2017. a Revised Taxonomy of the Felidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Rev Cop16) on Conservation of and Trade in Tiger
SC65 Doc. 38 Annex 1 REVIEW OF IMPLEMENTATION OF RESOLUTION CONF. 12.5 (REV. COP16) ON CONSERVATION OF AND TRADE IN TIGERS AND OTHER APPENDIX-I ASIAN BIG CAT SPECIES* Report to the CITES Secretariat for the 65th meeting of the Standing Committee Kristin Nowell, CAT and IUCN Cat Specialist Group and Natalia Pervushina, TRAFFIC With additional support from WWF Table of Contents Section Page Executive Summary 2 1. Introduction 8 2. Methods 11 3. Conservation status of Asian big cats 12 4. Seizure records for Asian big cats 13 4.1. Seizures – government reports 13 4.1.1. International trade databases 13 4.1.2. Party reports to CITES 18 4.1.3. Interpol Operation Prey 19 4.2. Seizures – range State and NGO databases 20 4.2.1. Tigers 21 4.2.2. Snow leopards 25 4.2.3. Leopards 26 4.2.4. Other species 27 5. Implementation of CITES recommendations: best practices and 28 continuing challenges 5.1. Legislative and regulatory measures 28 5.2. National law enforcement 37 5.3. International cooperation for enforcement and conservation 44 5.4. Recording, availability and analysis of information 46 5.5. Demand reduction, education, and awareness 48 5.6. Prevention of illegal trade in parts and derivatives from captive 53 facilities 5.7. Management of government and privately-held stocks of parts and 56 derivatives 5.8. Recent meetings relevant to Asian big cat conservation and trade 60 control 6. Recommendations 62 References 65 * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. -
Incorporating Natural and Human Factors in Habitat Modelling and Spatial Prioritisation for the Lynx Lynx Martinoi
Web Ecol., 16, 17–31, 2016 www.web-ecol.net/16/17/2016/ doi:10.5194/we-16-17-2016 © Author(s) 2016. CC Attribution 3.0 License. Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi K. Laze1,a and A. Gordon2 1Leibniz Institute of Agriculture Development in Transition Economies, Theodor-Lieser-Str. 2, 06120 Halle (Saale), Germany 2School of Global, Urban and Social Studies, RMIT University, P.O. Box 2476, Melbourne 3001, Australia anow at: Polytechnic University of Albania, Faculty of Civil Engineering, Department of Environmental Engineering, Rr. “M. Gjollesha”, No. 54, 1023 Tirana, Albania Correspondence to: K. Laze ([email protected]) Received: 11 June 2015 – Revised: 30 December 2015 – Accepted: 11 January 2016 – Published: 2 February 2016 Abstract. Countries in south-eastern Europe are cooperating to conserve a sub-endemic lynx species, Lynx lynx martinoi. Yet, the planning of species conservation should go hand-in-hand with the planning and management of (new) protected areas. Lynx lynx martinoi has a small, fragmented distribution with a small total population size and an endangered population. This study combines species distribution modelling with spatial prioritisa- tion techniques to identify conservation areas for Lynx lynx martinoi. The aim was to determine locations of high probability of occurrence for the lynx, to potentially increase current protected areas by 20 % in Albania, the former Yugoslav Republic of Macedonia, Montenegro, and Kosovo. The species distribution modelling used generalised linear models with lynx occurrence and pseudo-absence data. Two models were developed and fit- ted using the lynx data: one based on natural factors, and the second based on factors associated with human disturbance. -
Download Download
PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Male residency of Sunda Clouded Leopard Neofelis diardi (Cuvier, 1823) (Mammalia: Carnivora: Felidae) in a peat swamp forest, Indonesian Borneo Lynn Pallemaerts, Adul, Ici P. Kulu, Karen Anne Jefers, David W. Macdonald & Susan Mary Cheyne SMALL WILD CATS 14 December 2020 | Vol. 12 | No. 16 | Pages: 17222–17228 SPECIAL ISSUE DOI: 10.11609/jot.6487.12.16.17222-17228 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors. -
Felis Silvestris, Wild Cat
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T60354712A50652361 Felis silvestris, Wild Cat Assessment by: Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. View on www.iucnredlist.org Citation: Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. 2015. Felis silvestris. The IUCN Red List of Threatened Species 2015: e.T60354712A50652361. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T60354712A50652361.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information -
Industry Survey Turbot and Brill in the North Sea
Industry survey turbot and brill in the North Sea Set up and results of a fisheries-independent survey using commercial fishing vessels 2018-2020 Authors: Edward Schrama, Niels Hintzena, Jurgen Batsleera, Tony Wilkesa, Katinka Bleekera, Wageningen University & Morgane Amelota, Wouter van Broekhovenb, David Rasb, Emma de Boerc, Brita Trapmanc, Research report C037/21 Nathalie A. Steinsa Industry survey turbot and brill in the North Sea Set up and results of a fisheries-independent survey using commercial fishing vessels 2018-2020 Authors: Edward Schrama, Niels Hintzena, Jurgen Batsleera, Tony Wilkesa, Katinka Bleekera, Morgane Amelota, Wouter van Broekhovenb, David Rasb, Emma de Boerc, Brita Trapmanc, Nathalie A. Steinsa a Wageningen Marine Research b Cooperatie Kottervisserij Nederland U.A. (VisNed) c Nederlandse Vissersbond Wageningen Marine Research IJmuiden, April 2021 Wageningen Marine Research report C037/21 Keywords: Industry survey, turbot, brill, stock assessment European Union, European Maritime and Fisheries Fund (EMFF) Client: Rijksdienst voor Ondernemend Nederland Attn.: A.P.M. Vaessen Postbus 93144 2509 AC, Den Haag This report can be downloaded for free from https://doi.org/10.18174/544588 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2015 certified. Photo cover: Edward Schram © Wageningen Marine Research Wageningen Marine Research, an institute Wageningen Marine Research accepts no liability for consequential damage, nor within the legal entity Stichting for damage resulting from applications of the results of work or other data Wageningen Research (a foundation under obtained from Wageningen Marine Research. Client indemnifies Wageningen Dutch private law) represented by Marine Research from claims of third parties in connection with this application. -
04-Bailly 669.Indd
Scophthalmus Rafinesque, 1810: The valid generic name for the turbot, S. maximus (Linnaeus, 1758) [Pleuronectiformes: Scophthalmidae] by Nicolas BAILLY* (1) & Bruno CHANET (2) ABSTRACT. - In the past 50 years, the turbot is referred to either as Scophthalmus maximus (Linnaeus, 1758) or Psetta maxima (Linnaeus, 1758) in the literature. Norman (1931) had argued that the valid name for the turbot was Scophthalmus maximus. However, his recommendation was never universally accepted, and today the confusing situation exists where two generic names are still being used for this species. We address this issue by analysing findings from recently published works on the anatomy, molecular and morphological phylogenetic systematics, and ecology of scophthalmid fishes. The preponderance of evidence supports the strong recommendation to use Scophthalmus as the valid generic name for the tur- bot. Acceptance of this generic name conveys the best information available concerning the systematic relationships of this species, and also serves to simplify the nomenclature of scophthalmid flatfishes in publications on systematics, fisheries and aquaculture, fishery statistics, ichthyofaunal and field guides for the general public, and in various legal and conserva- tion-related documents. This paper reinforces the conclusions of Chanet (2003) with more arguments. RÉSUMÉ. - Scophthalmus Rafinesque, 1810: le nom de genre valide du turbot,S. maximus (Linnaeus, 1758) (Pleuronecti- formes: Scophthalmidae). Depuis 50 ans, le turbot est dénommé dans la littérature soit Scophthalmus maximus (Linnaeus, 1758), soit Psetta maxima (Linnaeus, 1758). Norman (1931) avait montré que le nom valide pour le turbot était Scophthalmus maximus. Cependant, sa recommandation ne fut jamais universellement appliquée, et aujourd’hui la situation reste confuse avec deux noms génériques en usage pour cette espèce. -
African Wildcat 1 African Wildcat
African Wildcat 1 African Wildcat African Wildcat[1] Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Felis Species: F. silvestris Subspecies: F. s. lybica Trinomial name Felis silvestris lybica Forster, 1770 The African wildcat (Felis silvestris lybica), also known as the desert cat, and Vaalboskat (Vaal-forest-cat) in Afrikaans, is a subspecies of the wildcat (F. silvestris). They appear to have diverged from the other subspecies about 131,000 years ago.[2] Some individual F. s. lybica were first domesticated about 10,000 years ago in the Middle East, and are among the ancestors of the domestic cat. Remains of domesticated cats have been included in human burials as far back as 9,500 years ago in Cyprus.[3] [4] Physical characteristics The African wildcat is sandy brown to yellow-grey in color, with black stripes on the tail. The fur is shorter than that of the European subspecies. It is also considerably smaller: the head-body length is 45 to 75 cm (17.7 to 29.5 inches), the tail 20 to 38 cm (7.87 to 15 inches), and the weight ranges from 3 to 6.5 kg (6.61 to 14.3 lbs). Distribution and habitat The African wildcat is found in Africa and in the Middle East, in a wide range of habitats: steppes, savannas and bushland. The sand cat (Felis margarita) is the species found in even more arid areas. Skull African Wildcat 2 Behaviour The African wildcat eats primarily mice, rats and other small mammals. When the opportunity arises, it also eats birds, reptiles, amphibians, and insects. -
First Record of Hose's Civet Diplogale Hosei from Indonesia
First record of Hose’s Civet Diplogale hosei from Indonesia, and records of other carnivores in the Schwaner Mountains, Central Kalimantan, Indonesia Hiromitsu SAMEJIMA1 and Gono SEMIADI2 Abstract One of the least-recorded carnivores in Borneo, Hose’s Civet Diplogale hosei , was filmed twice in a logging concession, the Katingan–Seruyan Block of Sari Bumi Kusuma Corporation, in the Schwaner Mountains, upper Seruyan River catchment, Central Kalimantan. This, the first record of this species in Indonesia, is about 500 km southwest of its previously known distribution (northern Borneo: Sarawak, Sabah and Brunei). Filmed at 325The m a.s.l., IUCN these Red List records of Threatened are below Species the previously known altitudinal range (450–1,800Prionailurus m). This preliminary planiceps survey forPardofelis medium badia and large and Otter mammals, Civet Cynogalerunning 100bennettii camera-traps in 10 plots for one (Bandedyear, identified Civet Hemigalus in this concession derbyanus 17 carnivores, Arctictis including, binturong on Neofelis diardi, three Endangered Pardofe species- lis(Flat-headed marmorata Cat and Sun Bear Helarctos malayanus, Bay Cat . ) and six Vulnerable species , Binturong , Sunda Clouded Leopard , Marbled Cat Keywords Cynogale bennettii, as well, Pardofelis as Hose’s badia Civet), Prionailurus planiceps Catatan: PertamaBorneo, camera-trapping, mengenai Musang Gunung Diplogale hosei di Indonesia, serta, sustainable karnivora forest management lainnya di daerah Pegunungan Schwaner, Kalimantan Tengah Abstrak Diplogale hosei Salah satu jenis karnivora yang jarang dijumpai di Borneo, Musang Gunung, , telah terekam dua kali di daerah- konsesi hutan Blok Katingan–Seruyan- PT. Sari Bumi Kusuma, Pegunungan Schwaner, di sekitar hulu Sungai Seruya, Kalimantan Tengah. Ini merupakan catatan pertama spesies tersebut terdapat di Indonesia, sekitar 500 km dari batas sebaran yang diketa hui saat ini (Sarawak, Sabah, Brunei). -
The Wily and Courageous Red Fox: Behavioural Analysis of a Mesopredator at Resource Points Shared by an Apex Predator
animals Article The Wily and Courageous Red Fox: Behavioural Analysis of a Mesopredator at Resource Points Shared by an Apex Predator Eamonn Wooster *, Arian D. Wallach and Daniel Ramp Centre for Compassionate Conservation, University of Technology Sydney, P.O. Box 123, Ultimo, New South Wales 2007, Australia; [email protected] (A.D.W.); [email protected] (D.R.) * Correspondence: [email protected] Received: 21 September 2019; Accepted: 31 October 2019; Published: 4 November 2019 Simple Summary: The red fox is one of the Earth’s most widespread mammalian predators. Human globalisation has further expanded its range, so that today they are found on most continents. Despite their abundance, knowledge of fox behaviour remains limited. Most studies have observed foxes either in captivity or in their native range where both they and their predators are killed by humans. We conducted a behavioural study on foxes outside of their native range in Australia, at a unique location where all wildlife are protected. We developed an ethogram to explore fox behaviour at resource points shared with a potentially deadly apex predator, the dingo. We were surprised to find that foxes were in a confident state more often than in a cautious state, even leaving territorial markings over those of dingoes. One possible explanation for the confidence of foxes is that the social stability of both foxes and dingoes makes their world more predictable. Abstract: The red fox (Vulpes vulpes) is a widespread and ecologically significant terrestrial mesopredator, that has expanded its range with human globalisation. Despite this, we know relatively little about their behaviour under the wide range of ecological conditions they experience, particularly how they navigate the risk of encounters with apex predators. -
1 the Origin and Evolution of the Domestic Cat
1 The Origin and Evolution of the Domestic Cat There are approximately 40 different species of the cat family, classification Felidae (Table 1.1), all of which are descended from a leopard-like predator Pseudaelurus that existed in South-east Asia around 11 million years ago (O’Brien and Johnson, 2007). Other than the domestic cat, the most well known of the Felidae are the big cats such as lions, tigers and panthers, sub-classification Panthera. But the cat family also includes a large number of small cats, including a group commonly known as the wildcats, sub-classification Felis silvestris (Table 1.2). Physical similarity suggests that the domestic cat (Felis silvestris catus) originally derived from one or more than one of these small wildcats. DNA examination shows that it is most closely related to the African wildcat (Felis silvestris lybica), which has almost identical DNA, indicating that the African wildcat is the domestic cat’s primary ancestor (Lipinski et al., 2008). The African Wildcat The African wildcat is still in existence today and is a solitary and highly territorial animal indigenous to areas of North Africa and the Near East, the region where domestication of the cat is believed to have first taken place (Driscoll et al., 2007; Faure and Kitchener, 2009). It is primarily a nocturnal hunter that preys mainly on rodents but it will also eat insects, reptiles and other mammals including the young of small antelopes. Also known as the Arabian or North African wildcat, it is similar in appearance to a domestic tabby, with a striped grey/sandy-coloured coat, but is slightly larger and with longer legs (Fig. -
Ten Years Ago, Gordon Boy Introduced the African Golden
LAILA BAHAA-EL-DIN & DAVID MILLS Laila Bahaa-el-din (working in Gabon) and David Mills (working in Uganda) are both funded through Panthera Kaplan Graduate Awards (www.panthera.org) and are doing their PhDs with the University of KwaZulu-Natal (UKZN) in South Africa. Laila is additionally supported by Oxford University’s Wildlife Conservation Research Unit (WildCRU) and David is supported by Wildlife Conservation Society (WCS) Uganda. en years ago, Gordon Boy at avoiding human encounters. These yet few images of the golden cat had introduced the African golden traits may previously have benefited been obtained. The cat’s reputation Tcat (Profelis aurata) to SWARA golden cats, keeping them out of the as rare and elusive was perpetuated readers as the “Phantom Feline”. way of harmful human attention. as a result and this led people to Information was thin on the ground Nevertheless, our ignorance of the consider it almost impossible to study. at the time and Boy had to gather bits species may now bear a cost: during However, while setting camera traps of the jigsaw from scattered sources. our current time of booming human to study leopards in Gabon’s tropical Fleeting sightings and a few skins made population and associated deforestation forests, Philipp Henschel from the up the bulk of knowledge and we were and bushmeat hunting, we have little Non Govermental Organisation (NGO) left to fill the gaps through guesswork. idea of how the forest-dependent Panthera photographed golden cats on Our unfamiliarity with the golden cat African golden cat is coping. several occasions. He was adamant that is not surprising – it lives in forested Remotely triggered camera traps a more golden cat-focused camera trap habitat, a difficult environment in were slowly coming into use in Africa’s study would yield enough data to assess which to see wildlife, and seems adept forests when Boy wrote his article, golden cat populations. -
Lynx, Felis Lynx, Predation on Red Foxes, Vulpes Vulpes, Caribou
Lynx, Fe/is lynx, predation on Red Foxes, Vulpes vulpes, Caribou, Rangifer tarandus, and Dall Sheep, Ovis dalli, in Alaska ROBERT 0. STEPHENSON, 1 DANIEL V. GRANGAARD,2 and JOHN BURCH3 1Alaska Department of Fish and Game, 1300 College Road, Fairbanks, Alaska, 99701 2Alaska Department of Fish and Game, P.O. Box 305, Tok, Alaska 99780 JNational Park Service, P.O. Box 9, Denali National Park, Alaska 99755 Stephenson, Robert 0., Daniel Y. Grangaard, and John Burch. 1991. Lynx, Fe/is lynx, predation on Red Foxes, Vulpes vulpes, Caribou, Rangifer tarandus, and Dall Sheep, Ovis dalli, in Alaska. Canadian Field-Naturalist 105(2): 255- 262. Observations of Canada Lynx (Fe/is lynx) predation on Red Foxes ( Vulpes vulpes) and medium-sized ungulates during winter are reviewed. Characteristics of I 3 successful attacks on Red Foxes and 16 cases of predation on Caribou (Rangifer tarandus) and Dall Sheep (Ovis dalli) suggest that Lynx are capable of killing even adults of these species, with foxes being killed most easily. The occurrence of Lynx predation on these relatively large prey appears to be greatest when Snowshoe Hares (Lepus americanus) are scarce. Key Words: Canada Lynx, Fe/is lynx, Red Fox, Vulpes vulpes, Caribou, Rangifer tarandus, Dall Sheep, Ovis dalli, predation, Alaska. Although the European Lynx (Felis lynx lynx) quently reach 25° C in summer and -10 to -40° C in regularly kills large prey (Haglund 1966; Pullianen winter. Snow depths are generally below 80 cm, 1981), the Canada Lynx (Felis lynx canadensis) and snow usually remains loosely packed except at relies largely on small game, primarily Snowshoe high elevations.