A Tetrahedral Microphone Processor for Ambisonic Recording

Total Page:16

File Type:pdf, Size:1020Kb

A Tetrahedral Microphone Processor for Ambisonic Recording A Tetrahedral Microphone Processor for Ambisonic Recording Fons ADRIAENSEN Laboratorio di Acustica ed Elettroacustica, Parma, Italy [email protected] Abstract Z LFU This paper introduces a Linux audio application that X provides an integrated solution for making full 3-D Ambisonics recordings by using a tetrahedral micro- phone. Apart from the basic A to B format conver- Y sion it performs a number of auxiliary functions such RBU as LF filtering, metering and monitoring, turning it into a complete Ambisonics recording processor. It also allows for calibration of an individual micro- phone unit based on measured impulse responses. A RFD new JACK backend required to make use of a partic- ular four-channel audio interface optimised for Am- LBD bisonic recording is also introduced. Keywords Ambisonics, tetrahedral microphone, recording. Figure 1: Tetrahedral mic geometry. 1 Introduction The standard first-order Ambisonics B-format consist of four signals named W, X, Y and Z. at the vertices of a regular tetrahedron and In acoustic field theory terms, W represents the pointing outwards, as shown schematically in pressure signal at a given point in space, and fig. 1. Figure 2 shows an example of how this X, Y, Z the three components of the velocity vec- may be realized in practice. tor at the same point, projected onto orthogo- Given the four A-format microphone signals nal axes. Conventionally X points forward, Y LF U, RF D, RBU and LBD1, we can find the left, and Z up. B-format signals from These four signals also correspond to the out- puts of four real microphones - an omnidirec- W 0 = LF U + RF D + RBU + LBD tional one for W , and three figure-of-eight ones X0 = LF U + RF D − RBU − LBD for X, Y and Z - provided one can find a way to 0 put these four microphones at exactly the same Y = LF U − RF D − RBU + LBD point in space. Z0 = LF U − RF D + RBU − LBD For horizontal-only surround recordings Z is not used, and it is possible to mount the three To find the correct W, X, Y, Z, we also need required mics close together in a vertical line to filter the outputs of this A-B matrix and so they are effectively coincident for sounds ar- apply some gain factors. Two types of filter riving from horizontal directions. But for full are required, one for the zero order component 3-D such a direct B-format setup is no longer W , and a second one for each first order one, practical. X, Y, Z. These filters will be discussed in more One solution, already developed by Michael detail in section 3. Gerzon e.a. in the early years of Ambisonics The first tetrahedral mics were manufactured [Gerzon, 1975], is to use a tetrahedral micro- by Calrec Ltd. in the UK, and their technology phone. This contains four cardioid or near- cardioid capsules mounted very close together 1LF U means left-front-up, etc. itoring functionality. Ambisonic microphones are often used for live recording, and in these circumstances one wants a system that is easy to set up and use, and that allows for verifi- cation of the recording chain. In practice the only other software needed should be the JACK server and a recording application such as Ar- dour. Figure 3 (next page) shows the processing chain implemented in Tetraproc. The high pass filters, the mute and invert switches, and the monitoring functions are controlled by the Figure 2: A tetrahedral mic (ST250). graphical user interface. All other modules are set up using a separate configuration window, and these settings are saved into configuration 2 files. These config files are also generated by a was later acquired by Soundfield Ltd. These separate calibration program discussed in sec- are quite expensive microphones, not only be- tion 4. cause of their high quality, but also because they need a hardware processing unit to perform 2.1 A to B format conversion the A to B-format conversion and filtering men- Going from the A-format microphone inputs to tioned above, and in particular because for best the B-format output, the following processing results each microphone needs to be calibrated steps are performed: individually and provided with a matched A-B matrix and/or filters. • High pass filtering. This has an ad- The Danish microphone manufacturers DPA3 justable cutoff frequency and a slope of 24 were the first to offer a tetrahedral mic without dB/oct. This is really an essential feature. a processing unit. It was a very high quality Figure-of-eight microphones having a good mic, but it is unfortunately no longer available. low frequency response are also excellent Soundfield Ltd. also produce such an A-format detectors of earthquakes, passing under- microphone, the SPS200-A. ground trains, waggling mic stands, slam- Recently, Core Sound4 has announced the rel- ming doors and air currents. These can re- atively inexpensive Tetramic. It should be avail- sult in rather large amplitude signals, and able when this paper is presented, and its price cutting off low frequencies is the only way is expected to be below 1000 USD. It comes to get rid of them. Ideally this should be without a controller, and relies on a software done before AD-conversion, but not all au- solution for A to B-format conversion. dio interfaces provide such filters. Given such an application, this mic provides • Mute switches. For testing connections an affordable solution for Ambisonic recording. and verifying correct operation of the mi- While it was this announcement that triggered crophone it is convenient to be able to listen the development of the Tetraproc software pre- to selected inputs, hence the mute switches sented in this paper, it should be pointed out which are provided on the GUI. that this software can be used with any tetra- • Low frequency parametric filtering. hedral microphone. It is published under the This is provided to adjust the frequency re- GPL license, and in no way, either technically or sponse of the microphones in this region. commercially, linked to products of Core Sound The parameters provided are centre fre- or any other manufacturer. quency, bandwidth and gain. The same fil- tering is applied to all four channels. 2 Tetraproc processor architecture • A-format FIR filters. These are imple- Apart from the basic A to B format conversion, mented using fast FFT-based convolution Tetraproc also provides some convenient mon- and can be used to correct the frequency 2<http://www.soundfield.com> and phase response of the four microphones 3<http://www.dpamicrophones.com> using filters calculated from measured im- 4<http://www.core-sound.com> pulse responses. This will be mainly im- A-format in 4th order HP LF parametric Mute switches filter filter A Scalar matrix B-format out HF parametric Invert switches filters Convol. matrix B B-format in A B Meters Vol B-format monitoring Stereo decoder Stereo monitoring Figure 3: The Tetraproc processing chain portant in the medium and high frequency The output at this point is the B-format signal regions. that will be recorded. • A-B matrixing. This performs the A- 2.2 Monitoring functions B transformation already described in the Monitoring can be switched between the B- previous section. The actual matrix coeffi- format signal being recorded, or one being cients are modified to compensate for small played back. A virtual stereo microphone with gain and directivity mismatches between adjustable azimuth, elevation, microphone an- the four microphones. They are calculated gle and directivity is provided for stereo mon- by the calibration program described in itoring. This module also provides a volume section 4. control and optional low-frequency crosstalk for • B-format FIR filters. Again using fast headphone listening. convolution, these may be inserted to im- Four bargraph meters are provided on the plement Angelo Farina’s method (see next GUI. These show either the A-format signals, section) for obtaining the post-matrix fil- or the B-format signal being monitored. tering. They can be used together with the parametric sections that follow. 2.3 DSP implementation issues None of the processing steps above present any • HF parametric filtering. Two sections real difficulty, but some attention to detail is are provided in each channel to realize the required in order to obtain the highest quality. required post-matrix filters. Parameters The high pass filtering is implemented us- for these filters will be preset to sensible de- ing a filter architecture optimised for low fre- faults and can be tweaked for optimum per- quency filters described in [Adriaensen, 2006]. formance during the calibration of a tetra- It is used to avoid problems with filter coeffi- hedral microphone. cient and signal quantisation which may arise • X, Y, Z inversion switches. In some with some standard digital filter structures. cases it is required to invert some of the When both the A-format and B-format FIR first order signals, for example when the filters are enabled, they are combined together microphone is used upside down, hanging with the A-B matrix into a single four by four from its cable. convolution process. This doubles the number of convolutions, but is both more efficient and that would be required to do this. Gerzon pro- more accurate than using eight separate ones. vides design parameters for some analog filters, The parametric filter sections use the Mitra- but these do not match the diffuse field curves. Regalia architecture. The filters actually used in one of the products based on his work [Calrec Ltd., 1984] are again 3 Choice of the A-B matrix filters different.
Recommended publications
  • Practises in Listener Envelopment with Controllable Spatial Audio
    DIGITAL AUDIO SYSTEMS BRUNO MARION WRITTEN REVIEW 2 440566533 Practises in Listener Envelopment with Controllable Spatial Audio Introduction The envelopment of the listener in the sound field can be created in a number of ways. The two most import factors to Binaural Quality Index in acoustic space, be it real or virtual; is the Auditory Source Width and the Listener Envelopment Factor (Cardenas, et al., 2012). Multiple solutions exist for the increase in ASW and LEV, those discussed here will be Natural Sounding Artificial Reverberation, Recirculating Delays, Higher-Order Ambisonics and finally Higher-Order Speakers. Reverberation A computationally effective artificial reverberation can be easily achieved by using an exponentially decaying impulse and convolving this with the original audio signal. Inversing a duplication of this signal can also give a stereo effect but when compared to reality, this single-impulse method does not come close to creating the complex interactions of plane waves in a given space as each time a wave reflects from a surface or another wave, it is properties are affected as a function of frequency, phase and amplitude. The two main problems cited by Manfred Schroeder with artificial reverberation are: 1. A non-flat Amplitude Frequency Response 2. Low Echo Density (Schroeder, 1961) Shroeder offers solutions to these problems by use of an all-pass filter. An allpass filter is a method of filtering an audio signal without manipulation of other properties and can be constructed by combining a Finite Impuse Respose (FIR) feed forward and feedback. Figure 1 The allpass filter where fc is equal to the cut off frequency, fcl is equal to the lower cu toff frequency and fch is equal to the higher cut off frequency.
    [Show full text]
  • Franz Zotter Matthias Frank a Practical 3D Audio Theory for Recording
    Springer Topics in Signal Processing Franz Zotter Matthias Frank Ambisonics A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality Springer Topics in Signal Processing Volume 19 Series Editors Jacob Benesty, INRS-EMT, University of Quebec, Montreal, QC, Canada Walter Kellermann, Erlangen-Nürnberg, Friedrich-Alexander-Universität, Erlangen, Germany The aim of the Springer Topics in Signal Processing series is to publish very high quality theoretical works, new developments, and advances in the field of signal processing research. Important applications of signal processing will be covered as well. Within the scope of the series are textbooks, monographs, and edited books. More information about this series at http://www.springer.com/series/8109 Franz Zotter • Matthias Frank Ambisonics A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality Franz Zotter Matthias Frank Institute of Electronic Music and Acoustics Institute of Electronic Music and Acoustics University of Music and Performing Arts University of Music and Performing Arts Graz, Austria Graz, Austria ISSN 1866-2609 ISSN 1866-2617 (electronic) Springer Topics in Signal Processing ISBN 978-3-030-17206-0 ISBN 978-3-030-17207-7 (eBook) https://doi.org/10.1007/978-3-030-17207-7 © The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Scene-Based Audio and Higher Order Ambisonics
    Scene -Based Audio and Higher Order Ambisonics: A technology overview and application to Next-Generation Audio, VR and 360° Video NOVEMBER 2019 Ferdinando Olivieri, Nils Peters, Deep Sen, Qualcomm Technologies Inc., San Diego, California, USA The main purpose of an EBU Technical Review is to critically examine new technologies or developments in media production or distribution. All Technical Reviews are reviewed by 1 (or more) technical experts at the EBU or externally and by the EBU Technical Editions Manager. Responsibility for the views expressed in this article rests solely with the author(s). To access the full collection of our Technical Reviews, please see: https://tech.ebu.ch/publications . If you are interested in submitting a topic for an EBU Technical Review, please contact: [email protected] EBU Technology & Innovation | Technical Review | NOVEMBER 2019 2 1. Introduction Scene Based Audio is a set of technologies for 3D audio that is based on Higher Order Ambisonics. HOA is a technology that allows for accurate capturing, efficient delivery, and compelling reproduction of 3D audio sound fields on any device, such as headphones, arbitrary loudspeaker configurations, or soundbars. We introduce SBA and we describe the workflows for production, transport and reproduction of 3D audio using HOA. The efficient transport of HOA is made possible by state-of-the-art compression technologies contained in the MPEG-H Audio standard. We discuss how SBA and HOA can be used to successfully implement Next Generation Audio systems, and to deliver any combination of TV, VR, and 360° video experiences using a single audio workflow. 1.1 List of abbreviations & acronyms CBA Channel-Based Audio SBA Scene-Based Audio HOA Higher Order Ambisonics OBA Object-Based Audio HMD Head-Mounted Display MPEG Motion Picture Experts Group (also the name of various compression formats) ITU International Telecommunications Union ETSI European Telecommunications Standards Institute 2.
    [Show full text]
  • Spatialized Audio Rendering for Immersive Virtual Environments
    Spatialized Audio Rendering for Immersive Virtual Environments Martin Naef1 Oliver Staadt2 Markus Gross1 1Computer Graphics Laboratory 2Computer Science Department ETH Zurich, Switzerland University of California, Davis, USA +41-1-632-7114 +1-530-752-4821 {naef, grossm}@inf.ethz.ch [email protected] ABSTRACT We are currently developing a novel networked SID, the blue-c, which combines immersive projection with multi-stream video We present a spatialized audio rendering system for the use in acquisition and advanced multimedia communication. Multiple immersive virtual environments. The system is optimized for ren- interconnected portals will allow remotely located users to meet, to dering a sufficient number of dynamically moving sound sources communicate, and to collaborate in a shared virtual environment. in multi-speaker environments using off-the-shelf audio hardware. We have identified spatial audio as an important component for Based on simplified physics-based models, we achieve a good this system. trade-off between audio quality, spatial precision, and perfor- In this paper, we present an audio rendering pipeline and system mance. Convincing acoustic room simulation is accomplished by suitable for spatially immersive displays. The pipeline is targeted integrating standard hardware reverberation devices as used in the at systems which require a high degree of flexibility while using professional audio and broadcast community. We elaborate on inexpensive consumer-level audio hardware. important design principles for audio rendering as well as on prac- For successful deployment in immersive virtual environments, tical implementation issues. Moreover, we describe the integration the audio rendering pipeline has to meet several important require- of the audio rendering pipeline into a scene graph-based virtual ments: reality toolkit.
    [Show full text]
  • Localization of 3D Ambisonic Recordings and Ambisonic Virtual
    Localization of 3D Ambisonic Recordings and Ambisonic Virtual Sources Sebastian Braun and Matthias Frank UniversitÄatfÄurMusik und darstellende Kunst Graz, Austria Institut fÄurElektronische Musik und Akustik, Email: [email protected] Abstract The accurate recording and reproduction of real 3D sound environments is still a challenging task. In this paper, the two most established 3D microphones are evaluated: the Sound¯eld SPS200 and MH Acoustics' Eigenmike EM32, according to 1st and 4th order Ambisonics. They are compared to virtual encoded sound sources of the same orders in a localization test. For the reproduction, an Ambisonics system with 24 (12+8+4) hemispherically arranged loudspeakers is used. In order to compare to existing results from the literature, this paper focuses on sound sources in the horizontal plane. As expected, the 4th order sources yield better localization as the 1st order sources. Within each order, the real recordings and the virtual encoded sources show a good correspondence. Introduction Coordinate system. Fig. 1 shows the coordinate sys- tem used in this paper. The directions θ are vectors Surround sound systems have entered movie theaters and of unit length that depend on the azimuth angle ' and our living rooms during the last decades. But these zenith angle # (# = 90± in the horizontal plane) systems are still limited to horizontal sound reproduc- 0 1 tion. Recently, further developments, such as 22.2 [1] cos(') sin(#) and AURO 3D [2], expanded to the third dimension by θ('; #) = @sin(') sin(#)A : (1) adding height channels. cos(#) The third dimension envolves new challenges in panning and recording [3]. VBAP [4] is the simplest method for z panning and at the same time the most flexible one, as it works with arbitrary loudspeaker arrangements.
    [Show full text]
  • The Impact of Multichannel Game Audio on the Quality of Player Experience and In-Game Performance
    The Impact of Multichannel Game Audio on the Quality of Player Experience and In-game Performance Joseph David Rees-Jones PhD UNIVERSITY OF YORK Electronic Engineering July 2018 2 Abstract Multichannel audio is a term used in reference to a collection of techniques designed to present sound to a listener from all directions. This can be done either over a collection of loudspeakers surrounding the listener, or over a pair of headphones by virtualising sound sources at specific positions. The most popular commercial example is surround-sound, a technique whereby sounds that make up an auditory scene are divided among a defined group of audio channels and played back over an array of loudspeakers. Interactive video games are well suited to this kind of audio presentation, due to the way in which in-game sounds react dynamically to player actions. Employing multichannel game audio gives the potential of immersive and enveloping soundscapes whilst also adding possible tactical advantages. However, it is unclear as to whether these factors actually impact a player’s overall experience. There is a general consensus in the wider gaming community that surround-sound audio is beneficial for gameplay but there is very little academic work to back this up. It is therefore important to investigate empirically how players react to multichannel game audio, and hence the main motivation for this thesis. The aim was to find if a surround-sound system can outperform other systems with fewer audio channels (like mono and stereo). This was done by performing listening tests that assessed the perceived spatial sound quality and preferences towards some commonly used multichannel systems for game audio playback over both loudspeakers and headphones.
    [Show full text]
  • What's New in Pro Tools 12.8.2
    What’s New in Pro Tools® and Pro Tools | HD version 12.8.2 Legal Notices © 2017 Avid Technology, Inc., (“Avid”), all rights reserved. This guide may not be duplicated in whole or in part without the written consent of Avid. 003, 192 Digital I/O, 192 I/O, 96 I/O, 96i I/O, Adrenaline, AirSpeed, ALEX, Alienbrain, AME, AniMatte, Archive, Archive II, Assistant Station, Audiotabs, AudioStation, AutoLoop, AutoSync, Avid, Avid Active, Avid Advanced Response, Avid DNA, Avid DNxcel, Avid DNxHD, Avid DS Assist Station, Avid Ignite, Avid Liquid, Avid Media Engine, Avid Media Processor, Avid MEDIArray, Avid Mojo, Avid Remote Response, Avid Unity, Avid Unity ISIS, Avid VideoRAID, AvidRAID, AvidShare, AVIDstripe, AVX, Beat Detective, Beauty Without The Bandwidth, Beyond Reality, BF Essentials, Bomb Factory, Bruno, C|24, CaptureManager, ChromaCurve, ChromaWheel, Cineractive Engine, Cineractive Player, Cineractive Viewer, Color Conductor, Command|8, Control|24, Cosmonaut Voice, CountDown, d2, d3, DAE, D-Command, D-Control, Deko, DekoCast, D-Fi, D-fx, Digi 002, Digi 003, DigiBase, Digidesign, Digidesign Audio Engine, Digidesign Development Partners, Digidesign Intelligent Noise Reduction, Digidesign TDM Bus, DigiLink, DigiMeter, DigiPanner, DigiProNet, DigiRack, DigiSerial, DigiSnake, DigiSystem, Digital Choreography, Digital Nonlinear Accelerator, DigiTest, DigiTranslator, DigiWear, DINR, DNxchange, Do More, DPP-1, D-Show, DSP Manager, DS-StorageCalc, DV Toolkit, DVD Complete, D-Verb, Eleven, EM, Euphonix, EUCON, EveryPhase, Expander, ExpertRender, Fairchild,
    [Show full text]
  • Binaural Reproduction of Higher Order Ambisonics
    Binaural Reproduction of Higher Order Ambisonics A Real-Time Implementation and Perceptual Improvements Jakob Vennerød Electronics System Design and Innovation Submission date: June 2014 Supervisor: Peter Svensson, IET Norwegian University of Science and Technology Department of Electronics and Telecommunications Problem description A spherical microphone array is a scalable array with a certain number of microphones, where the number of microphones determines how directive the array can be implemented. The microphone signals can be processed by means of spherical harmonic (SH) modal functions, e.g. in the Higher Order Ambisonics format. This format is easily scalable between different array sizes, and sound fields can easy be rotated in this format. One can also convert between Higher Order Ambisonics and the binaural format for headphone reproduction. In this project, the student should study how signals from a spherical microphone array, in the SH format, can be used to create rotatable sound fields that can be repro- duced through headphones, with a head-tracking device. A real-time system shall, if possible, be implemented. i ii Preface This thesis marks the end of six years of studying in Trondheim, and my completion of the MSc. degree in Electronics at the Norwegian University of Science and Technology (NTNU). The thesis work was done from January to June, 2014. Initially, the topic of this thesis developed from a wish to study and work with microphone arrays, which is a rather popular, but also broad, field of acoustics today. I soon discovered that spatial audio and binaural sound would be the main ingredients of the thesis, which was not my primary field of interest prior to this work.
    [Show full text]
  • 3-D Audio Using Loudspeakers ~: ~
    3-D Audio Using Loudspeakers William G. Gardner B. S., Computer Science and Engineering, Massachusetts Institute of Technology, 1982 M. S., Media Arts and Sciences, Massachusetts Institute of Technology, 1992 Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology September, 1997 ©Massachusetts Institute of Technology, 1997. All Rights Reserved. Author Program in Media Arts and Sciences August 8, 1997 Certified by i bBarry L. Vercoe Professor of Media Arts and Sciences 7 vlassachusetts Institute of Tecgwlogy Accepted by V V Stephen A. Benton Chair, Departmental Committee on Graduate Students Program in Media Arts and Sciences Massachusetts Institute of Technology ~: ~ 2 3-D Audio Using Loudspeakers William G. Gardner Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on August 8, 1997, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy. Abstract 3-D audio systems, which can surround a listener with sounds at arbitrary locations, are an important part of immersive interfaces. A new approach is presented for implementing 3-D audio using a pair of conventional loudspeakers. The new idea is to use the tracked position of the listener's head to optimize the acoustical presentation, and thus produce a much more realistic illusion over a larger listening area than existing loudspeaker 3-D audio systems. By using a remote head tracker, for instance based on computer vision, an immersive audio environment can be created without donning headphones or other equipment.
    [Show full text]
  • An Ambisonics-Based VST Plug-In for 3D Music Production
    POLITECNICO DI MILANO Scuola di Ingegneria dell'Informazione POLO TERRITORIALE DI COMO Master of Science in Computer Engineering An Ambisonics-based VST plug-in for 3D music production. Supervisor: Prof. Augusto Sarti Assistant Supervisor: Dott. Salvo Daniele Valente Master Graduation Thesis by: Daniele Magliozzi Student Id. number 739404 Academic Year 2010-2011 POLITECNICO DI MILANO Scuola di Ingegneria dell'Informazione POLO TERRITORIALE DI COMO Corso di Laurea Specialistica in Ingegneria Informatica Plug-in VST per la produzione musicale 3D basato sulla tecnologia Ambisonics. Relatore: Prof. Augusto Sarti Correlatore: Dott. Salvo Daniele Valente Tesi di laurea di: Daniele Magliozzi Matr. 739404 Anno Accademico 2010-2011 To me Abstract The importance of sound in virtual reality and multimedia systems has brought to the definition of today's 3DA (Tridimentional Audio) techniques allowing the creation of an immersive virtual sound scene. This is possible virtually placing audio sources everywhere in the space around a listening point and reproducing the sound-filed they generate by means of suitable DSP methodologies and a system of two or more loudspeakers. The latter configuration defines multichannel reproduction tech- niques, among which, Ambisonics Surround Sound exploits the concept of spherical harmonics sound `sampling'. The intent of this thesis has been to develop a software tool for music production able to manage more source signals to virtually place them everywhere in a (3D) space surrounding a listening point em- ploying Ambisonics technique. The developed tool, called AmbiSound- Spazializer belong to the plugin software category, i.e. an expantion of already existing software that play the role of host. I Sommario L'aspetto sonoro, nella simulazione di realt`avirtuali e nei sistemi multi- mediali, ricopre un ruolo fondamentale.
    [Show full text]
  • Ambisonics for Beginners 06/2020
    Ambisonics for Beginners 06/2020 ─ 1 Basics 3 This tutorials’ working environment (DAW, plugins) 3 Structure 4 Fundamentals 4 Resources 6 Recording 7 Sennheiser Ambeo 7 AMBEO A-B Converter Plugin 7 Settings 7 Zoom H3-VR 10 Configuring the Zoom H3-VR 11 Zylia ZM-1 12 Drivers 12 Zylia Studio 12 Zylia Ambisonics Converter 14 Other Options 15 Availability 15 Octava MK-4012 Mic 17 Configure the Oktava in Reaper 19 Production workflow in Reaper 21 Converting - Video Format And Codec 21 Starting the Reaper project 21 Using the template 22 Master Track (monitoring) 24 Speaker Setup monitoring 24 Headphone monitoring 24 Spat ## Tracks 26 Importing the 360°-video 26 Using a Mono - File 26 Using a FOA - File 29 Head-locked Stereo ## Tracks 31 Rendering/Export 31 Spatialised Mix - Export 31 Head-locked Mix - Export 32 Encoder 33 Video Player 35 Plugin possibilities 36 2 IEM 36 IEM - AllRADecoder 36 IEM - SimpleDecoder 37 IEM - BinauralDecoder 38 IEM - DirectionalCompressor 38 IEM - DirectivityShaper 39 IEM - EnergyVisualizer 39 IEM - FdnReverb 40 IEM - MultiEncoder 40 IEM - MultiBandCompressor 41 IEM - MultiEQ 41 IEM - OmniCompressor 42 SPARTA 43 The SPARTA Suite 44 sparta_array2sh 44 sparta_powermap 44 //sparta_ambiBIN - optional & advanced 45 //sparta_dirass - optional 45 //sparta_sldoa - optional 46 //sparta_rotator - optional 46 The COMPASS Suite 47 compass_upmixer - essential 47 //compass_binaural - optional & advanced 47 Facebook 360° 48 FB360 Spatialiser 49 FB360 Control 50 FB360 Encoder 50 FB360 Converter 51 FB360 Mix Loudness 52 FB360 Stereo Loudness 52 VR Video Player 53 Kronlachner 54 ambiX v0.2.10 – Ambisonic plug-in suite 54 mcfx v0.5.11 – multichannel audio plug-in suite 55 Blue Ripple Sound 57 Essentials 57 Useful but maybe not essential 58 360° video details 59 Glossary 60 List of figures 61 3 Basics This tutorials’ working environment (DAW, plugins) This tutorial is intended for everybody, who wants to get started with 360° audio AND is on a budget, or just wants to mess around with this technology.
    [Show full text]
  • How Spatial Audio Affects Motion Sickness in Virtual Reality
    BACHELOR’S THESIS How Spatial Audio affects Motion Sickness in Virtual Reality Author: Supervisors: Tim PHILIPP Prof. Dr. Stefan RADICKE Matricel no.: 32230 Prof. Oliver CURDT A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Engineering in the Faculty Electronic Media Study Programme Audio Visual Media January 9, 2020 iii Declaration of Authorship Hiermit versichere ich, Tim PHILIPP, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „How Spatial Audio affects Motion Sickness in Virtual Reality“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungs- rechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichenVersicherung zur Kenntnis genommen. I hereby affirm, Tim PHILIPP, on my honor, that I have written this bachelor thesis with the title: “How Spatial Audio affects Motion Sickness in Virtual Reality” independently and without outside help and did not use any other aids than those stated. The parts of the work that were taken from the wording or the meaning of other works are in any case marked with the source. The work has not yet been published or submitted in any other form as an examination performance.
    [Show full text]