DNA Specificities Modulate the Binding of Human Transcription

Total Page:16

File Type:pdf, Size:1020Kb

DNA Specificities Modulate the Binding of Human Transcription Published online 22 May 2019 Nucleic Acids Research, 2019, Vol. 47, No. 12 6519–6537 doi: 10.1093/nar/gkz406 DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region Anna Cuppari1,†, Pablo Fernandez-Mill´ an´ 1,†, Federica Battistini2,†, Aleix Tarres-Sol´ e´ 1, Sebastien´ Lyonnais1, Guillermo Iruela3, Elena Ruiz-Lopez´ 1, Yuliana Enciso1, Anna Rubio-Cosials1, Rafel Prohens4, Miquel Pons3, Carlos Alfonso5, Katalin Toth´ 6, 5 2,7 1,* German´ Rivas , Modesto Orozco and Maria Sola` Downloaded from https://academic.oup.com/nar/article/47/12/6519/5494731 by guest on 28 September 2021 1Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain, 2Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain, 3BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, 08028 Barcelona, Spain, 4Unitat de Polimorfisme i Calorimetria, Centres Cient´ıfics i Tecnologics,` University of Barcelona, 08028 Barcelona, Spain, 5Centro de Investigaciones Biologicas,´ Consejo Superior de Investigaciones Cient´ıficas (CSIC), 28040 Madrid, Spain, 6Deutsches Krebsforschungszentrum, Division Biophysics of Macromolecules, Heidelberg, Germany and 7Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain Received August 14, 2018; Revised April 30, 2019; Editorial Decision May 01, 2019; Accepted May 15, 2019 ABSTRACT merization, which at a very high concentration trig- gers disruption of preformed complexes. Therefore, Human mitochondrial DNA (h-mtDNA) codes for 13 our results suggest that mtDNA sequences induce subunits of the oxidative phosphorylation pathway, non-uniform TFAM binding and, consequently, direct the essential route that produces ATP. H-mtDNA tran- an uneven distribution of TFAM aggregation sites scription and replication depends on the transcrip- during the essential process of mtDNA compaction. tion factor TFAM, which also maintains and com- pacts this genome. It is well-established that TFAM activates the mtDNA promoters LSP and HSP1 at INTRODUCTION the mtDNA control region where DNA regulatory el- Human mitochondria contain hundreds of copies of a 16.5 ements cluster. Previous studies identified still un- kb circular genome (h-mtDNA) that encodes 13 out of characterized, additional binding sites at the control the ∼80 subunits of the oxidative phosphorylation pathway region downstream from and slightly similar to LSP, (OXPHOS), the main source of ATP. Mutations, deletions, namely sequences X and Y (Site-X and Site-Y) (Fisher or misregulation of mtDNA impair the OXHPOS, which leads to considerable alterations of cell functions that are et al., Cell 50, pp 247–258, 1987). Here, we explore at the basis of rare diseases and syndromes (1), have been TFAM binding at these two sites and compare them associated with aging (2) and can aggravate major diseases to LSP by multiple experimental and in silico meth- such as diabetes (2), cancer (2), obesity (3) and neurologi- ods. Our results show that TFAM binding is strongly cal disorders such as Alzheimer’s and Parkinson’s diseases modulated by the sequence-dependent properties of (4). Therefore, mtDNA integrity must be well-preserved for Site-X, Site-Y and LSP. The high binding versatility correct cell function. Apart from OXPHOS proteins, tR- of Site-Y or the considerable stiffness of Site-X tune NAs and rRNAs are encoded by both h-mtDNA strands, TFAM interactions. In addition, we show that increase termed the heavy (HS) and light (LS) strands. Addition- in TFAM/DNA complex concentration induces multi- ally, h-mtDNA contains a non-coding control region (CR) of 1.1 kb that harbors mtDNA control elements, including *To whom correspondence should be addressed. Tel: +34 934034950; Email: [email protected] †These authors contributed equally to the paper as first authors. Present addresses: Anna Cuppari, ALBA Synchrotron Light Source, 08290 Cerdanyola del Valles,` Spain. Pablo Fernandez-Mill´ an,´ Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Valles,` Spain. Sebastien´ Lyonnais, UMS 3725 CNRS – Universite´ de Montpellier, Montpellier Cedex 05, France. C The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 6520 Nucleic Acids Research, 2019, Vol. 47, No. 12 the heavy and light strand promoters (HSP and LSP, re- chondrial TFAM levels, i.e. lower TFAM concentrations spectively) and the heavy strand origin of replication (OH), stimulate transcription, whereas high amounts lead to com- which is downstream from LSP (5,6). In addition, down- paction (25–28). stream from LSP there are three conserved sequence blocks TFAM binds to sequences that, albeit similar to LSP, named CSB- I (mtDNA coordinates nt 213–235), II (nt 299– are not involved in transcription activation but subjected 315) and III (closest to LSP, nt 346–363) that are preserved to TFAM phased binding. This poses the question of in mammals (7)(Figure1A). In addition to transcription, whether the distortions induced by TFAM to LSP would LSP together with CSB-II is further involved in mtDNA also occur in Site-X and Site-Y during compaction at replication. Former studies showed that RNA fragments the mtDNA control region. To this end and gain insight originated at LSP occasionally terminate downstream of into the DNA properties underlying dsDNA recognition CSB-II, creating a ∼120 nt RNA (R-loop) whose free 3 by TFAM, we characterized Site-X and Site-Y free or in ends prime the DNA polymerase so that RNA to DNA complex with the protein, by X-ray crystallography, molec- transitions are generated (6,8,9). This premature RNA ter- ular dynamics (MD) simulations, FRET and other bio- Downloaded from https://academic.oup.com/nar/article/47/12/6519/5494731 by guest on 28 September 2021 mination depends on a poly-guanine sequence at CSB-II physical methods. We compared these sites with binding that forms a hybrid G-quadruplex DNA structure between to LSP, which is the best characterized binding site as the displaced HS and the transcribed RNA, which presum- shown by several X-ray structures, FRET, SAXS and muta- ably destabilizes the RNA polymerase (mtRNAP) (10–13). tional analyses (17,18,29). Our results show that sequence- Directly downstream of CSB-II is a six-adenine tract (A- dependent DNA conformation modulates TFAM binding, tract, Figure 1A) whose mutations decrease the termina- which does not always occur as predicted by sequence align- tion effect at CSB-II (11,13). This A-tract is at the centre ment. In addition, we show that a simple concentration ef- of Site-X, a motif that overlaps 13 nucleotides from CSB- fect of TFAM/DNA complexes induces their multimeriza- II and 15 nucleotides downstream (Figure 1A). Site-X to- tion. Mutations at TFAM interfaces identified in the crystal gether with Site-Y, which is right upstream of CSB-I and structures disrupt this effect. These results suggest a mech- partially overlaps it (thus, both Site-X and Site-Y sequences anism of mtDNA compaction based on DNA-sequence de- lay between CSB-II and CSB-I Figure 1A), were both iden- pendent binding modes, and that multimerization of the tified as sequences similar to the sites that are bound bythe complexes is mediated by protein-protein interactions in- mitochondrial transcription factor A (TFAM or mtTFA) volving distant surfaces. within promoters LSP and HSP1. From these latter, the protein recruits the transcription machinery (14), but both MATERIALS AND METHODS Site-X and Site-Y are not close to any transcription initi- TFAM–DNA complex preparation ation site. TFAM is also involved in mtDNA compaction, and studies by in organello mtDNA methylation protection Mature full-length TFAM (residues 43–246; and hypersensitivity showed an organized phased binding UniProtQ00059) in complex with double-stranded of TFAM along the control region that was related to the DNA (dsDNA) fragments was prepared as reported compaction mechanism at this area (15). In particular, these previously (18). Based on the alignment of the crystal- studies specifically showed binding of TFAM to 28 bp pre- lized DNA sequence from the TFAM/LSP complex, cisely at Site-X (nt 276–303) and Site-Y (nt 233–260). In oligonucleotides harboring 22 bp from both Site-X addition, recent ChIP-seq analysis in HeLa cells showed (5-TAACAAAAAATTTCCACCAAAC-3;5-TTTGG that the Site-Y sequence is a TFAM enriched site, whereas TGGAAATTTTTTGTTAG-3, with overhanging ends) Site-X sequence is partially enriched (16). Interestingly, the and SITE-Y (5-TAACAATTGAATGTCTGCACAG-3, slight similarity of Site-X and Site-Y to LSP (14,15)(Figure and the complementary sequence that generated blunt ends) 1A and B) suggests a similar binding mechanism. were purchased (Biomers) and annealed. TFAM:DNA The crystal structure of TFAM in complex with LSP complexes were assembled by mixing the protein and DNA shows that binding at this promoter occurs at a 22 bp se- in the gel filtration buffer (50 mM HEPES pH 7.5, 750 quence upstream of the transcription initiation site (14,17– mM NaCl, 5 mM DTT) and the mixture was dialyzed 19)(Figure1A). The protein contains two HMG-box do- stepwise at 4◦C in buffer A (50 mM HEPES pH7.5, 500 mains (HMG-box1 and HMG-box2, roughly 60 aa each) mM NaCl, 5 mM DTT), buffer B (50 mM HEPES pH 7.5, separated by a linker (30 aa) and followed by a flexible C- 250 mM NaCl, 5 mM DTT) and buffer C (50 mM HEPES terminal tail.
Recommended publications
  • Mitochondrial Transcription Factor a Promotes DNA Strand Cleavage at Abasic Sites
    Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites Wenyan Xu (许文彦)a,1, Riley M. Boyda,1, Maya O. Treea, Faris Samkaria, and Linlin Zhaoa,b,2,3 aDepartment of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859; and bBiochemistry, Cellular, and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859 Edited by Rafael Radi, Universidad de la Republica, Montevideo, Uruguay, and approved July 18, 2019 (received for review July 2, 2019) In higher eukaryotic cells, mitochondria are essential subcellular damage in cells (13, 14). Within mitochondria, AP lesions are organelles for energy production, cell signaling, and the biosynthesis also abundant and can number in the hundreds per cell, con- of biomolecules. The mitochondrial DNA (mtDNA) genome is in- sidering their steady-state level (0.2 to 3 AP sites per 105 bp) (15, dispensable for mitochondrial function because it encodes protein 16) and the number of mtDNA copies per cell (∼1,000) (17). subunits of the electron transport chain and a full set of transfer and Importantly, AP sites are chemically labile and reactive and can ribosomal RNAs. MtDNA degradation has emerged as an essential lead to secondary DNA damage such as DNA single-strand quality control measure to maintain mtDNA and to cope with mtDNA breaks (SSBs), DNA–DNA interstrand cross-links, and DNA– damage resulting from endogenous and environmental factors. protein cross-links (DPCs) (18–23). If not repaired, AP sites Among all types of DNA damage known, abasic (AP) sites, sourced and their derivatives are mutagenic in the nuclear genome (24– from base excision repair and spontaneous base loss, are the most 26); however, the understanding of the biological consequence of abundant endogenous DNA lesions in cells.
    [Show full text]
  • Transcription from the Second Heavy-Strand Promoter of Human Mtdna Is Repressed by Transcription Factor a in Vitro
    Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro Maria F. Lodeiroa, Akira Uchidaa, Megan Bestwickb, Ibrahim M. Moustafaa, Jamie J. Arnolda, Gerald S. Shadelb,c, and Craig E. Camerona,1 aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; bDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06520; and cDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06520 Edited* by Douglas C. Wallace, Center for Mitochondrial and Epigenomic Medicine (CMEM), Children’s Hospital of Philadelphia, Philadelphia, PA, and approved March 8, 2012 (received for review November 15, 2011) Cell-based studies support the existence of two promoters on the factor B2 (TFB2M). The long-standing paradigm was that TFAM heavy strand of mtDNA: heavy-strand promoter 1 (HSP1) and HSP2. binds to a site in the promoter upstream of the transcription start However, transcription from HSP2 has been reported only once in site and recruits a complex POLRMT/TFB2M by an interaction of a cell-free system, and never when recombinant proteins have been the carboxyl-terminal tail of TFAM with TFB2M (3). However, we used. Here, we document transcription from HSP2 using an in vitro recently showed that basal mitochondrial transcription is not ab- system of defined composition. An oligonucleotide template repre- solutely dependent on TFAM (4). This observation suggested that senting positions 596–685 of mtDNA was sufficient to observe tran- the two-component transcription system found in lower eukaryotes scription by the human mtRNA polymerase (POLRMT) that was had acquired an additional layer of regulation in mammals that is absolutely dependent on mitochondrial transcription factor B2 mediated by TFAM (4).
    [Show full text]
  • Mitochondrial Dysfunction in Sepsis Is Associated with Diminished
    www.nature.com/scientificreports OPEN Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression Tim Rahmel 1*, Britta Marko1, Hartmuth Nowak1, Lars Bergmann1, Patrick Thon1, Katharina Rump1, Sebastian Kreimendahl2, Joachim Rassow2, Jürgen Peters3, Mervyn Singer4, Michael Adamzik1,5 & Björn Koos1,5 Sepsis is characterized by a dysregulated immune response, metabolic derangements and bioenergetic failure. These alterations are closely associated with a profound and persisting mitochondrial dysfunction. This however occurs despite increased expression of the nuclear-encoded transcription factor A (TFAM) that normally supports mitochondrial biogenesis and functional recovery. Since this paradox may relate to an altered intracellular distribution of TFAM in sepsis, we tested the hypothesis that enhanced extramitochondrial TFAM expression does not translate into increased intramitochondrial TFAM abundance. Accordingly, we prospectively analyzed PBMCs both from septic patients (n = 10) and lipopolysaccharide stimulated PBMCs from healthy volunteers (n = 20). Extramitochondrial TFAM protein expression in sepsis patients was 1.8-fold greater compared to controls (p = 0.001), whereas intramitochondrial TFAM abundance was approximate 80% less (p < 0.001). This was accompanied by lower mitochondrial DNA copy numbers (p < 0.001), mtND1 expression (p < 0.001) and cellular ATP content (p < 0.001) in sepsis patients. These fndings were mirrored in lipopolysaccharide stimulated PBMCs taken from healthy volunteers. Furthermore, TFAM- TFB2M protein interaction within the human mitochondrial core transcription initiation complex, was 74% lower in septic patients (p < 0.001). In conclusion, our fndings, which demonstrate a diminished mitochondrial TFAM abundance in sepsis and endotoxemia, may help to explain the paradox of lacking bioenergetic recovery despite enhanced TFAM expression.
    [Show full text]
  • The Role of Control Region Mitochondrial DNA Mutations in Cardiovascular Disease: Stroke and Myocardial Infarction
    bioRxiv preprint doi: https://doi.org/10.1101/382374; this version posted August 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The role of control region mitochondrial DNA mutations in cardiovascular disease: stroke and myocardial infarction Control region mitochondrial DNA mutations in cardiovascular disease Miriam Umbria1, Amanda Ramos1,2,3,4, Maria Pilar Aluja1¶*,#a and Cristina Santos1¶*,#a 1 Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia. Facultat de Biociències. Universitat Autònoma de Barcelona. Cerdanyola del Vallès, Barcelona, Spain; GREAB – Research Group in Biological Anthropology. 2 Faculdade de Ciências e Tecnologia, Universidade dos Açores (UAc), Ponta Delgada, Portugal 3 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Portugal 4 Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal #a Current Address: Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia. Facultat de Biociències. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain ¶ These authors contributed equally to this work *Correspondence to: Cristina Santos and Maria Pilar Aluja Tel.: 34 93 5811503 Fax: 34 93 5811321 E-mail: [email protected] E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/382374; this version posted August 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Simple Method for Sequencing the Whole Human Mitochondrial
    www.nature.com/scientificreports OPEN A simple method for sequencing the whole human mitochondrial genome directly from samples and its application to genetic testing Yue Yao1,7, Motoi Nishimura2,7, Kei Murayama3, Naomi Kuranobu3, Satomi Tojo1, Minako Beppu1,2, Takayuki Ishige2, Sakae Itoga2, Sachio Tsuchida4, Masato Mori5, Masaki Takayanagi3, Masataka Yokoyama1, Kazuyuki Yamagata1, Yoshihito Kishita6, Yasushi Okazaki 6, Fumio Nomura4, Kazuyuki Matsushita2 & Tomoaki Tanaka 1* Next-generation sequencing (NGS) is a revolutionary sequencing technology for analyzing genomes. However, preprocessing methods for mitochondrial DNA (mtDNA) sequencing remain complex, and it is required to develop an authenticated preprocessing method. Here, we developed a simple and easy preprocessing method based on isothermal rolling circle mtDNA amplifcation using commercially available reagents. Isothermal amplifcation of mtDNA was successfully performed using both nanoliter quantities of plasma directly and 25 ng of total DNA extracted from blood or tissue samples. Prior to mtDNA amplifcation, it was necessary to treat the extracted total DNA with Exonuclease V, but it was not required to treat plasma. The NGS libraries generated from the amplifed mtDNA provided sequencing coverage of the entire human mitochondrial genome. Furthermore, the sequencing results successfully detected heteroplasmy in patient samples, with called mutations and variants matching those from previous, independent, Sanger sequencing analysis. Additionally, a novel single nucleotide variant was detected in a healthy volunteer. The successful analysis of mtDNA using very small samples from patients is likely to be valuable in clinical medicine, as it could reduce patient discomfort by reducing sampling-associated damage to tissues. Overall, the simple and convenient preprocessing method described herein may facilitate the future development of NGS-based clinical and forensic mtDNA tests.
    [Show full text]
  • Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism
    International Journal of Molecular Sciences Review Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism Makiko Mochizuki-Kashio 1, Hiroko Shiozaki 2, Toshio Suda 3,4 and Ayako Nakamura-Ishizu 1,* 1 Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; [email protected] 2 Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; [email protected] 3 Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore; [email protected] 4 International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan * Correspondence: [email protected] Abstract: Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis. Keywords: hematopoietic stem cells; ROS; mitochondria; lysosome; autophagy; folliculin Citation: Mochizuki-Kashio, M.; Shiozaki, H.; Suda, T.; Nakamura-Ishizu, A. Mitochondria 1. Introduction Turnover and Lysosomal Function in Hematopoietic cells consist of a heterogenous group of cells originating from hematopoi- Hematopoietic Stem Cell Metabolism. etic stem cells (HSCs) [1]. HSCs differentiate into multi-potent progenitor cells (MPPs) Int. J. Mol. Sci. 2021, 22, 4627.
    [Show full text]
  • Cross-Strand Binding of TFAM to a Single Mtdna Molecule Forms the Mitochondrial Nucleoid
    Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid Christian Kukata,b,1, Karen M. Daviesc,1, Christian A. Wurmd,1, Henrik Spåhra, Nina A. Bonekampa, Inge Kühla, Friederike Joosc, Paola Loguercio Polosae, Chan Bae Parka,f, Viktor Posseg, Maria Falkenbergg, Stefan Jakobsd,h, Werner Kühlbrandtc, and Nils-Göran Larssona,i,2 aDepartment of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; bFACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; cDepartment of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; dDepartment of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; eDepartment of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy; fInstitute for Medical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea; gDepartment of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; hDepartment of Neurology, University of Göttingen Medical School, 37073 Göttingen, Germany; and iDepartment of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden Edited by F. Ulrich Hartl, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved August 4, 2015 (received for review June 23, 2015) Mammalian mitochondrial DNA (mtDNA) is packaged by mito- To date, mitochondrial transcription factor A (TFAM) is the chondrial transcription factor A (TFAM) into mitochondrial nucle- only protein that fulfills a stringent definition of a structural oids that are of key importance in controlling the transmission and component that packages mtDNA in the mammalian nucleoid expression of mtDNA. Nucleoid ultrastructure is poorly defined, (8).
    [Show full text]
  • The Tumor Suppressor Folliculin Regulates AMPK-Dependent Metabolic Transformation Ming Yan,1,2 Marie-Claude Gingras,1,2 Elaine A
    Downloaded on April 29, 2014. The Journal of Clinical Investigation. More information at www.jci.org/articles/view/71749 Research article The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation Ming Yan,1,2 Marie-Claude Gingras,1,2 Elaine A. Dunlop,3 Yann Nouët,1,2 Fanny Dupuy,1,4 Zahra Jalali,1,2 Elite Possik,1,2 Barry J. Coull,5 Dmitri Kharitidi,1,2 Anders Bondo Dydensborg,1,2 Brandon Faubert,1,4 Miriam Kamps,5 Sylvie Sabourin,1,2 Rachael S. Preston,3 David Mark Davies,3 Taren Roughead,1,2 Laëtitia Chotard,1,2 Maurice A.M. van Steensel,5 Russell Jones,1,4 Andrew R. Tee,3 and Arnim Pause1,2 1Goodman Cancer Research Center and 2Department of Biochemistry, McGill University, Montréal, Québec, Canada. 3Institute of Cancer and Genetics, Cardiff University, Cardiff, Wales, United Kingdom. 4Department of Physiology, McGill University, Montréal, Québec, Canada. 5Department of Dermatology, Maastricht University, Maastricht, The Netherlands. The Warburg effect is a tumorigenic metabolic adaptation process characterized by augmented aerobic gly- colysis, which enhances cellular bioenergetics. In normal cells, energy homeostasis is controlled by AMPK; however, its role in cancer is not understood, as both AMPK-dependent tumor-promoting and -inhibiting functions were reported. Upon stress, energy levels are maintained by increased mitochondrial biogenesis and glycolysis, controlled by transcriptional coactivator PGC-1α and HIF, respectively. In normoxia, AMPK induces PGC-1α, but how HIF is activated is unclear. Germline mutations in the gene encoding the tumor suppressor folliculin (FLCN) lead to Birt-Hogg-Dubé (BHD) syndrome, which is associated with an increased cancer risk.
    [Show full text]
  • Investigation of the Folliculin (Flcn) Tumor Suppressor Gene in Energy Metabolism Ming Yan Department of Biochemistry Mcgill
    Investigation of the Folliculin (Flcn) tumor suppressor gene in energy metabolism Ming Yan Department of Biochemistry McGill University Montréal, Canada Dec., 2015 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. © Ming Yan, 2015 ABSTRACT Birt–Hogg–Dubé (BHD) syndrome is an autosomal dominant hereditary disorder characterized by skin fibrofolliculomas, lung cyst, spontaneous pneumothorax and renal cell carcinoma (RCC). This condition is caused by germline mutations of folliculin (Flcn) gene, which encodes a 64-kDa protein named folliculin (FLCN). The AMP-actived protein kinase (AMPK) is a master regulator of cellular energy homeostasis. FLCN interacts with AMPK through FLCN-interacting proteins (FNIP1/2). Molecular function of FLCN and how FLCN interacts with AMPK in energy metabolism are largely unknown. We used mouse embryonic fibroblasts (MEFs) and adipose specific Flcn knockout mouse model to investigate the role of Flcn and its function associated with AMPK in energy metabolism. We found that loss of FLCN constitutively activates AMPK, which in turn leads to elevation in peroxisome proliferator-activated receptor gama coactivator 1 α (PGC-1α), which mediates mitochondrial biogenesis and increase reactive oxygen species (ROS) production. Elevated ROS induces hypoxia-inducible factor (HIF) transcriptional activity and drives Warburg metabolic reprogramming. These findings indicate that Flcn exert tumor suppressor activity by acting as a negative regulator of AMPK-dependent HIF activation and Warburg effect. To investigate the potential role of FLCN/AMPK/ PGC-1α in fat metabolism, we generated an adipose-specific Flcn knockout mouse model. Flcn KO mice exhibit elevated energy expenditure associated with increased O2 consumption, and are protected from diet-induced obesity.
    [Show full text]
  • LONP1 Is Required for Maturation of a Subset of Mitochondrial Proteins and Its Loss Elicits
    bioRxiv preprint doi: https://doi.org/10.1101/306316; this version posted April 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. LONP1 is required for maturation of a subset of mitochondrial proteins and its loss elicits an integrated stress response Olga Zurita Rendón and Eric A. Shoubridge. Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada. Eric A. Shoubridge, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4 Email: [email protected] Tel: 514-398-1997 FAX: 514-398-1509 bioRxiv preprint doi: https://doi.org/10.1101/306316; this version posted April 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract LONP1, a AAA+ mitochondrial protease, is implicated in protein quality control, but its substrates and precise role in this process remain poorly understood. Here we have investigated the role of human LONP1 in mitochondrial gene expression and proteostasis. Depletion of LONP1 resulted in partial loss of mtDNA, complete suppression of mitochondrial translation, a marked increase in the levels of a distinct subset of mitochondrial matrix proteins (SSBP1, MTERFD3, FASTKD2 and CLPX), and the accumulation of their unprocessed forms, with intact mitochondrial targeting sequences, in an insoluble protein fraction.
    [Show full text]
  • Mitochondrial Simple Sequence Repeats and 12S-Rrna Gene Reveal Two Distinct Lineages of Crocidura Russula (Mammalia, Soricidae)
    Heredity (2004) 92, 527–533 & 2004 Nature Publishing Group All rights reserved 0018-067X/04 $30.00 www.nature.com/hdy Mitochondrial simple sequence repeats and 12S-rRNA gene reveal two distinct lineages of Crocidura russula (Mammalia, Soricidae) S Lo Brutto1, M Arculeo1 and M Sara`1 1Dipartimento di Biologia Animale, Universita` di Palermo, Via Archirafi 18, Palermo 90123, Italia A short segment (135 bp) of the control region and a partial conserved 12S-rRNA gene, separated the two sister groups; it sequence (394 bp) of the 12S-rRNA gene in the mitochondrial permitted us to date a divergence time of 0.5 Myr. Our data DNA of Crocidura russula were analyzed in order to test a discriminated two different mitochondrial lineages in accor- previous hypothesis regarding the presence of a gene flow dance with the previous morphological and karyological data. disruption in northern Africa. This breakpoint would have Ecoclimatic barriers formed during the Middle Pleistocene separated northeast-African C. russula populations from broke the range of ancestral species in the Eastern Algeria the European (plus the northwest-African) populations. The (Kabile Mountains), leading to two genetically separate and analysis was carried out on specimens from Tunisia (C. r.cf modern lineages. The northeast-African lineage can today be agilis), Sardinia (C. r. ichnusae), and Pantelleria (C. r. located in Tunisia, Pantelleria, and Sardinia. The northwest- cossyrensis), and on C. r. russula from Spain and Belgium. African lineage (Morocco and West Algeria), reaching Spain Two C. russula lineages were identified; they both shared R2 by anthropogenic introduction, spread over north Europe in tandem repeated motifs of the same length (12 bp), but not the modern times.
    [Show full text]
  • Mitochondrial DNA Control Region Analysis of Three Ethnic Populations in Lower Northern Part of Thailand
    Mitochondrial DNA control region analysis of three ethnic populations in lower Northern part of Thailand U. Suyasunanont1, M. Nakkuntod1 and S. Mirasena2,3 1Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand 2Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand 3Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand Corresponding author: S. Mirasena E-mail: [email protected] Genet. Mol. Res. 16 (3): gmr16039687 Received March 29, 2017 Accepted May 23, 2017 Published July 6, 2017 DOI http://dx.doi.org/10.4238/gmr16039687 Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. The lower northern part of Thailand contains various genetically diverse ethnic populations. The sequences of the mitochondrial DNA hypervariable region were studied in three ethnic populations inhabiting Phitsanulok Province. One hundred and nine nucleotide sequences - 53, 29, and 27 from Hmongs (Hill tribe), Lao Songs, and Thai-Siams, respectively - were collected. The haplotypes were generated from 1130 nucleotides of the entire control region. Eighty-six haplotypes were found in the three ethnic populations, and no shared haplotypes were found between populations. Point heteroplasmy was noted at position 311 (C→Y). Haplotypes with ACAC-insertion at position 512 were observed in immigrant individuals from the Lao Song population. The Thai-Siam population showed higher genetic diversity than the other populations. The Hmong and Lao Song populations Genetics and Molecular Research 16 (3): gmr16039687 U. Suyasunanont et al. 2 showed less genetic diversity than those living in their original area.
    [Show full text]