION PRACTICE FOR ROAD PROJECTS IN SPAIN.

Generally speaking, projects of the same kind usually affect a characteristic set of natural functions or features of the areas where they are developed, which may be more or less vulnerable depending on the specific natural and geographical context. Roads impact the environment they cross, as new dams, or irrigation projects do, but each of them impact the environment in a characteristic way.

In order to set basic goals towards the achievement of ‘no-net-loss’ or ‘net-gain’ objectives, we propose to identify those impacted natural features or functions that can be most easily assessed and are most frequently or deeply damaged by the kind of project we are dealing with (i.e.: road development) and set them as priority targets for compensation. Having roads in mind, we identify three main residual impacts easily agreed as such: the loss of natural and semi-natural land use area, the increase in emissions that the new road favours, and the fragmentation or barrier effect on the landscape and its wildlife.

Although compensation should eventually meet ‘no-net-loss’ or ‘net-gain’ ultimate goals and address all of the impacts, less ambitious objectives may be a more feasible target as a first stage of compensation practice development for specific projects, while leaving stricter demands for the future. Because although present practice needs to be improved, we agree with Hayes and Morrison-Saunders (2007) in saying that “attempting to establish offsets, even if they do not live up the idea of no net loss must be more desirable environmentally than development in the absence of any attempt at conservation”.

With this context in mind, four basic rules are proposed to be followed at every road project causing residual impacts (that do not affect Natura 2000 network) in Spain. They do not ensure sustainability, but their implementation would certainly make progress in this direction; and their neglect would point out more sharply those occasions when we deny the pursuit of sustainability.

- 150 - Selección de medidas compensatorias

4.1. THE RULE OF NATURAL AND SEMI-NATURAL LAND USE AREA CONSERVATION

The construction of a road transforms the land where it is located, both directly and indirectly, causing habitat loss and changes in land uses among other effects (Forman and Alexander, 1998; Riiters and Wickham, 2003). And it is commonly argued that changes from natural scenarios towards more anthropic land-uses usually lead to negative ecological impacts (Allan, 2004; Foley et al., 2005; Poschold et al., 2005; Sala et al., 2000; Tong and Chen, 2002).

If these transformations accumulate in the environment, the area of natural and semi-natural land use (i.e. natural habitats, or land uses that support some forms of wildlife) is diminished as the overall percentage of built area increases. From an ecological standpoint, this leads to a decrease in the total quality of the area.

Ecological compensation should seek to counteract this effect by keeping the proportion “natural and semi-natural surface/built surface” as constant as possible.

As a more specific proposal, we advance that at least, the total area directly occupied by the new road (i.e. the surface that is paved or reshaped, and physically transformed into a road and its adjacent new slopes) should be retrieved somewhere else (e.g., in some adjacent uncultivated land area) to their former and more natural uses (e.g. forest or shrub land), in return for the original ones already lost. In other words, we should retrieve somewhere all the hectares of forest, shrub land or grassland, pastures or crop land that have been taken up and replaced by the new road… or else justify how we will compensate for them.

In short, the proposal consists of not taking for granted any loss in area of any kind of natural or semi-natural land use, but rather measuring the area lost to the new road, and replacing it. If we remove ten hectares of mature forest, then we should create ten new hectares of mature forest… or their equivalent. In applying this rule we should also pay due attention to the vegetation physiognomy of the lost areas, particularly to its maturity degree or, at least, to its size, which takes us to the next rule proposed.

When surfaces conservation proves not feasible, effort might be put into the improvement of the ecological quality of selected areas, in a similar way to what Cuperus et al. recommended in 1999.

- 151 - Selección de medidas compensatorias

4.2. THE RULE OF DOMINANT PLANT SPECIES PHYSIOGNOMY CONSERVATION

Vegetation is a basic component of ecosystems, and a key feature to appraise their value. Although each kind of vegetal formation holds a different ecosystem, ecological and economic values that are not always shared by other formations (see Costanza et al., 1997), it usually depends heavily in its quality on the species composition and the plant physiognomy. Dominant species physiognomy indicates in most cases the minimum span of time required for the associated ecosystem to establish. This is of relevance to compensation practice as “generally the longer the time required for the habitat to develop, the more difficult it will be to compensate for impacts” (Cuperus et al., 1999). Forest restoration and regeneration are processes that require long time to develop, and that may have a high rate of failure if not carefully designed (Chazdon, 2008). This means that compensation for impacts of impacted mature habitats such as forests require far more effort in terms of time and money to succeed than for grassland.

To fit the purpose of this simple, first approach to compensation practice, a raw classification may be used focusing just on the overall vegetation physiognomy of each formation (e.g., forest, woodland, shrub land, and grassland). We propose that, at least, compensatory measures should ensure that the global proportions of vegetation physiognomies are kept constant (unless any external conservation priorities require the contrary). Roughly speaking, if ten hectares of mature forest are removed, then hectares of mature forest should be effectively created in compensation: not just ten hectares of shoots or newly planted small trees. The systematic demand of this goal might well act as a deterrent, to prevent unnecessary damage to high-size vegetation during project implementation.

4.3. THE RULE OF EMISSIONS COMPENSATION

Air quality is a major concern nowadays, especially what relates to the increase

of greenhouse gases, such as CO2 (IPCC, 2007).

Road construction does not cause significant increases in gas emissions by itself, but it may induce raises in traffic volume (Cervero, 2001; Goodwin, 1996; Goodwin, 2003) that at the end lead to higher emissions which have major effects on air quality and atmosphere (Hoor et al., 2009; Koffi et al., 2010).

- 152 - Selección de medidas compensatorias

Precisely because it is an induced impact more than a direct one, the increase in gas emissions is often forgotten as a target for compensation (see Villarroya and Puig, 2010).

Due to the negative effects of traffic emissions on air quality, and also to the global reaching of this kind of impact, we find it key to propose the offsetting of emissions as a basic goal in compensation associated to road projects.

4.4. THE RULE OF POSITIVE DEFRAGMENTATION

Roads cause the fragmentation of those landscapes they cross. Fragmentation has repeatedly been pointed out as one of the main threats to biodiversity (Fahrig, 2003; Jongman, 2002; Saunders et al., 1991; Trocmé, 2006; Trocmé et al., 2003). Although mitigation measures are increasingly implemented to reduce this impact (e.g., through wildlife passages), the net effect of a new road will always be a higher level of fragmentation.

As a final rule, we propose to take some distinctive action beyond mitigation, and make sure that any new road project implements a positive defragmentation initiative. An example could clarify the proposal.

A-10 motorway is located in the Euro Siberian area of northwest Navarre, Spain. It runs along the flat bottom of a wide valley surrounded by steep forested mountain sides. Forests across the area consist mainly of beech (Fagus sylvatica), with common oaks (Quercus robur) in the valleys and white oaks (Quercus humilis) on the sunniest slopes. The forested areas of Urbasa-Andia and Aralar (Figure 1) have been long intersected by the agrarian uses, local roads, and the railway. The construction of A-10 motorway worsened the separation between the Aralar and the Urbasa-Andia forests, especially because one of the remaining forested patches stretching across the gap between the mountain sides was fenced off by the motorway (Figures 2 and 3). A positive defragmentation initiative could have consisted of using of a small viaduct or false tunnel to get alongside the patch (a fragmentation minimization measure), and so avoid its severance, and also in extending the forested patch to narrow or even close the gap between Aralar and Urbasa-Andia forests (a positive defragmentation initiative), as shown in Figure 3.

- 153 - Selección de medidas compensatorias

Fig. 1. Location and general view of the area. The orthophotography shows the division that human activities have caused between Aralar and Urbasa-Andia forested areas.

Fig. 2. The photography shows clearly how the A-10 motorway crosses one of the remaining forested patches stretching across the gap between the mountain sides. Photographer: Luis Sanz Azcarate.

- 154 - Selección de medidas compensatorias

Fig. 3. A: detail of the selected area that shows how the A-10 motorway acts like a fence and even crosses at some point a forested patch between Aralar and Urbasa-Andia forested areas. B: outline of a possible positive defragmentation initiative, including minimization and compensation measures.

5. CONCLUSIONS

General guidance on ecological compensation can be found in scientific literature, usually promoting alternative and complementary ways to reach the “no net (ecological) loss” or “net (ecological) gain” principles. The rationale behind each of the general compensation guidelines helps in developing ecological compensation theory, a necessary step which will eventually result in increased levels of compensation practice.

But present-day practice is far from attaining the “no net loss” or “net gain” theoretical aims. There is a gap between theory and practice which should be progressively solved. One of the indicators of this gap is that in fact we usually compromise with residual impacts acceptance on a daily basis during project implementation, even in EIA contexts, as in Spain.

To fill this gap between theory and practice, to approach more sustainable ways of development, we propose that general guidance on compensation should be progressively developed into more concrete proposals on particular kinds of projects, whenever they prove to be usually implemented in an unsustainable way. To improve the sustainability of projects by kinds, we propose to identify those impacted natural features

- 155 - Selección de medidas compensatorias or functions that can be most easily assessed and are most frequently or deeply damaged by the kind of project we are dealing with, and set them as priority targets for compensation.

Focusing on road projects three different kinds of residual impacts have been identified: the loss of natural and semi-natural land use area, the increase in emissions that the new road favours, and the fragmentation or barrier effect on the landscape and its wildlife. Four proposals, or “rules”, have been advanced to start counteracting these residual impacts in Spain: natural and semi-natural land use area conservation, dominant plant species physiognomy conservation, emissions compensation, and the rule of positive defragmentation. As these rules have been thought for the Spanish EIA context, they may require change or adaptations for alternative countries and contexts. As well, current regulations in some other countries may be more demanding than those in our country, so it might be necessary to propose stricter goals than the ones above in order to promote a real change.

In case the attempt at promoting better compensation practices for road projects fails, or as long as it is delayed, the proposed rules may help at any rate in reminding us how far we find ourselves of true sustainability at project implementation level.

ACKNOWLEDGEMENTS Special thanks to Dr. Luis Sanz for his photography of the study area. The corresponding author is supported by a doctoral fellowship provided by the Department of Science, Technology and Universities of the Government of the Autonomous region of Aragón.

REFERENCES Allan JD. Landscapes and riverscapes: The Influence of Land Use on Stream Ecosystems. Annu Rev Ecol Evol Syst. 2004;35(1):257-84. Blundell AG, Burkey T. Setting biodiversity priorities for biodiversity offsets (open draft for comment). Biodiversity Neutral Initiative; 2006. Brinson MM, Rheinhardt R. The Role of Reference Wetlands in Functional Assessment and Mitigation. Ecol Appl. 1996;6(1):69-76. Brownlie S, Botha M. Biodiversity offsets: adding to the conservation estate, or “no net loss”? Impact Assess Proj Apprais. 2009;27(3):227-31. Business and Biodiversity Offsets Programme (BBOP). Business, Biodiversity Offsets and BBOP. An Overview. 2009a. Available at: http://bbop.forest-trends.org/guidelines/overview.pdf.

- 156 - Selección de medidas compensatorias

Business and Biodiversity Offsets Programme (BBOP). Biodiversity Offset Design Handbook. 2009b. Available at: http://bbop.forest-trends.org/guidelines/odh.pdf. Cervero R. Road Expansion, Urban Growth, and Induced Travel: A Path Analysis. Institute of Urban and Regional Development, University of California, Berkeley. 2001. Available at: http://escholarship.org/uc/item/05x370hr;jsessionid=D167C06A192B5F85CF50470FA84A5B49# Chazdon RL. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science. 2008;320(5882):1458-60. Costanza R, Folke C, Daily GC. Valuing Ecosystem Services with Efficiency, Fairness, and Sustainability as Goals. In: Daily GC, editor. Nature's services: societal dependence on natural ecosystems. Washington DC: Island Press; 1997. p. 49-68. Cuperus R, Bakermans MMGJ, Udo de Haes HA, Canters KJ. Ecological Compensation in Dutch Highway Planning. Env Manag. 2001;27(1):75-89. Cuperus R, Canters KJ, Udo de Haes HA, Friedman DS. Guidelines for ecological compensation associated with highways. Biol Conserv. 1999;90:41-51. Cuperus R, Canters KJ, Piepers AAG. Ecological compensation of the impacts of a road. Preliminary method for the A50 road link (Eindhoven-Oss, The Netherlands). Ecol Eng. 1996;7:327-49. Cuperus R, Kalsbeek M, Udo de Haes HA, Canters KJ. Preparation and Implementation of Seven Ecological Compensation Plans for Dutch Highways. Env Manag. 2002;29(6):736-49. Cuperus R. Ecological compensation of highway impacts: Negotiated trade-off or no-net-loss? Dissertation (PhD), Leiden University, Institute of Environmental Sciences; 2004. Dale VH, Brown S, Haeuber RA, Hobbs NT, Huntly N, Naiman RJ, et al. Ecological principles and guidelines for managing the use of land. Ecol Appl. 2000;10(3):639-70. Darbi M, Ohlenburg H, Herberg A, Wende W, Skambraks D, Herbert M. International Approaches to Compensation for Impacts on Biological Diversity. Final Report. Leibniz Institute of Ecological and Regional Development and Berlin University of Technology, Berlin. 2009. Available at: http://www.forest-trends.org/publication_details.php?publicationID=522. Dolan LMJ, van Bohemen HD, Whelan P, Akbar KF, O’Malley V, O’Leary G, et al. Towards the sustainable development of modern road ecosystems. In: Davenport J, Davenport JL, editors. The Ecology of Transportation: Managing mobility for the Environment. Netherlands: Springer; 2006. p. 275-331. Environmental Protection Authority (EPA). Environmental Offsets Position Statement No. 9. Government of Western Australia, January 2006. Available at: http://www.epa.wa.gov.au/docs/1863_PS9.pdf European Union. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. May 1992. Available at: http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:01992L0043-20070101:EN:NOT European Union. Directive 2001/42/EC of the European Parliament and of the Council on the assessment of the effects of certain plans and programmes on the environment. June 2001. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32001L0042:EN:NOT European Union. Directive 2004/35/CE of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to the prevention and remedying of environmental damage. April 2004. Available at: http://faolex.fao.org/docs/pdf/eur43202.pdf Fahrig L. Effects of Habitat Fragmentation on Biodiversity. Annu Rev Ecol Evol Syst. 2003;34(1):487-515. Foley J a, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309(5734):570-4. Forman RTT, Alexander LE. Roads and their major ecological effects. Annu Rev Ecol Syst. 1998;29:207-31. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, et al. Road ecology. Science and Solutions. Washington DC: Island Press; 2003. Gibbons P, Lindenmayer DB. Offsets for land clearing: No net loss or the tail wagging the dog? Ecol Manag Restor. 2007;8(1):26-31. Goodwin PB, Noland RB. Building new roads really does create extra traffic: a response to Prakash et al. Appl Econ. 2003;35:1451-7.

- 157 - Selección de medidas compensatorias

Goodwin PB. Empirical evidence on induced traffic. Transportation. 1996;23(1):35-54. Hansen AJ, Knight RL, Marzluff JM, et al. Effects of Exurban Development on Biodiversity: Patterns, Mechanisms, and Research Needs. Ecol Appl. 2005;15(6):1893-905. Hashisaki S. Functional wetland restoration: an ecosystem approach. Northwest Science. 1996;70(4): 348- 51. Hayes N, Morrison-Saunders A. Effectiveness of environmental offsets in environmental impact assessment: practitioner perspectives from Western Australia. Impact Assess Proj Apprais. 2007;25(3):209-18. Hoor P, Borken-Kleefeld J, Caro D, et al. The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. J Atmos Chem Phys. 2009;9:3113-36. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: synthesis report. 2007. Available at: http://www.ipcc.ch/publications_and_data/ar4/syr/en/main.html [Last accessed 14 March 2012]. Iuell B, Bekker H, Cuperus R, Dufek J, Fry G, Hicks C, et al. Wildlife and Traffic: A European Handbook for Identifying Conflicts and Designing Solutions. 2003. Available at: https://www.milieuinfo.be/productie/beheerplone/nietacm/iene/cost-341/european-handbook. [Last accessed 14 March 2012] Jongman R. Landscape planning for biological diversity in Europe. Landsc Res. 2002;27(2):187—95. Kalnay E, Cai M. Impact of urbanization and land-use change on climate. Nature. 2003;423(May):528-31. ten Kate K, Bishop J, Bayon R. Biodiversity offsets: Views, experience, and the business case. IUCN. 2004. Available at: http://www.iucn.org/search.cfm?uNewsID=471 [Last accessed 14 March 2012] Kiesecker JM, Copeland H, Pocewicz A, McKenney B. Development by design: blending landscape- level planning with the mitigation hierarchy. Front Ecol Environ. 2010;8(5):261-6. Koffi B, Szopa S, Cozic A, Hauglustaine D, van Velthoven P. Present and future impact of aircraft, road traffic and shipping emissions on global tropospheric ozone. J Atmos Chem Phys. 2010;10:11681-705. Kuiper G. Compensation of environmental degradation by highways: a Dutch case study. Eur Environ. 1997;7:118-25. Latimer W, Hill D. Mitigation banking: Securing no net loss to biodiversity? A UK perspective. Plan Pract Res. 2007;22(2):155-75. Madsen B, Carroll N, Moore Brands K. State of biodiversity markets report: offset and compensation programs worldwide. Ecosystem Marketplace. 2010. Available at: http://www.ecosystemmarketplace.com/documents/acrobat/sbdmr.pdf [Last accessed 14 March 2012] McKenney B. Environmental offset policies, principles, and methods: a review of selected legislative frameworks. Biodiversity Neutral Initiative. 2005. Available at: http://www.forest- trends.org/publication_details.php?publicationID=541 [Last accessed 14 March 2012]. McKenney BA, Kiesecker JM. Policy development for biodiversity offsets: a review of offset frameworks. Environ Manag. 2010;45(1):165—76. Mitsch WJ, Wilson RF. Improving the Success of Wetland Creation and Restoration with Know-How, Time and Self-Design. Ecol Appl. 1996;6(1):77-83. Moilanen A, van Teeffelen AJA, Ben-Haim Y, Ferrier S. How Much Compensation is Enough? A Framework for Incorporating Uncertainty and Time Discounting When Calculating Offset Ratios for Impacted Habitat. Restor Ecol. 2009;17(4):470-8. Morris RKA, Alonso I, Jefferson RG, Kirby KJ. The creation of compensatory habitat–Can it secure sustainable development? J Nat Conserv. 2006;14:106-16. National Research Council (NRC). Compensating for wetland losses under the Clean Water Act. Washington, D.C.: National Academy Press; 2001. Penny Anderson Associates. Roads and nature conservation: guidance on impacts, mitigation and enhancement. Peterborough: English Nature Publicity; 1993.

- 158 - Selección de medidas compensatorias

Pope J, Annandale D, Morrison-Saunders A. Conceptualising sustainability assessment. Environ Impact Assess Rev. 2004;24:595-616. Poschlod P, Bakker JP, Kahmen S. Changing land use and its impact on biodiversity. Basic Appl Ecol. 2005;6(2):93-8. Race MS, Fonseca MS. Fixing Compensatory Mitigation: What Will it Take? Ecol Appl. 1996;6(1):94-101. Reijnen R, Foppen R. Impact of road traffic on breeding bird populations. In: Davenport J, Davenport JL, editors. The Ecology of Transportation: Managing Mobility for the Environment. Vol 10. Heidelberg: Springer-Verlag; 2006. p. 255-274. Riitters KH, Wickham JD. How far to the nearest road? Front Ecol Environ. 2003;1(3):125—9. Rowe DK, Parkyn S, Quinn J, Collier K, Hatton C, Joy MK, et al. A rapid method to score stream reaches based on the overall performance of their main ecological functions. Environ Manag. 2009;43(6):1287-300. Sala OE, Stuart Chapin III F, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, et al. Global biodiversity scenarios for the year 2100. Science. 2000;287(5459):1770. Saunders DA, Hobbs RJ, Margules CR. Biological consequences of ecosystem fragmentation: a review. Conserv Biol. 1991;5(1):18-32. Tong S, Chen W. Modeling the relationship between land use and surface water quality. J Environ Manag. 2002;66(4):377-93. Trocmé M. Habitat Fragmentation due to Linear Transportation Infrastructure: An overview of mitigation measures in Switzerland. Proceedings from the 6th Swiss Transport Research Conference; 15/17 March 2006. Available at: http://www.thepep.org/ClearingHouse/docfiles/Trocme_fragmentation switzerland.pdf. [Last accessed 14 March 2012] Trocmé M, Cahill S, de Vries HJG, Farrall H, Folkeson L, Fry G, et al. COST 341. Habitat Fragmentation due to Transport Infrastructure. The European Review. European Commission Directorate General for Research. 2003. Available at: http://www.iene.info/COST341/COST341_excsummary.pdf. [Last accessed 14 March 2012] United States Congress. Federal Water Pollution Control Act (as amended through P.L. 107-303, November 27, 2002). 2002. Available at: http://epw.senate.gov/water.pdf [Last accessed 14 March 2012]. van Bohemen HD. Habitat fragmentation, infrastructure and ecological engineering. Ecol Eng. 1998;11:199- 207. van Merwyk T, Daddo S. Structuring Environmental Offsets for a Sustainable Advantage. Undated. Available at http://forest-trends.org/publication_details.php?publicationID=582 [Last accessed 14 March 2012] Villarroya A, Puig J. Ecological compensation and Environmental Impact Assessment in Spain. Environ Impact Assess Rev. 2010;30(6):357-62. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of Earth’s ecosystems. Science. 1997;277(5325):494.

- 159 -

DISCUSIÓN

Para asegurar la sostenibilidad de los proyectos con efectos ambientales significativos, la calidad ecológica del medio debería, como mínimo, permanecer constante (Costanza & Daly, 1992; Prugh, 1995). En otras palabras, se debería conseguir que estas actividades humanas no causen pérdidas netas en este aspecto (Iuell et al., 2003; ten Kate et al., 2004; McKenney, 2005; Gibbons & Lindenmayer, 2007; Moilanen et al., 2009; Rowe et al., 2009). Para lograrlo, aquellos daños ecológicos que no pueden ser evitados ni corregidos de modo que se recupere la situación de calidad original (los llamados impactos residuales), deberían ser contrarrestados mediante la aplicación de medidas compensatorias (Pope et al., 2004; McKenney, 2005; EPA, 2006; van Merwyk & Daddo, 2007; Weaver et al., 2008; BBOP, 2009).

En la práctica, sin embargo, la compensación no se aplica en todos los casos en que sería necesaria según este razonamiento, puesto que son habituales los proyectos que, aunque ocasionan impactos residuales en el entorno, cuentan con una EIA favorable sin incluir medidas compensatorias (capítulo I). Las causas de este fenómeno son diversas, y pueden radicar tanto en factores técnicos como conceptuales. Se va a empezar por abordar estos últimos.

De entrada, este modo de entender la sostenibilidad es exigente. La conducta humana tiende con frecuencia a no condicionar o cuestionar su nivel de consumo de lo que percibe como recursos naturales hasta que, por ejemplo, el aumento de los precios de mercado señala una escasez para atender la demanda (Daily, 2000; Daily et al., 2000). Y si es verdad que ciertos entornos están fuertemente protegidos frente a los usos o actividades humanas que puedan alterarlos, también es cierto que no es así en la mayoría de los espacios de la Tierra. Comúnmente, no se tiene asimilado en forma de conducta que la sostenibilidad, para significar algo, exija mantener sin pérdida neta la calidad ecológica del entorno que usamos. Y sin embargo, ¿podría conseguirse de otra manera que ésta que nos sugieren de la mano principios de ética ambiental tan básicos como el de incertidumbre, el de precaución y el de prevención, el de equidad intergeneracional, el de reconocimiento y preservación de la diversidad, o los de internalización de costes o de integración multisectorial (ver p. ej. Cameron & Abouchar, 1991; IAIA, 2003; Vanclay, 2003; Beder, 2006)?

- 161 - Discusión

Por otra parte, siempre se podrá discutir qué significa, en concreto y en el fondo, evitar la pérdida neta de calidad ecológica. Para algunos planteamientos teóricos, una actuación humana implicaría siempre e inevitablemente, de suyo, una disminución de la calidad ecológica. Esta postura sitúa al Hombre como un completo extraño frente a la naturaleza, de la que se le excluye conceptualmente. Frente a esta concepción excluyente, separadora, se alza en completa oposición la de aceptar cualquier acto humano, por entenderlo como inevitablemente natural, precisamente por proceder de un ser (humano) que, se entiende, no puede no ser natural.

Entre los extremos conceptuales esbozados, caben innumerables visiones a las que respondería el trabajo de quienes procuran vivir lo natural respetándolo, tanto en uno mismo (ajustando la propia conducta) como en el entorno (procurando el cuidado de la calidad de su existencia). Múltiples son las posturas que coinciden en buscar, desde las dimensiones de naturalidad que haya en el ser humano, una armonía en la convivencia en y con la Tierra (p.ej. McCauley, 2006), que permita el desarrollo de la vida en los dos polos opuestos con los que con frecuencia se sitúa (con mayor o menor acierto) a los principales actores del drama ambiental contemporáneo, tal y como es visto con frecuencia en occidente: ser humano y naturaleza.

En este contexto, el debate cultural actual sigue planteando si atender a los valores ecológicos no será sólo una exigencia socioeconómica, sino una expresión del espíritu humano, que busca en lo natural realidades y valores más allá de los meros recursos materiales. Desde este punto de vista, actualmente compartido por varias culturas, el término “recursos naturales” se queda corto para hacer referencia a todos los aspectos del medio natural. Y es que los valores no materiales y no utilitarios del medio natural (como los valores espirituales, religiosos, culturales, etc) siempre serán difíciles de encajar en una mentalidad orientada a medir y ordenar todo aquello que nos rodea, precisamente (y entre otras razones) por la dificultad (o imposibilidad) de su medición.

Además de este fondo conceptual, y pasando ya a un punto de vista técnico, un primer obstáculo para aplicar la compensación reside en la dificultad de valorar (e incluso en algunos casos, de identificar) los impactos residuales que ocasiona un proyecto (Darbi et al., 2009; Rowe, 2009). Tal dificultad es, por un lado, intrínseca al propio proceso de valoración, que conlleva incertidumbres que impiden obtener resultados objetivos e indiscutibles acerca de la significatividad de los impactos (capítulo IV). Por otro lado, la

- 162 - Discusión naturaleza y características de algunos impactos los hacen más difícilmente evaluables que otros, a menudo por las complicaciones que implica medir su alcance o magnitud. Por ejemplo, en el caso de proyectos de carreteras y autopistas la fragmentación de hábitats y poblaciones es más difícil de medir que la pérdida de superficie natural, puesto que esta última puede expresarse en unidades de área, mientras que la primera requiere métodos más complejos (p. ej. Jaeger, 2000). De hecho, ciertos efectos de proyectos de desarrollo sobre el medio todavía no son bien conocidos, en algunos casos ni siquiera en cuanto a su relación causa-efecto (capítulo II).

A las dificultades debidas a la propia naturaleza de los impactos y del proceso de valoración, se suman ciertas deficiencias en el modo en que actualmente se lleva a cabo este paso en la EIA, habitualmente más orientado hacia la corrección que hacia la compensación (capítulo V). Juega aquí un papel importante el concepto de impacto residual que, en la medida en que se ignora en los procedimientos de EIA (como señalan Dolan et al. (2006) para el caso de proyectos de carreteras), señala el alcance del valor ecológico que aceptamos perder definitivamente, sin ni siquiera intentar evitarlo con los recursos valorativos y técnicos de los que se dispone. Además, tras la valoración del impacto residual, el cálculo de las acciones necesarias para compensarlo suele constituir otro obstáculo que, en cambio, no existe a la hora de diseñar medidas preventivas o correctoras, que además son aplicadas con mucha más frecuencia que las compensatorias (capítulo V). Por último, el modo en que se desarrolla (o se omite) actualmente la identificación y valoración de impactos residuales hace que el diseño de medidas compensatorias no siempre cuente con una base sólida que justifique las propuestas concretas que se hacen, lo que supone un impedimento añadido a la escasez de guías o indicaciones (capítulo VI) que faciliten tanto esta tarea como la evaluación posterior de la idoneidad de las acciones compensatorias propuestas. Todo esto, a su vez, repercute negativamente en el proceso de participación pública, que constituye una parte fundamental de la EIA (André et al., 2006; Hartley & Wood, 2005).

Aunque el análisis de estos aspectos se realice desde una perspectiva teórica o científica, para elaborar propuestas de mejora efectivas éstas han de adaptarse al contexto en que se desarrolla la EIA, habitualmente sujeto a las limitaciones de tiempo y medios específicas de este procedimiento. En este sentido, es tan importante proponer acciones que supongan una solución a los problemas detectados como procurar que tales medidas sean aplicables en la práctica (McKenney, 2005). Así, aunque la mentalidad

- 163 - Discusión teórica o científica tiende a elaborar propuestas exigentes y dirigidas a asegurar el logro de los objetivos finales de la compensación, el intento de lograr esos objetivos demasiado rápido sería seguramente difícil de llevar a cabo en un escenario real. Por contra, la búsqueda de la eficacia a largo plazo puede alcanzarse poniendo en práctica de inicio objetivos de compensación inicialmente menos ambiciosos, pero más adaptados a la situación actual. Tales objetivos pueden suponer sin embargo mayores avances a corto plazo, puesto que permiten ser aplicados con mayor facilidad. Además, al ser puestos en práctica permiten promover una mentalidad que, a su tiempo, aceptará medidas más exigentes que las que admite el contexto de la EIA en España actualmente. Complementariamente, la elaboración de propuestas demanda sencillez también para facilitar la transparencia del procedimiento de EIA, condición indispensable para facilitar la necesaria participación del público (Sadler, 1996; Morrison-Saunders & Bailey, 2000; Webler & Tuler, 2006; Plottu & Plottu, 2009). El contraste de los datos empíricos sobre la práctica de la compensación en la EIA en España (capítulos I, III y V) con la bibliografía científica existente relativa a compensación ecológica permite ver de algún modo la distancia que separa la práctica actual del ideal teórico, y que no puede recorrerse en un solo paso, pues exige cambios tan complejos como el del contexto real en que se desarrolla la EIA.

Las propuestas para promover la práctica de la compensación presentadas en los artículos anteriores siguen este razonamiento, en un intento de tender un puente entre dos ámbitos (el de la ciencia y el de la práctica cotidiana de la EIA y de la compensación) habitualmente distanciados, acaso por la dificultad de hacerse cargo recíprocamente del marco en que trabaja el profesional de un campo ajeno al propio. Así, primar en la EIA la elección de metodologías de valoración sencillas y claramente explicadas, e incluir un registro y evaluación explícito de aquellos impactos residuales con representación geográfica (capítulos IV y V) son ideas que, aunque de partida no abarquen todos los impactos residuales, tratan de dar un paso más respecto a la situación actual de sostenibilidad que parecen revelar los estudios de casos reales realizados en varios de los artículos presentados.

La sencillez de estas propuestas, además de responder al objetivo de adaptarse a la situación actual, tiene una segunda lectura. Puede que su simplicidad sorprenda desde una mentalidad científica, pues claramente su implantación no solucionaría per se la baja práctica de la compensación ecológica que se detecta actualmente. Pero el hecho de que

- 164 - Discusión sea éste, y no uno más complejo, el primer paso necesario para mejorar la situación actual nos revela en cierto modo lo lejos que estamos de alcanzar la situación ideal que propone la teoría. Y desde una perspectiva más general, este contraste entre percepciones de la misma propuesta da un indicio de la distancia que con frecuencia separa el mundo de la ciencia y la teoría del mundo práctico, que es al fin y al cabo del que depende la asimilación e implantación de los avances que prevé el primero. De ahí que convenga recordar que lo novedoso de las propuestas no tendrá su patrón de medición más eficaz desde el mundo científico, que siempre se propone objetivos que trascienden la realidad presente, sino desde el mundo profesional y administrativo de la práctica de la EIA, para quienes unos cambios teóricamente poco novedosos, pueden serlo mucho si se tiene en cuenta lo que se hace (u omite) en la realidad. No es una novedad teórica presentar la idea de compensación. Sí lo es hacerlo para un marco escogido (la EIA en España), y más lo sería si lo fuera de modo que, al fin, se lograra cambiar la práctica, objetivo al que desea este estudio contribuir, pero que le trasciende, al estar la práctica de la EIA en manos de otros profesionales.

Dejando a un lado la cuestión acerca de la complejidad de las propuestas, hay que señalar también que la mejora de aspectos técnicos, como aquellos relacionados con la valoración de impactos y el diseño de medidas compensatorias adecuadas, no garantiza por sí sola una mayor aplicación de compensación ecológica en la EIA. Para lograr este objetivo, y siguiendo en cierto modo lo que propone McCaulay (2006) para las acciones de conservación, los progresos técnicos han de ir acompañados por cambios conceptuales, especialmente en cuanto a la percepción de la compensación ecológica como una necesidad lógica y no como una carga o responsabilidad accesoria (en la línea de lo propuesto por Skärbäck en 2007 para los valores recreativos del medio natural). Este tema, sin embargo, no suele aparecer de forma explícita en los capítulos precedentes de esta tesis, aunque ha sido abordado al iniciarse este apartado y ahora se retoma para recordar la idea de que las propuestas de cambio particulares responden a un contexto teórico profundo, en el que buscan su fundamentación más necesaria, aunque por ello no deje de ser discutida o discutible.

Como se señalaba en el capítulo III, la compensación de impactos ecológicos no parece despertar tanto interés o preocupación como la compensación de otros impactos (los económicos en el caso estudiado). Esto puede ser debido en parte a que los efectos de ciertos proyectos sobre la esfera ecológica no son tan fácilmente perceptibles como

- 165 - Discusión los que afectan al ámbito socioeconómico, pero puede haber otras muchas causas. Como se observa en el caso descrito en este artículo, cuando un impacto económico no es contrarrestado por parte de quien lo causó, los afectados buscan los medios para cambiar esa situación. Sin embargo, tal fenómeno rara vez se observa ante un impacto ecológico. Si éste no afecta a personas concretas, cuando el promotor no lleva a cabo medidas compensatorias y la ley no obliga a ello, no es frecuente que alguien tome la responsabilidad de asegurarse de que los daños sean contrarrestados.

El medio natural es un bien de todos y de nadie, y como tal puede estar sujeto a lo que Garrett Hardin describió en 1968 como “la tragedia de los comunes”, una situación en la que la utilización de un bien colectivo para satisfacer los intereses particulares de varios individuos puede acabar destruyendo tal recurso. Este fenómeno observado en cuanto a la preservación de la calidad ecológica del medio no es nuevo, pues no son raros los ejemplos en que surgen importantes dificultades para asignar la responsabilidad de reparar los daños causados sobre recursos públicos, a menudo con el resultado de que el perjuicio queda sin remediar.

Ante esta situación, la legislación puede ser una herramienta útil para indicar claramente quién debe responder y poner los medios para remediar los daños causados al entorno, siguiendo la recomendación del propio Hardin (1998) de utilizar acuerdos comunes (leyes) para prevenir la sobreexplotación de recursos comunes. Si bien las leyes actuales establecen estos términos en la mayoría de las situaciones de contaminación, mediante la aplicación del principio “quien contamina, paga”8, parece que la situación actual demanda algunos ajustes en materia de compensación ecológica de daños ambientales distintos a la contaminación.

En España, la legislación sólo obliga a compensar impactos que afecten a lugares pertenecientes a la Red Natura 2000 (RDL 1997/1995), o cuando se llevan a cabo determinadas actividades (previstas por la Ley 26/2007) (ver capítulo I). Aunque es cierto que la preservación de zonas catalogadas bajo algún estatus de protección requiere especial atención, el resto de áreas no deben ser descuidadas si se quiere conservar de forma efectiva la calidad ecológica global del medio (Farina, 2000). Por ello, sería

8 El principio de “quien contamina, paga” (PPP por sus siglas en inglés; “Polluter-Pays Principle”) establece que el responsable del proyecto o actividad que causa un daño al medio ambiente debe hacerse cargo de los costes de las medidas necesarias para devolver el entorno a un estado aceptable. Este principio fue establecido en 1972 por la OECD con la intención de limitar los daños causados al entorno y establecer las responsabilidades en cuanto a la recuperación de los impactos originados (JWPTE, 2002; Beder, 2006). - 166 - Discusión recomendable estimular desde la legislación la compensación de los impactos residuales significativos sobre el medio natural, aunque éstos no afecten directamente a áreas protegidas, de modo que se vaya desarrollando una cultura de respeto al medio que se exprese en compensar, cada vez más, lo que en el pasado se hubiera dejado permanentemente alterado.

Como recomiendan Barbero-Rodríguez y Espigares-Pinilla (2010), la obligatoriedad de implantar medidas compensatorias cobra especial importancia para ambientes que, como ocurre con los ecosistemas de ribera, se encuentran más deteriorados y/o son más frágiles que otros. También conviene señalar que, según las leyes actuales, la decisión final de aplicar medidas compensatorias depende en la mayoría de los casos de si los impactos son considerados significativos o no. Puesto que, como se ha tratado en secciones anteriores, la determinación de la significatividad es un tema que siempre plantea incertidumbres, podría ser de utilidad establecer un acuerdo sobre qué se debe considerar como impacto residual significativo para estos casos, teniendo presente que varios impactos residuales de escasa entidad pueden acabar resultando en importantes impactos acumulativos (Race & Fonseca, 1996).

Si bien es cierto que la significatividad de muchos efectos depende del caso concreto, determinados tipos de proyecto provocan siempre ciertos impactos residuales, independientemente de las condiciones en que se lleven a cabo. Como ejemplo se ha presentado el caso de las carreteras, que conllevan daños al entorno (como la pérdida de superficie natural, el aumento de emisiones y la fragmentación paisajística y ecológica) siempre inevitables e imposibles de corregir totalmente (ver segunda parte). Por esto, la elaboración de listados de actividades que siempre, bajo cualquier condición, ocasionan impactos residuales podría también ayudar a determinar en qué casos es necesaria la aplicación de compensación ecológica.

En resumen, la amplitud de enfoques de estudio empleada en esta tesis ha permitido sondear en distintos frentes la dificultad de implementar la compensación ecológica. Si bien el trabajo se ha realizado desde el plano teórico, los obstáculos encontrados tienen su reflejo en el terreno práctico, quizás con más fuerza. Podría decirse que la escasa aplicación de medidas compensatorias radica a partes iguales en la falta de herramientas que permitan presentarla y justificarla adecuadamente, y en una mentalidad más o menos extendida de admisión de pérdidas de calidad ecológica. Por esto, aunque

- 167 - Discusión la ciencia y la técnica juegan un importante papel en la propuesta de mejoras, sólo pueden propiciar parte del cambio necesario, que requiere inevitablemente de acciones desde otros frentes.

Los métodos para valorar los impactos ecológicos residuales y para calcular las medidas compensatorias correspondientes, deben continuar siendo objeto de estudio para lograr herramientas verdaderamente manejables y útiles para la compensación dentro de la EIA. Y al mismo tiempo, se deben buscar mecanismos para facilitar un cambio de mentalidad en cuanto a la concepción del entorno ecológico, de manera que su conservación no continúe estando a expensas del desarrollo humano.

- 168 -

DISCUSSION

Keeping constant the ecological quality of the environment is a minimum requirement to attain the sustainability of projects which cause significant ecological impacts (Costanza & Daly, 1992; Prugh, 1995). In other words, human development should not cause net ecological losses (Iuell et al., 2003; ten Kate et al., 2004; McKenney, 2005; Gibbons & Lindenmayer, 2007; Moilanen et al., 2009; Rowe et al., 2009). In order to do so, those impacts that cannot be avoided nor reversed to recover the original situation (i.e. the residual impacts) should be counteracted through the implementation of compensatory measures (Pope et al., 2004; McKenney, 2005; EPA, 2006; van Merwyk & Daddo, 2007; Weaver et al., 2008; BBOP, 2009).

Nevertheless, data show that ecological compensation is not put into practice as often as it would be theoretically necessary to attain sustainability, since usually EIA approves development projects that cause ecological residual impacts even though they do not plan any offsets to counteract those negative effects (chapter I). Such phenomenon may be caused both by technical and conceptual factors. These last ones will be approached first.

Requiring no net loss of ecological quality as a goal for EIA reflects a quite demanding concept of sustainability. More often than not, we do not care about our rate of consumption of natural resources until there is some evident sign of shortage, as an increase in market prices (Daily, 2000; Daily et al., 2000). And although some environments are strongly protected against human intervention, they represent only a small percentage of all the environmentally valuable places on Earth that are sensitive to anthropogenic disturbances. Is it possible to meet some basic principles of environmental ethics (like uncertainty, precautionary, inter-generational equity, biodiversity preservation, cost internalisation or multi-sector integration principles), without understanding that sustainability demands to ensure no net ecological losses in the environment? (see e.g. Cameron & Abouchar, 1991; IAIA, 2003; Vanclay, 2003; Beder, 2006). However, the avoidance of net ecological losses is not a common attitude currently.

Complementarily, as an added obstacle to compensation, there is (and there always will be) a wide discussion on the theoretical and practical meaning of no net ecological loss. Some theories would maintain that all human activities inevitably entail a

- 169 - Discussion loss of ecological quality, since they consider that human beings are conceptually excluded from nature, strangers to it. Contrarily, other trends understand that human activities are inevitably natural since they come from human beings, who cannot be non-natural.

Nevertheless, there may be countless viewpoints that respond to some middle ground between the described extreme theories. An example of this may be represented by all those people who look for ways to live and respect nature, both adjusting their own behaviour to its rules and taking care of its quality. Several theories try to find ways of life and development that are more respectful towards the Earth (see e.g. McCauley, 2006), in order to reconcile what many westerners may actually perceive somehow as opponents: human development and nature.

In this context, current debate tries to ascertain whether taking care of ecological values is not only a socio-economic pressing need, but an expression of human spirit as well, which seeks, within nature, certain values beyond economic resources. From this point of view, actually shared by several cultures, the term ‘natural resource’ does not include all natural aspects of the environment. Non-material, non-utilitarian natural values (such as spiritual, religious or cultural values) are hard to handle for some scientific mindsets which try to measure and classify everything, mainly because such values are hard or even impossible to measure.

From a technical viewpoint, a first obstacle to put ecological compensation into practice arises when trying to value (or even to identify) the residual impacts caused by a project (Darbi et al., 2009; Rowe, 2009). On the one hand, such difficulties are inherent to the valuation process, which has to deal with uncertainties that do not allow getting objective, straight-forward results on the significance of the impacts (chapter IV). On the other hand, certain impacts are harder to evaluate than others, often because it is difficult to measure their reach or magnitude. Taking the effects of roads and motorways on nature as an example, habitat loss is easier to measure than fragmentation, since transformed surfaces are easily identified and measured while the barrier effects need more complex methodologies to be estimated (e.g. Jaeger, 2000). In fact, there are certain effects of development projects on the environment that are not yet well known, not even enough to attach them to a certain cause (chapter II).

In addition to the valuation of the residual impact, the estimation of which are the offsets to compensate it is an added difficulty that does not exist when designing - 170 - Discusion preventive or mitigation measures, which are in fact much more frequently proposed than compensatory ones (chapter V). The way identification and valuation of residual impacts is currently carried out (or overlooked) does not provide a solid base to justify the proposal of ecological offsets, which is also hampered by the scarcity of guidelines on how to make this proposal in a sound way (chapter VI). At the same time, all these gaps and difficulties have negative consequences in public participation, which is actually a core part of EIA (André et al., 2006; Hartley & Wood, 2005). In addition to the difficulties that may be due to the varying typology of the impacts and the valuation process, some deficiencies may be found on the way valuation within EIA is currently carried out, usually directed towards favouring impact mitigation much more than impact compensation (chapter V). The value of the residual impact plays a key role in the proposal of compensation measures. As long as it is overlooked in EIA processes (as Dolan et al., (2006) point out for road projects), residual impact represents the ecological value we agree to loss without even trying to recover it somehow.

Although all these aspects are studied from a scientific or theoretical viewpoint, the proposals to improve current procedures must adapt to the practical context in which EIA is undertaken, which is usually subject to time and budget constraints. In this sense, the practical applicability of the proposals is as important as the improvements they may entail (McKenney, 2005). Thus, although some scientific proposals may be technically sound enough to overcome the existing deficiencies on compensation issues, they may frequently entail too demanding efforts that may not be possible to carry out at present in pressing decision-making scenarios such as EIA. At the end, proposing too big changes in order to reach compensation broad objectives immediately would prove an inadequate strategy to foster compensation in the real EIA scenario On the contrary, initially less ambitious, more practical proposals may gradually lead to the achievement of broader objectives in the long-term. Since they may be easily put into practice their small achievements could promote new attitudes regarding compensation that will accept, at the end, more demanding measures. Complementarily, proposals on EIA need to be kept also as simple as possible to facilitate the transparency of the whole process, an essential condition to ensure public participation (Sadler, 1996; Morrison-Saunders & Bailey, 2000; Webler & Tuler, 2006; Plottu & Plottu, 2009). The gulf between the registered data on ecological compensation practice within Spanish EIA (chapters I, III and V) and current

- 171 - Discussion scientific literature proposals shows somehow the dimension of the gap between actual practice and theoretical goals. A gap that cannot be covered in a single step, for it demands to accomplish as complex improvements as the change of the real context where EIA is developed.

The proposals presented in chapters I to VI follow this reasoning, with the aim to build bridges between two fields (science and daily practice on EIA and compensation) that are usually distant to each other, maybe because they both find difficulty at taking one another’s role. Thus, prioritising in EIA simple and clearly explained valuation methodologies, and explicitly registering and evaluating geographically represented residual impacts (chapters IV and V) are some proposals that, although may not cover all the existing deficiencies in ecological compensation practice, try to advance some initial steps towards the improvement of the actual situation that real data show.

Such simplicity has a second meaning. The described proposals may be regarded as too simple by a scientific mind, since their implementation would not solve per se the current lack of compensation practice. But this simplicity responds to the needs of the current context, and points out the gap that separates actual practices from theoretical objectives. From a broader viewpoint, the contrast between the different ways in which the described proposals are perceived from the scientific or practical viewpoints shows also the gap that separates the theoretical and scientific sphere from the practical field. But, at the end, it is the practical sphere which ‘brings to life’ the ideas that scientists envision. This way, the real innovation of a certain proposal may not be properly evaluated from a theoretical or scientific perspective, but rather from the practical sphere of EIA, which may find significant progress in scientifically non-innovative proposals, as long as they mean a true, achievable step-forward in real practice. The concept of compensation is not a scientific innovation. But to propose to improve it in the Spanish EIA context may certainly be an innovative proposal. And more so if this attempt ends up changing compensation practice, a goal this thesis aims to contribute to, while bearing in mind that, at the end, such achievement depends only on the work of EIA professionals.

Setting now aside the issue of the complexity or simplicity of the compensation proposals, it is to be reminded that the improvement of EIA technical aspects does not guarantee by itself a higher practice of ecological compensation. In order to achieve this goal, technical progress should be implemented along with conceptual changes (as also suggested by McCaulay (2006) for conservation activities) that foster a general perception

- 172 - Discusion of ecological compensation as a logical need and not as an incidental responsibility (see Skärbäck (2007) for recreational values of natural environment). Although this idea has not been specifically addressed in the presented chapters it is actually behind the proposals they make.

As chapter III pointed out, ecological compensation seems not to get as much attention or concern as socio-economic compensation. The difficulty to perceive certain ecological impacts may partly cause that phenomenon, but there may be some other factors behind it. As the paper describes, when an economic impact is not balanced the affected people look for ways to get the corresponding compensation. However, this hardly ever happens when ecological values are lost; if the developer does not propose offsets and the environmental regulations do not enforce to do so, usually nobody demands the compensation of the ecological damage.

The natural environment belongs to nobody and at the same time everybody can use it. For that reason it may be subject to what Garret Hardin described in 1968 as the ‘tragedy of the commons’; a situation where the continuous and accumulative use of a collective good for different individual purposes leads to the destruction of the resource. This phenomenon can be observed in relation to the ecological quality of the environment, but also in other cases when we find it hard to ascertain who is responsible for repairing the damages collectively caused upon public resources. And, usually, the end of the story is that such damages remain un-repaired.

Environmental legislation can be a useful tool to face this situation, if it clearly states who must remedy the damages caused upon the environment, as Hardin (1998) already recommended to prevent the over-exploitation of common resources. Although current regulations have started to clarify this question for pollution problems by applying the ‘polluter pays’ principle9, it seems that some changes may be necessary to enforce ecological compensation for other environmental problems.

Spanish current legislation only enforces to compensate significant ecological impacts that affect Natura 2000 areas (RDL 1997/1995) or that are caused by certain activities (Law 26/2007) (see chapter I). Although protected areas need special effort to

9 The ‘Polluter-Pays’ principle establishes that the developer of a project or activity that causes any negative impact on the environment must carry out the necessary measures to counteract it so as to bring the affected environment back to an acceptable state. This principle was established in 1972 by the OECD to limit the impacts on the environment and to establish who must be responsible for the recovery of the damaged environment (JWPTE, 2002; Beder, 2006). - 173 - Discussion ensure their integrity, non-protected zones must also be cared for to some degree if we want to effectively avoid net ecological losses in the environment (Farina, 2000). For that reason, legislation should enforce to compensate any significant ecological residual impacts, even if they do not damage protected areas. This would also help to develop a more respectful mind towards the natural environment, one that would seek to compensate what in past times would have been accepted as a permanent loss.

As Barbero-Rodríguez and Espigares-Pinilla (2010) recommend, enforcing the implementation of compensatory measures is especially important for fragile habitats and/or very damaged environments, such as riparian ecosystems. It has to be noticed that, according to current Spanish regulation, the decision on the implementation of offsets depends on the significance of the residual impacts. But, as it has been already discussed, establishing the significance of an impact always entails a certain uncertainty. For this reason, it may seem a good idea to clarify what should be considered as a significant residual impact, keeping in mind that several small impacts within a certain area can add up to an important cumulative impact (Race & Fonseca, 1996).

Although the significance of most impacts depends on the characteristics of each particular case, certain kinds of projects always entail certain residual impacts, regardless of the circumstances. As it has been described in previous chapters (see second part of the thesis), road projects always cause ecological impacts that cannot be avoided nor completely reversed, such as habitat loss, increase of gas emissions and ecological and landscape fragmentation. Thus, identifying those projects which always cause ecological residual impacts could help to decide in which cases ecological compensation should be enforced.

All in all, the variety of focuses and study scales adopted in the different parts of the thesis has allowed exploring several difficulties that the implementation of ecological compensation has to face. Although the approach has been made mostly from a theoretical standpoint, the described obstacles affect real practice even more deeply. It may be said that the low practice of ecological compensation is rooted both in a lack of tools for properly proposing and justifying offsets, and in a quite common acceptance of ecological quality loss. For this reason, although science and technique should make proposals to improve current practice, additional changes in the way we perceive our duty to preserve the environment are necessary to attain real improvements.

- 174 - Discusion

Methodologies for valuating residual impacts and for calculating their corresponding offsets should be developed in such a way that they constitute useful tools to promote ecological compensation within EIA. And, at the same time, a new perception of the natural environment should be promoted, so that the preservation of ecological assets be no longer at the expense of human development.

- 175 -

CONCLUSIONES GENERALES

1. Cuando el número y la magnitud de los proyectos con incidencia ambiental significativa se multiplican, aumenta la necesidad de considerar el respeto del entorno natural como parte integral de esos proyectos, en especial en aquellos lugares donde se concentran.

2. Un enfoque indispensable para reducir los efectos ambientales negativos de la actividad humana es el desarrollo de acercamientos más amplios que los análisis proyecto a proyecto. Pero al mismo tiempo, el análisis ambiental e individual de esos proyectos a través de la Evaluación de Impacto Ambiental (EIA) es clave para alcanzar los objetivos ambientales generales en el momento de ejecutar los proyectos.

3. Como es el caso de otras muchas disciplinas, el acercamiento entre el trabajo de los investigadores y el de otros profesionales de la EIA (como los consultores ambientales o los técnicos de la administración), facilita la propuesta de avances en materia de sostenibilidad en la EIA.

4. Aunque se mejoren los métodos para evaluar los impactos y para proponer las acciones necesarias para revertir sus efectos, la realidad natural es compleja, y se hace imposible medir los impactos negativos de la actividad humana en todos sus aspectos. La gestión del entorno, por lo tanto, ha de estar atenta a esta incertidumbre ineludible, y priorizar enfoques sencillos que permitan mejorar la sostenibilidad, sobre perspectivas más complejas o precisas que difícilmente puedan llevarse a la práctica en el marco de la EIA.

5. La compensación de impactos ecológicos residuales originados por proyectos con una incidencia ambiental significativa permite mejorar su sostenibilidad dentro del marco de la EIA, habilitada por la legislación específica como una herramienta de singular importancia para promover la práctica de la compensación.

- 176 - Conclusiones generales

6. En España, la compensación ecológica no se aplica actualmente en la mayoría de los proyectos sometidos a EIA que ocasionan impactos residuales sobre el entorno. Las causas de este fenómeno son múltiples y difíciles de discernir, e implican tanto factores técnicos como conceptuales o de percepción, que se han analizado particularmente para el caso de vías de transporte, aprovechando la experiencia compensadora ya existente en otros lugares para estos proyectos.

7. La práctica de la compensación en la EIA en España requiere interpretaciones de la legislación de EIA más ajustadas al objetivo de la sostenibilidad que persigue, o incluso cambios que promuevan e incluso exijan la aplicación de medidas compensatorias en todos los proyectos que ocasionen impactos ecológicos residuales significativos, afecten o no a zonas protegidas.

8. Para alcanzar mayores cotas de sostenibilidad a través de la práctica de la compensación en la EIA se propone promover, a la vez, una evaluación de los impactos accesible al público, una elevada visibilidad de los impactos residuales que generan los proyectos, y guías para concretar las medidas a aplicar para cada tipo de proyecto. En esta dirección van las propuestas presentadas en los distintos capítulos de esta tesis.

9. Sea cual sea la altura de los objetivos últimos de sostenibilidad hacia los que se dirijan, las propuestas de evaluación ecológica elaboradas desde el mundo científico han de estar adaptadas, de inicio, a las condiciones actuales del procedimiento de EIA para poder ser aplicadas eficazmente en ese contexto práctico.

10. La dificultad que se encuentra para definir cómo lograr y justificar ante una cultura de la corrección de impactos las propuestas de compensación en el marco de la EIA, pone en cuestión el rumbo que lleva lo que denominamos desarrollo. No se trata solamente de que cueste acordar cómo alcanzar la sostenibilidad, sino de que no hay un acuerdo en cuanto a su nivel de exigencia en lo referente al medio natural ni, por lo tanto, en cuanto al significado del concepto de desarrollo y en cómo debería expresarse en el territorio ante la ejecución de proyectos concretos.

11. Las propuestas para favorecer la compensación ecológica serán aceptadas socialmente en la medida en que vayan acompañadas de un progresivo cambio de mentalidad, de forma que el no causar un daño neto al medio se perciba no como

- 177 - Conclusiones generales

una posibilidad, ni como una obligación legal, sino como la manera humana de comportarse ante la base natural de la que depende la misma vida, aunque su limitación o agotamiento esté lejos de percibirse. Empezando por la EIA, conviene pasar progresivamente de una cultura de la corrección de impactos, que de hecho admite los impactos residuales, a otra que la incluya y la supere: la de la compensación.

12. Aunque la aplicación del concepto de sostenibilidad a acciones concretas sea una tarea compleja, la identificación a través de la EIA de actividades no sostenibles que requieran compensación es una labor más sencilla, un punto de partida hacia formas de proceder más sostenibles y hacia una nueva mentalidad en lo referente al uso del territorio.

13. Esta tesis arranca desde un modo exigente de entender la sostenibilidad: en el marco de la EIA, no deberíamos admitir pérdidas netas de calidad ecológica. De ese enfoque depende su debilidad conceptual, principalmente ante quienes no asignan tanto valor al medio natural. Pero también radica en él la fuerza de sus propuestas, principalmente ante quienes entienden que los valores naturales deben ser más respetados. Porque si es cierto que la interpretación de la sostenibilidad es discutida, es más difícil que pueda alcanzarse admitiendo una pérdida progresiva de calidad ecológica en el medio.

- 178 -

GENERAL CONCLUSIONS

1. As the number and magnitude of projects with significant environmental effects grow, seemingly the need grows of considering the care for the natural environment as an integral aspect of these projects performance, mainly where they concentrate.

2. To reduce the negative effects of human activities on any aspect of the environment, it is necessary to use of wider approaches than project-centered analyses. Notwithstanding, project-scale environmental performance analysis through environmental impact assessment (EIA) remain crucial to attain general environmental aims through project implementations.

3. As in many other fields, bringing together the work of EIA researchers (who develop their activity mainly in universities and alternative research centers) and of other EIA-involved professionals (such as environmental consultants or public administrators) makes easier the proposal of how to foster sustainability within EIA.

4. Even though impact assessment methodologies and the proposals to counter them may be progressively improved, there remains the complexity of the natural reality and the impossibility to assess all the negative effects of human activity on the environment. Environmental management, therefore, must take notice of this unavoidable uncertainty, and prioritize those straightforward approaches that allow improving sustainability over those more complex or precise ones that would be hardly operative in real EIA management frameworks.

5. The compensation of residual ecological impacts caused by projects with significant environmental effects allows improving their sustainability through the EIA framework, empowered by the EIA specific regulation as a singularly good tool to foster compensation practice.

- 180 - General conclusions

6. In Spain, ecological compensation is overlooked in most projects under EIA regulation that cause residual impacts on the environment. The causes of such phenomenon are multiple and difficult to discern, as there converge technical, conceptual and perceptual reasons, which have been analyzed in particular for roads and railways, to take advantage of the compensation expertise already developed for these kind of projects in other countries.

7. Compensation practice within EIA in Spain needs of regulatory implementations to be closer to its own sustainability aim, or even of regulatory changes that foster or enforce the application of compensatory measures in all projects that cause significant residual ecological impacts, both within environmentally protected areas and out of them.

8. Throughout the different chapters of this doctoral dissertation, an impact evaluation methodology accessible to public participation, a high visibility of residual ecological impacts, and the development of guidance for ecological compensation of specific types of projects are proposed together as coordinate measures to reach higher sustainability levels through compensation practice in EIA.

9. No matter how ambitious the ultimate sustainability goals intended are, ecological evaluation proposals from the scientific community must, first, adapt to present-day EIA performance. Only so will these proposals integrate efficiently in EIA contexts.

10. The difficulty found to define and justify, before a well-established impact mitigation culture, any ecological compensation proposals in EIA raises doubts on the direction that present-day development follows. There is not only difficulty in agreeing how to reach sustainability, as we do not agree either in how demandingly have sustainability goals to be understood regarding the natural environment in the particular EIA context. At the end, there is lack of agreement in the meaning of development itself, and in how it should be applied on the territory when particular projects are implemented.

- 181 - General conclusions

11. The proposals to foster ecological conservation will be socially accepted as long as a change in mentality develops, so that avoiding a net environmental loss may be perceived not only as a possibility or a legal necessity, but also as the way to be true to our humanity in dealing with the natural base that sustains life itself, even though its decrease or exhaustion may be far from being perceived. Getting started through EIA, a development is required from the “impact mitigation culture”, which in fact compromises with residual impacts, to a more demanding “impact compensation culture”.

12. Even though the practical implementation of sustainability is not an easy task, the identification of non-sustainable activities in need of compensation through EIA may be easier to apply, a departing point towards more sustainable standards, which may help in awakening a new mentality regarding land-use.

13. This doctoral dissertation stems from a demanding way of understanding the meaning of sustainability: in EIA frameworks, we should not accept net ecological value losses. From this standpoint springs up also a source of potential criticism, mainly from those who may deem natural values as more dispensable. But in it is rooted at the same time the strength of the proposals here presented, mainly before the eyes of those who think that natural values should be more respected. If it is true that the concept of sustainability is debatable in its interpretation, it is more difficult to state that it could be reached accepting a progressive loss of ecological quality in the environment.

- 182 -

BIBLIOGRAFÍA GENERAL

André PB, Enserink B, Connor D, Croal P. 2006. Public participation: International Best Practice Principles. Fargo, USA. Disponible en: http://www.iaia.org/publicdocuments/special- publications/SP4%20web.pdf Aronson J, Blignaut JN, Milton SJ, Clewell AF. 2006. Natural capital: The limiting factor. Ecological Engineering, 28: 1-5. doi:10.1016/j.ecoleng.2006.05.012 Aronson J, Milton SJ, Blignaut JN. 2007. Restoring Natural Capital: Definitions and Rationale. In Aronson J, Milton SJ, Blignaut JN (Eds.). Restoring Natural Capital: Science, Business, and Practice. Island Press, Washington D.C. Pp 3-9. Azqueta D, Sotelsek D. 2007. Valuing nature: From environmental impacts to natural capital. Ecological Economics. 63: 22-30. doi:10.1016/j.ecolecon.2007.02.029 Badoe DA, Miller EJ. 2000. Transportation-land-use interaction: empirical findings in North America, and their implications for modeling. Transportation Research Part D: Transport and Environment. 5(4): 235—263. Barbero-Rodríguez J, Espigares-Pinilla T. 2010. Aplicación de la evaluación de impacto ambiental en España en el periodo 1989-2008 : El caso de los proyectos de carreteras. Ingeniería Civil. 157: 57-67. Beder S. 2006. Environmental principles and policies: an interdisciplinary introduction. Earthscan, London. Burgin S. 2008. BioBanking: an environmental scientist’s view of the role of biodiversity banking offsets in conservation. Biodiversity and Conservation. 17(4): 807-816. doi:10.1007/s10531-008-9319-2 Business and Biodiversity Offsets Programme (BBOP). 2009. Business, Biodiversity Offsets and BBOP: An Overview. Business and Biodiversity Offsets Programme, Washington, D.C. Disponible en: http://www.forest-trends.org/documents/files/doc_3125.pdf Cameron J, Abouchar J. 1991. The Precautionary Principle: A Fundamental Principle of Law and Policy for the Protection of the Global Environment. Boston College International and Comparative Law Review. 14(1). Disponible en: http://lawdigitalcommons.bc.edu/iclr/vol14/iss1/2/ Costanza R, Daly HE. 1992. Natural Capital and Sustainable Development. Conservation Biology. 6(1): 37- 46. Cuperus R, Bakermans MMGJ, de Haes HAU, Canters KJ. 2001. Ecological Compensation in Dutch Highway Planning. Environmental Management. 27(1): 75-89. doi:10.1007/s002670010135 Cuperus R, Canters KJ, Piepers AAG. 1996. Ecological compensation of the impacts of a road. Preliminary method for the A50 road link (Eindhoven-Oss, The Netherlands). Ecological Engineering. 7: 327- 349. Cuperus R, Canters KJ, de Haes HAU, Friedman DS. 1999. Guidelines for ecological compensation associated with highways. Biological Conservation. 90: 41-51. Cuperus R, Kalsbeek M, de Haes HAU, Canters KJ. 2002. Preparation and Implementation of Seven Ecological Compensation Plans for Dutch Highways. Environmental Management. 29(6): 736-749. doi:10.1007/s00267-001-2504-7 Daily GC. 2000. Management objectives for the protection of ecosystem services. Environmental Science & Policy. 3: 333-339. Daily GC, Söderqvist T, Aniyar S, et al. 2000. The Value of Nature and the Nature of Value. Science. 289(5478): 395-396. Damarad T, Bekker GJ. 2003. COST 341 - Habitat Fragmentation due to Transportation Infrastructure: Findings of the COST Action 341. Office for official publications of the European Communities, Luxembourg. Darbi M, Ohlenburg H, Herberg A, et al. 2009. International Approaches to Compensation for Impacts on Biological Diversity. Final Report. Dresden, Berlin. Disponible en: http://www.forest- trends.org/publication_details.php?publicationID=522

- 184 -

Dolan LMJ, van Bohemen HD, Whelan P, et al. 2006. Towards the sustainable development of modern road ecosystems. In: Davenport J, Davenport JL (Eds.). The Ecology of Transportation: Managing mobility for the Environment. Springer, Netherlands. pp. 275-331. EPA (Environmental Protection Authority). 2006. Environmental Offsets Position Statement No. 9. Environmental Protection Authority, Perth. Disponible en: http://www.epa.wa.gov.au/docs/1863_PS9.pdf Escorcio Bezerra LG. 2007. Biodiversity Offsets in National (Brazil) and Regional (EU) Mandatory Arrangements: Towards an International Regime? MSc Dissertation, University College London, Department of Laws. Farina A. 2000. Landscape Ecology in Action. Kluwer Academic Publishers. Netherlands. pp. 317. Farley J, Daly H. 2006. Natural capital: The limiting factor. A reply to Aronson, Blignaut, Milton and Clewell. Ecological Economics. 28: 6-10. Fenech A, Foster J, Hamilton K, Hansell R. 2003. Natural capital in ecology and economics: an overview. Environmental monitoring and assessment. 86(1-2): 3-17. Fischer J, Manning AD, Steffen W, et al. 2007. Mind the sustainability gap. Trends in Ecology and Evolution. 22(12): 621-624. doi:10.1016/j.tree.2007.08.016 Forman RTT, Alexander LE. 1998. Roads and their major ecological effects. Annual Review of Ecology and Systematics. 29: 207-231. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, et al. 2003. Road ecology. Science and Solutions. Island Press. Washington DC. pp. 481. Garmendia-Salvador A, Salvador-Alcalde A, Crespo-Sánchez C, Garmendia-Salvador L. 2005. Evaluación de Impacto Ambiental. Pearson-Prentice Hall, Madrid. pp. 396. Gibbons P, Lindenmayer DB. 2007. Offsets for land clearing: No net loss or the tail wagging the dog? Ecological Management & Restoration. 8(1): 26-31. doi:10.1111/j.1442-8903.2007.00328.x Gibson RB. 2001. Specification of sustainability-based environmental assessment decision criteria and implications for determining “significance” in environmental assessment. Canadian Environmental Assessment Agency Research and Development Programme. Disponible en: http://static.twoday.net/NE1BOKU0607/files/Gibson_Sustainability-EA.pdf Glasson J, Therivel R, Chadwi A. 2005. Introduction to Environmental Impact Assessment. Routledge. New York. pp. 423. Goodland R, Daly H. 1996. Environmental Sustainability: Universal and Non-Negotiable. Ecological Applications. 6(4): 1002-1017. Hardin G. 1968. The Tragedy of the Commons. Science. 162: 1243-1248. Hardin G. 1998. Extensions of “The Tragedy of the Commons.” Science. 280(5364): 682-683. Hartley N, Wood C. 2005. Public participation in environmental impact assessment–implementing the Aarhus Convention. Environmental Impact Assessment Review. 25(4): 319-340. Hayes N, Morrison-Saunders A. 2007. Effectiveness of environmental offsets in environmental impact assessment: practitioner perspectives from Western Australia. Impact Assessment and Project Appraisal, 25(3): 209-218. doi:10.3152/146155107X227126 IAIA (International Association for Impact Assessment). 2003. International Principles for Social Impact Assssment. IAIA Special Publication Series No. 2. IAIA (International Association for Impact Assessment), UK Institute of Environmental Assessment. 1999. Principles of Environmental Impact Assessment best practice. Disponible en: http://www.iaia.org/publications/

- 185 -

Iuell B, Bekker H, Cuperus R, et al (Eds.). 2003. Wildlife and Traffic: A European Handbook for Identifying Conflicts and Designing Solutions. European Co-operation in the Field of Scientific and Technical Research. Disponible en: https://www.milieuinfo.be/productie/beheerplone/nietacm/iene/cost- 341/COST 341-handbook.pdf Jaeger JAG. 2000. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology. 15: 115-130. Jay S, Jones C, Slinn P, Wood C. 2007. Environmental impact assessment: Retrospect and prospect. Environmental Impact Assessment Review. 27: 287-300. doi:10.1016/j.eiar.2006.12.001 Jefatura del Estado. 2007. Ley 26/2007, de 23 de octubre, de Responsabilidad Medioambiental. Boletín Oficial del Estado, 255: 43229-43250. Jefatura del Estado. 2010. Ley 6/2010, de 24 de marzo, de modificación del texto refundido de la Ley de Evaluación de Impacto Ambiental de proyectos, aprobado por el Real Decreto Legislativo 1/2008, de 11 de enero. Boletín Oficial del Estado, 73 (I): 28590-28597. JWPTE (Joint Working Party on Trade and Environment). 2002. The Polluter-Pays Principle as It Relates to International Trade. OECD, Paris. Kates R. 2000. Sustainability science. World Academies Conference Transition to Sustainability in 21st Century. May 2000; Tokyo, Japan. Kates RW, Clark WC, Corell R, et al. 2001. Sustainability science. Science, 292(5517): 641-642. Katz E. 2000. Another look at restoration: technology and artificial nature. In: Gobster PH, Hull RB (Eds.). Restoring Nature: perspectives from the social sciences and humanities. Island Press, Washington, D.C. pp. 37-48. Kuiper G. 1997. Compensation of environmental degradation by highways: a Dutch case study. European Environment. 7: 118-125. McCauley DJ. 2006. Selling out on nature. Nature. 443(7107): 27-8. McKenney B. 2005. Environmental offset policies, principles, and methods: a review of selected legislative frameworks. Biodiversity Neutral Initiative. Disponible en: http://www.forest- trends.org/publication_details.php?publicationID=541 Mebratu D. 1998. Sustainability and sustainable development: historical and conceptual review. Environmental Impact Assessment Review. 18: 493-520. Ministerio de Agricultura Pesca y Alimentación. 1995. Real Decreto 1997/1995, de 7 de diciembre, por el que se establece medidas para contribuir a garantizar la biodiversidad mediante la conservación de los hábitats naturales y de la fauna y flora silvestres. Boletín Oficial del Estado, 310: 37310-37333. Ministerio de Medio Ambiente. 2008. Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación de Impacto Ambiental de proyectos. Boletín Oficial del Estado, 23: 4986-5000. Ministerio de Obras Públicas y Urbanismo. 1988. Real Decreto 1131/1988, de 30 de septiembre, por el que se aprueba el Reglamento para la ejecución del Real Decreto legislativo 1302/1986, de 28 de junio, de evaluación de impacto ambiental. Boletín Oficial del Estado, 239: 28911-28916. Moilanen A, van Teeffelen AJA, Ben-Haim Y, Ferrier S. 2009. How Much Compensation is Enough? A Framework for Incorporating Uncertainty and Time Discounting When Calculating Offset Ratios for Impacted Habitat. Restoration Ecology. 17(4): 470-478. doi:10.1111/j.1526-100X.2008.00382.x Morris RKA, Alonso I, Jefferson RG, Kirby KJ. 2006. The creation of compensatory habitat–Can it secure sustainable development? Journal for Nature Conservation. 14: 106-116. doi:10.1016/j.jnc.2006.01.003 Morrison-Saunders A, Bailey J. 2000. Transparency in environment impact assessment decision-making: recent developments in Western Australia. Impact Assessment and Project Appraisal. 18(4): 260- 270. Norton BG. 2005. Sustainability: a philosophy of adaptive ecosystem Management. The University of Chicago Press. Chicago.

- 186 -

PENGO (Peak Environment Non-Government Organizations) 2002. Submission on green offsets for sustainable development concept paper. Penny Anderson Associates. 1993. Roads and nature conservation: guidance on impacts, mitigation and enhancement. English Nature Publicity, Peterborough. Plottu B, Plottu E. 2009. Approaches to Participation in Evaluation: Some Conditions for Implementation. Evaluation. 15(3): 343-359. Pope J. Annandale D, Morrison-Saunders A. 2004. Conceptualising sustainability assessment. Environmental Impact Assessment Review, 24: 595-616. doi:10.1016/j.eiar.2004.03.001 Prugh T. 1995. Natural capital and human economic survival. International Society for Ecological Economics Press, Solomons. Race MS, Fonseca MS. 1996. Fixing Compensatory Mitigation: What Will it Take? Ecological Applications. 6(1): 94-101. Real Academia Española. 2001. Diccionario de la lengua española. Vigésima segunda edición. Disponible en: http://www.rae.es/rae.html Rees WE. 1995. Cumulative environmental assessment and global change. Environmental Impact Assessment Review. 15: 295-309. Rowe DK, Parkyn S, Quinn J, et al. 2009. A rapid method to score stream reaches based on the overall performance of their main ecological functions. Environmental management. 43(6): 1287-1300. doi:10.1007/s00267-009-9302-z Rundcrantz K. 2006. Environmental compensation in Swedish road planning. European Environment. 16: 350-367. doi:10.1002/eet.429 Rundcrantz K. 2007. Environmental Compensation for Disrupted Ecological Functions in Swedish Road Planning and Design. PhD Dissertation, Swedish University of Agricultural Sciences. Disponible en: http://diss-epsilon.slu.se/archive/00001551/01/Mallen071113-1.pdf Rundcrantz K, Skärbäck E. 2003. Environmental compensation in planning: a review of five different countries with major emphasis on the German system. European Environment. 13: 204-226. doi:10.1002/eet.324 Sadler B. 1996. International Study of the Effectiveness of Environmental Assessment. Canadian Environmental Assessment Agency & International Association for Impact Assessment. Disponible en: http://www.iaia.org/publicdocuments/EIA/EAE/EAE_10E.PDF Skärbäck E. 2007. Urban forests as compensation measures for infrastructure development. Urban Forestry & Urban Greening. 6: 279-285. Spellerberg I. 1998. Ecological effects of roads and traffic: a literature review. Global Ecology and Biogeography. 7(5): 317—333. ten Kate K, Bishop J, Bayon R. 2004. Biodiversity offsets: Views, experience, and the business case. IUCN, Gland. Disponible en: http://cmsdata.iucn.org/downloads/bdoffsets.pdf Thorne JH, Girvetz EH, McCoy MC. 2009. Evaluating Aggregate Terrestrial Impacts of Road Construction Projects for Advanced Regional Mitigation. Environmental Management. 43: 936-948. doi:10.1007/s00267-008-9246-8 Trombulak SC, Frissell CA. 2000. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conservation Biology. 14(1): 18-30. Unión Europea. 1992. Directiva 92/43/CEE del Consejo de 21 de mayo de 1992 relativa a la conservación de los hábitats naturales y de la fauna y flora silvestres. Diario Oficial L 59 de 8.3.1996, p. 63. Unión Europea. 1985. Directiva 85/337/CEE del Consejo, de 27 de junio de 1985, relativa a la evaluación de las repercusiones de determinados proyectos públicos y privados sobre el medio ambiente. Diario Oficial L 175 de 5.7.1985, p. 40-48. Unión Europea. Directiva 2011/92/UE del Parlamento Europeo y del Consejo de 13 de diciembre de 2011 relativa a la evaluación de las repercusiones de determinados proyectos públicos y privados sobre el medio ambiente. Diario Oficial L 26 de 28.1.2012, p. 1-21.

- 187 -

United Nations General Assembly. 1983. Process of preparation of the Environmental Perspective to the Year 2000 and Beyond. Disponible en: http://www.un.org/documents/ga/res/38/a38r161.htm. United States Congress. 1969. National Environmental Policy Act. Disponible en: http://ceq.hss.doe.gov/nepa/regs/nepa/nepaeqia.htm van Merwyk T, Daddo S. 2009. Structuring environmental offsets for a sustainable advantage. Forest Trends. Available at: http://bbop.forest-trends.org Vanclay F. 2003. International Principles for Social Impact Assessment. Impact Assessment and Project Appraisal. 21(1): 5-11. Voinov A, Farley J. 2007. Reconciling sustainability, systems theory and discounting. Ecological Economics. 63: 104-113. doi:10.1016/j.ecolecon.2006.10.005 WCED (World Commission on Environment and Development). 1987. Our Common Future. Disponible en: http://www.un.org/documents/ga/res/42/ares42-187.htm Weaver A, Pope J, Morrison-Saunders A, Lochner P. 2008. Contributing to sustainability as an environmental impact assessment practitioner. Impact Assessment and Project Appraisal. 26(2): 91- 98. doi:10.3152/146155108X316423 Webler T, Tuler S. 2006. Four perspectives on public participation process in environmental assessment and decision making: Combined results from 10 case studies. Policy Studies Journal. 34(4): 699—722. Wood C. 2003. Environmental impact assessment: a comparative review. Harlow: Pearson-Prentice Hall. p. 405.

- 188 -