A Collaborative Framework for CAD–FEA Interoperability

Total Page:16

File Type:pdf, Size:1020Kb

A Collaborative Framework for CAD–FEA Interoperability A Collaborative Framework for CAD–FEA Interoperability Computer Mediated Communication [CE6014] Final Project Report - 2012 Student: William Buckley UCC ID: 112223669 Institution: University College Cork Course: Masters in Information Technology in Architecture, Engineering and Construction Lecturer: Dr. Matevž Dolenc, University of Ljubljana Date: 05/12/2012 Declaration Sheet I declare that this project, in whole or in part, has not been submitted to any University as an exercise for a qualification. I further declare that, except where reference is made in the text, the contents are entirely my own work. The author agrees to the lending or copying of this document upon request for study purposes, subject to the normal conditions of acknowledgement. Author: William Buckley WILLIAM BUCKLEY November 2012 i Abstract 3D CAD software has become established in providing models for downstream CAM/CAE applications. When those involved can work directly with the original, clean CAD model the results are significant boosts to product quality, production costs, and time to market. The growing power of 3D CAD modelling is leading to greater complexity in geometry and its expression in file formats. This complexity leads to a greater number of file exchange issues, requiring the models to be reworked by the downstream users. Studies show that FEA users, for example, are spending as much as 70% of their time fixing CAD models. (McKenney, 1998) This report discusses these issues in the context of a hypothetical Irish Small-Medium Enterprise (SME). The key issues regarding this SME’s interoperability between its CAD and FEA departments are isolated and identified. It will show how file format testing can aid in choosing the correct file transfer format. The SME design process methodology is also reviewed, and a Use Case Model for interoperability is developed. The results of this report indicate the ACIS SAT file format is the best option for file transfer between the CAD and FEA software due to the required model topology and the ACIS derived graphics kernels the software operates with. The Spatial Data Management Environment (SDME) is developed for the SME design process methodology and a UML Use Case Model is formed to highlight the issue of interoperability in the system. ii List of Figures Figure 1: File formats AutoCAD 2012 can open normally ....................................................... 4 Figure 2: Importable file types in AutoCAD 2012 .................................................................... 5 Figure 3: Exportable file types in AutoCAD 2012 .................................................................... 5 Figure 4: List of file types Inventor 2012 can import ................................................................ 6 Figure 5: List of file types Inventor 2012 can export ................................................................ 6 Figure 6: Model to undergo file interoperability testing; isometric view rendering .................. 9 Figure 7: Model to undergo file interoperability testing, front elevation rendering ................ 10 Figure 8: Inventor 2012 model attributes................................................................................. 10 Figure 9: Abaqus/CAE 6.11 GUI with imported Test Model undergone distortion ............... 12 Figure 10: Use Case Diagram in UML of proposed SDME process ....................................... 13 List of Tables Table 1: Common CAD software and corresponding Geometric modelling kernels ................ 1 Table 2 : File formats Abaqus/CAE 6.11 can import per module ............................................. 3 Table 3 : File formats Abaqus/CAE 6.11 can export per module .............................................. 4 Table 4: Original Test Model data ............................................................................................. 9 Table 5: Results of importing model in Abaqus/CAE 6.11 ..................................................... 11 1 List of Abbreviations Symbol Description 2D Two Dimensional 3D Three Dimensional ACIS Geometric Kernel ASCII American Standard Code for Information Interchange CAD Computer Aided Drawing CAE Computer Aided Engineering CAM Computer Aided Manufacturing CSCW Computer Supported Collaborative Work FEA Finite Element Analysis GUI Graphical User Interface IAI International Alliance for Interoperability IGES Initial Graphics Exchange Specification KBE Knowledge Based Engineering OLE Object Linking and Embedding PDM Product Data Management SAT Standard ACIS Text SDME Spatial Data Management Environment SME Small and Medium Enterprises STEP Standard for the Exchange of Product Model Data UML Unified Modelling Language XML Extensible Markup Language 2 Table of Contents Declaration Sheet ............................................................................................................... i Abstract ............................................................................................................................. ii List of Figures ................................................................................................................... 1 List of Tables .................................................................................................................... 1 List of Abbreviations ........................................................................................................ 2 Introduction ....................................................................................................................... 1 The Interoperability Issue....................................................................................................... 1 Graphics Kernels .................................................................................................................... 1 Case Study .............................................................................................................................. 2 Case Study Constraints ....................................................................................................... 2 Methodology ..................................................................................................................... 3 File exchange Assessment ...................................................................................................... 3 FEA Software ......................................................................................................................... 3 Abaqus/CAE 6.11-PR3 ....................................................................................................... 3 CAD Software ........................................................................................................................ 4 AutoCAD 2012 ................................................................................................................... 4 Autodesk Inventor 2012 ..................................................................................................... 5 Interoperability Methods ........................................................................................................ 6 Standardised CAD/FEA software ....................................................................................... 6 Standardised CAD/FEA Graphics Kernel .......................................................................... 7 Neutral CAD File Format ................................................................................................... 7 Object Linking and Embedding .......................................................................................... 7 Model Translation............................................................................................................... 8 Modular Design .................................................................................................................. 8 Development of a Use Case Model for design process .......................................................... 8 Results & Discussion ........................................................................................................ 9 File Format Interoperability ................................................................................................... 9 Test Model .......................................................................................................................... 9 Test results and discussion ............................................................................................... 11 Use Case Model for SDME .................................................................................................. 12 Conclusions & Recommendations .................................................................................. 13 Bibliography ................................................................................................................... 15 3 Introduction The Interoperability Issue Interoperability is the ability for software to interface, couple, and integrate with other software. The issue of Interoperability has long been found in Computer aided design and engineering. However, due to a multitude of reasons, the issue has never been adequately resolved on a global scale. The downstream use of CAD models is of critical importance to FEA personnel. FEA personnel spend as much as 70% of their time repairing CAD models from upstream in order to proceed with meshing and simulation. (McKenney, 1998) According to the 2010 "Collaboration & Interoperability Report" by Longview Advisors, 41 per cent of professionals
Recommended publications
  • Autodesk Inventor Series 7
    7 Autodesk Inventor Series 7 Looking for the best of 2D and 3D design technology? Get it in the Autodesk Inventor® Series 7. Optimized for superior mechanical design productivity, the Autodesk Inventor Series gives you the latest Autodesk® Mechanical Desktop® and Autodesk Inventor® software releases in a single, flexible package that answers the full range of your 2D and 3D design needs. Autodesk Inventor Series 7 delivers the industry’s best DWG compatibility so you can extend and reuse your digital design data more effectively than ever. Turn your product development cycle into a competitive advantage with the smartest choice in 3D design technology for the manufacturing industry. The number of design errors Unparalleled Ease of Use translation capabilities, you can import your has decreased substantially AutoCAD, AutoCAD Mechanical, and Autodesk A simplified user interface, built-in migration assis- since we started to design Mechanical Desktop designs to the Autodesk with Autodesk Inventor… tance for AutoCAD® users, and an advanced help Inventor software program at any time. Enhanced We are absolutely confident and support system make Autodesk Inventor the large-assembly performance helps you manage that our investment in easiest mechanical design software to learn and complex assemblies faster and more efficiently. Inventor is profitable for use. A smarter design environment with fewer, our company. And the ShapeManager gives you advanced tools more intuitive commands accelerates your work- to create stylized, complex, and sculpted parts —Anders Norberg flow, and new DWG import/export capabilities with ease. Design Manager make AutoCAD data selection fast and easy. So Brokk, Inc. you can reduce your design time, simplify your data management, and make your product devel- Smartest Choice opment more affordable than ever.
    [Show full text]
  • ISIGHT Brochure
    ISIGHT AUTOMATE DESIGN EXPLORATION AND OPTIMIZATION ISIGHT INDUSTRY CHALLENGES In today’s computer-aided product development and manufacturing environment, designers and engineers are using a wide range of KEY BENEFITS software tools to design and simulate their products. Often, the • Reduce time and costs parameters and results from one software package are required as • Improve product reliability inputs to another package, and the manual process of entering the required data can reduce efficiency, slow product development, and • Gain competitive advantage introduce errors in modeling and simulation assumptions. SIMULIA’s Isight Solution Isight provides designers, engineers, and researchers with an open system for integrating design and simulation models—created with various CAD, CAE, and other software applications—to automate the execution of hundreds or thousands of simulations. Isight allows users to save time and improve their products by optimizing them against performance or cost metrics through statistical methods, such as Design of Experiments (DOE) or Design for Six Sigma. Isight combines cross-disciplinary models and applications together in a simulation process flow, automates their execution, explores the resulting design space, and identifies the optimal design Isight parameters based on required constraints. Isight’s ability to manipulate and map parametric data between process steps and automate multiple simulations greatly improves efficiency, reduces manual errors, and accelerates the evaluation of product design alternatives. Open Component Framework Isight provides a standard library of components— including Excel™, Word™, CATIA V5™, Dymola™, MATLAB®, COM, Text I/O applications, Java and Python Scripting, and databases—for integrating and running a model or simulation. These components form the building blocks of simulation process flows.
    [Show full text]
  • Dassault Systèmes Annual Report 2018 1 General
    NOUSWE 2018 SOMMESARE Financial report THERELÀ CONTENTS General 2 Person Responsible 3 15Presentation of the Group 5 Corporate governance 167 1.1 Profile of Dassault Systèmes 6 5.1 The Board’s Corporate Governance Report 168 1.2 Financial Summary: A Long History 5.2 Internal Control Procedures and Risk Management 203 of Sustainable Growth 7 5.3 Transactions in Dassault Systèmes shares 1.3 History 9 by the Management of the Company 207 1.4 Group Organization 14 5.4 Statutory Auditors 210 1.5 Business Activities 15 5.5 Declarations regarding the administrative Bodies 1.6 Research and development 29 and Senior Management 210 1.7 Risk factors 31 Information about Social, societal and environmental 6 Dassault Systèmes SE, the share capital 2 responsibility 39 and the ownership structure 211 6.1 Information about Dassault Systèmes SE 212 2.1 Social responsibility 41 6.2 Information about the Share Capital 216 2.2 Societal responsibility 48 6.3 Information about the Shareholders 219 2.3 Environmental Responsibility 53 6.4 Stock Market Information 224 2.4 Business Ethics and Vigilance Plan 58 2.5 Reporting methodology 61 2.6 Independent Verifier’s Report on Consolidated Non- General Meeting 225 financial Statement Presented in the Management 7 Report 64 7.1 Presentation of the resolutions proposed by the 2.7 Statutory Auditors’ Attestation on the information Board of Directors to the General Meeting on relating to the Dassault Systèmes SE’s total amount May 23, 2019 226 paid for sponsorship 67 7.2 Text of the draft resolutions proposed by the
    [Show full text]
  • Simulia Community News
    SIMULIA COMMUNITY NEWS #08 October 2014 THE POWER OF THE PORTFOLIO COVER STORY SIMULATION HELPS UPGRADE LONDON TUNNELS in this Issue October 2014 3 Welcome Letter Scott Berkey, Chief Executive Officer, SIMULIA 4 Portfolio Update Latest SIMULIA Portfolio Releases Deliver Powerful, Advanced Simulation Functionality to Users 8 Strategy Overview DR. SAUER How to Stay at the Top of Your Game in the Fast-Evolving 10 World of Simulation 10 Cover Story Dr. Sauer and Partners Helps Upgrade London Underground Station 13 News SIMPACK Joins the Dassault Systèmes Family 14 Case Study Stadler Rail Simulates Train Safety with FEA 17 Alliances Topology and Shape Optimization Using the Tosca-Ansa Environment 18 Case Study Fine-tuning the Anatomy of Car-Seat Comfort STADLER 20 Academic Update 14 Oil & Gas Subsurface Innovation with Multiphysics Simulations 22 Tips & Tricks Optimization Module Within Abaqus/CAE Contributors: Dr. Alois Starlinger (Stadler Rail), Dr. Alexander Siefert (Wölfel Group), Jeremy Brown and Randi Jean Walters (Stanford University), Parker Group On the Cover: Ali Nasekhian, Dr. techn., M.Sc. Senior Tunnel Engineer, Dr. Sauer and Partners Cover photo by Roger Brown Photography WÖLFEL 18 SIMULIA Community News is published by Dassault Systèmes Simulia Corp., Rising Sun Mills, 166 Valley Street, Providence, RI 02909-2499, Tel. +1 401 276 4400, Fax. +1 401 276 4408, [email protected], www.3ds.com/simulia Editor: Tad Clarke Associate Editor: Kristina Hines Graphic Designer: Todd Sabelli ©2014 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES, and 3DXCITE are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the U.S.
    [Show full text]
  • Autodesk and Autocad
    Chapter 8 Autodesk and AutoCAD Autodesk as a company, has gone through several distinct phases of life. There were the “Early Years” which covers the time from when Autodesk was founded as a loose programmer-centric collaborative in early 1982 to the company’s initial public offering in 1985, the “Adolescent Years” during which the company grew rapidly but seemed to do so without any clear direction and the “Mature Years.” The beginning of the latter phase began when Carol Bartz became president and CEO in 1992 and continues to the current time. Even under Bartz, there were several well defined periods of growth as well as some fairly stagnant years.1 Mike Riddle gets hooked on computers Mike Riddle was born in California with computers in his veins. In junior high school, he built his first computer out of relays. It didn’t work very well, but it convinced him that computers were going to be an important part of his life. After attending Arizona State University, Riddle went to work for a steel fabricator where he had his first exposure to CAD. The company had a $250,000 Computervision system that, although capable of 3D work, was used strictly for 2D drafting. The company was engaged in doing steel detailing for the Palo Verde nuclear power plant in Arizona. Riddle felt that anything they were doing on this project with the Computervision system could be done on a microcomputer-based system. About the same time Riddle began working at a local Computerland store where they provided him with free computer time to do with as he wanted.
    [Show full text]
  • Stereo Software List
    Version: June 2021 Stereoscopic Software compatible with Stereo Company Application Category Duplicate FULL Xeometric ELITECAD Architecture BIM / Architecture, Construction, CAD Engine yes Bexcel Bexcel Manager BIM / Design, Data, Project & Facilities Management FULL Dassault Systems 3DVIA BIM / Interior Modeling yes Xeometric ELITECAD Styler BIM / Interior Modeling FULL SierraSoft Land BIM / Land Survey Restitution and Analysis FULL SierraSoft Roads BIM / Road & Highway Design yes Xeometric ELITECAD Lumion BIM / VR Visualization, Architecture Models yes yes Fraunhofer IAO Vrfx BIM / VR enabled, for Revit yes yes Xeometric ELITECAD ViewerPRO BIM / VR Viewer, Free Option yes yes ENSCAPE Enscape 2.8 BIM / VR Visualization Plug-In for ArchiCAD, Revit, SketchUp, Rhino, Vectorworks yes yes OPEN CASCADE CAD CAD Assistant CAx / 3D Model Review yes PTC Creo View MCAD CAx / 3D Model Review FULL Dassault Systems eDrawings for Solidworks CAx / 3D Model Review FULL Autodesk NavisWorks CAx / 3D Model Review yes Robert McNeel & Associates. Rhino (5) CAx / CAD Engine yes Softvise Cadmium CAx / CAD, Architecture, BIM Visualization yes Gstarsoft Co., Ltd HaoChen 3D CAx / CAD, Architecture, HVAC, Electric & Power yes Siemens NX CAx / Construction & Manufacturing Yes 3D Systems, Inc. Geomagic Freeform CAx / Freeform Design FULL AVEVA E3D Design CAx / Process Plant, Power & Marine FULL Dassault Systems 3DEXPERIENCE - CATIA CAx / VR Visualization yes FULL Dassault Systems ICEM Surf CGI / Product Design, Surface Modeling yes yes Autodesk Alias CGI / Product
    [Show full text]
  • Complete Command Reference
    COMPLETE COMMAND REFERENCE FIRECAD™ 2019 COMMAND REFERENCE FIRECAD™ MODULE COMMANDS The following commands are found on the FireCAD™ menu, ribbon, and/or application palette and add the additional functionality to the base design program. All commands listed are also available from the command line. Ribbon Panel/Palette Menu/Button Command Description Attributes Clear Existing atclear_existing Prompts user for selection and clears existing status. Attributes Export atexattdatatocsv Exports all block reference attributes on the Attributes to drawing to a csv file which can be modified and CSV re-imported. Attributes Export atexattdatatocsv_byblock Exports all block reference attributes for any Attributes to selected block name to a csv file which can be CSV By Block modified and re-imported. Attributes Export atexattdatatocsv_bysel Exports all block reference attributes for any Attributes to selection of block references to a csv file which CSV By can be modified and re-imported. Selection Attributes Export atexattdatatoexcel Exports all block reference attributes on the Attributes to drawing to an xslx file which can be modified Excel and re-imported. Attributes Export atexattdatatoexcel_byblock Exports all block reference attributes for any Attributes to selected block name to an xslx file which can be Excel By Block modified and re-imported. Attributes Export atexattdatatoexcel_bysel Exports all block reference attributes for any Attributes to selection of block references toan xslx file Excel By which can be modified and re-imported. Selection Attributes Import atimportattributedata Imports and synchronizes all block attributes in Attribute Data a modified .csv or .xslx export file. Attributes Level Attributes atlevel_attributes Rotates all dynamic device attributes to 0 degrees; Does not move insertion point.
    [Show full text]
  • Developing Downhole Oil and Gas Drilling Products Faster with Simuliaworks
    DEVELOPING DOWNHOLE OIL AND GAS DRILLING PRODUCTS FASTER WITH SIMULIAWORKS By adding SIMULIAworks to its SOLIDWORKS product development implementation, InFocus Energy Services has acquired the simulation power and efficiency that it needs to consistently develop innovative, effective downhole products for the oil and gas industry more quickly and affordably. Challenge: launching a new 3DEXPERIENCE® simulation solution that Leverage high-end, nonlinear structural incorporated the SIMULIA® Abaqus solver, we signed up for simulation technology to reduce reliance on the Lighthouse Program so we could start using the new costly, time-consuming physical testing and SIMULIAworks immediately. As soon as we got our hands on develop innovative downhole drilling products it, we started testing it and benchmarking it against known test results.” more quickly and cost-effectively. SIMULATING TRICKY, COMPLEX CONTACT ACCURATELY Solution: Add SIMULIAworks to its SOLIDWORKS InFocus first utilized SIMULIAworks on the bearing section implementation to conduct nonlinear structural of the company’s RE|FLEX Premium HP/HT Drilling Motor. The motor’s bearing section is a proprietary design that was and complex contact analyses in the cloud developed to convert extreme loading parameters, including to advance and accelerate new product torque of over 30,000 foot-pounds, into efficient drilling action. development. The company’s initial concept design of the drive system, which utilized traditional ball bearings, resulted in failure during Results: testing when the load crushed the bearings and the faces that • Saved tens of thousands of dollars in testing costs load the bearings. SIMULIAworks predicted the failure—with • Cut months of time and extra labor from accurate correlation to actual test results—and helped the development process company develop a better, more innovative design.
    [Show full text]
  • Simulation Lifecycle Management Manage & Secure Simulation Intellectual Property 3DS.COM/SIMULIA SIMULIA SLM
    Simulation Lifecycle Management Manage & Secure Simulation Intellectual Property 3DS.COM/SIMULIA SIMULIA SLM Industry Challenges In the manufacturing industry, design analysis technology and related methods are being used to create innovative and reliable products while reducing time and costs. However, even those companies gaining significant benefits from simulation will admit that they often fail to capture their simulation processes or Capture best practices manage the results in a manner that allows effective knowledge reuse or decision-making traceability. Reuse intellectual property SIMULIA Solutions Improve process quality SIMULIA Simulation Lifecycle Management (SLM) solutions simplify the capture and deployment of approved simulation methods and best practices, providing guidance and improved confidence in the use of simulation results for collaborative decision making. Users can improve product quality with fully traceable simulation history and associated data. SLM also accelerates product development by providing timely access to the right information through secure storage, search and retrieval with distinct functionality dedicated specifically to simulation scenarios and data. rt po up P S ro n c io e s s i s c e M D a n a g e m Collaboration e n t D a ta M an agement Improve your simulation data and process quality The SIMULIA SLM solution portfolio, includes Scenario Definition, Live Simulation Review, Isight, and the SIMULIA Execution Engine. Scenario Definition enables methods developers to create workflow-specific simulation templates incorporating their company’s best practices while using the simulation tools of their choosing. These templates can then be deployed to a wide range of users ensuring adherence to standard practices in order to improve repeatability, reliability and confidence in simulations.
    [Show full text]
  • 2020 Universal Registration Document
    2020 2018/2019/2020 Universal Registration Document CONTENTS General 2 Person Responsible 3 1 Presentation of the Company 5 4 Financial statements 105 2020 Performance and Strategy 6 4.1 Consolidated Financial Statements 106 1.1 Key data 8 4.2 Parent company financial statements 153 1.2 Profile of Dassault Systèmes & Our Purpose 10 4.3 Legal and Arbitration Proceedings 184 1.3 History and Development of the Company 13 1.4 Business Activities 18 Corporate governance 185 1.5 Research and development 31 5 1.6 Company Organization 34 5.1 The Board’s Corporate Governance Report 186 1.7 Financial Summary: five-year historical information 36 5.2 Internal Control Procedures and Risk Management 229 1.8 Extra-financial performance 38 5.3 Transactions in Dassault Systèmes shares by the 1.9 Risk Factors 39 Management of Dassault Systèmes 233 5.4 Information on the Statutory Auditors 237 5.5 Declarations regarding the administrative Social, societal and environmental and management bodies 237 2 responsibility 47 2.1 Sustainability Governance 49 Information about 2.2 Social, societal and environmental risks 49 6 Dassault Systèmes SE, the share capital 2.3 Social responsibility 50 and the ownership structure 239 2.4 Societal responsibility 56 6.1 Information about Dassault Systèmes SE 240 2.5 Environmental responsibility 61 6.2 Information about the Share Capital 244 2.6 Business Ethics and Vigilance Plan 67 6.3 Information about the Shareholders 247 2.7 Environmental, Social and Governance metrics 74 6.4 Stock Market Information 253 2.8 Reporting Methodology
    [Show full text]
  • New Math the Hidden Cost of Swapping CAD Kernels
    New Math The Hidden Cost of Swapping CAD Kernels Schnitger Corporation Schnitger Corporation Page 2 of 11 When we first wrote about the costs of switching CAD kernels a decade ago, we profiled a company that had twenty years’ worth of legacy designs to refresh. They could either find copies of the old software (and the hardware to run it on) or convert the parts to a new format and use a modern CAD system to move the designs forward. Old CAD on old hardware was a non-starter, leaving migrating everything to a new CAD system. But what to convert to? They already used SolidWorks in part of their business and considered moving the legacy parts to that platform. One big problem: Many of SolidWorks’ newest features rely on Dassault Systèmes’ 3DEXPERIENCE platform. The traditional desktop SolidWorks is built on the Parasolid kernel, while the 3DEXPERIENCE platform uses the CGM kernel. This reliance on two kernels leads many users to worry that building parts in SolidWorks will eventually mean a wholesale conversion from Parasolid to CGM. If you migrate everything today, will you have to do it again in a few years? As you’ll see later, converting from one kernel to another can be tricky so, if there is an opportunity to avoid a kernel change, you should investigate this possibility. The company we wrote about decided that it couldn’t afford the risk, disruption, and uncertainty an unclear future might cause. They chose Siemens Solid Edge, which also uses the Parasolid kernel. Sticking with the same kernel simplified moving their Parasolid-based models from one CAD tool to another.
    [Show full text]
  • Dassault Systèmes Announces the Release of SIMULIA SLM for Simulation Lifecycle Management
    Dassault Systèmes Announces the Release of SIMULIA SLM for Simulation Lifecycle Management New Software Secures Valuable Intellectual Property Through Management of Simulation Data, Processes, and Applications Paris, France, and Providence, R.I., USA, January 16, 2008 – Dassault Systèmes (DS) (Nasdaq: DASTY; Euronext Paris: #13065, DSY.PA), a world leader in 3D and Product Lifecycle Management (PLM) solutions, today announced the early availability of SIMULIA SLM, a new product suite from its SIMULIA brand that will have a positive impact on the way that organizations perform and manage their simulation processes. The use of simulation has become an increasingly vital process in developing innovative products quickly. SIMULIA SLM accelerates the product development lifecycle by providing timely access to the right information through secure storage, search, and retrieval functionality that is specific to simulation processes and data. SIMULIA SLM maximizes the value of company-generated intellectual property (IP) through the capture, re-use, and deployment of simulation best practices. It also provides tools for control and sharing of simulation data for collaborative product development. “The release of SIMULIA SLM marks a major milestone for SIMULIA as we expand our product portfolio beyond the Abaqus product line,” said Mark Goldstein, CEO, SIMULIA. “By leveraging PLM technology from ENOVIA and simulation expertise from SIMULIA, we have been able to rapidly develop what we believe is an industry-leading solution. SIMULIA SLM will enable our customers to secure their simulation intellectual property and transform it into a valuable and controlled corporate asset.” Shorter product lifecycles, higher costs, stricter regulations, and the desire to benefit from a greater number of simulations make it clear that companies need an economical and effective solution to manage, share, and secure their simulation assets.
    [Show full text]