NUREG/CR-6705 "Historical Case Analysis of Uranium Plume

Total Page:16

File Type:pdf, Size:1020Kb

NUREG/CR-6705 NUREG/CR-6705 SAND2000-2554 Historical Case Analysis of Uranium Plume Attenuation Sandia National Laboratories Research -ell.""Rea Office of Nuclear Regulatory U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC's Public Electronic Reading Room at books, journal articles, and transactions, Federal www.nrc.gov/NRC/ADAMS/index.html. Registernotices, Federal and State legislation, and Publicly released records include, to name a few, congressional reports. Such documents as theses, NUREG-series publications; FederalRegister notices; dissertations, foreign reports and translations, and applicant, licensee, and vendor documents and non-NRC conference proceedings may be purchased correspondence; NRC correspondence and internal from their sponsoring organization. memoranda; bulletins and information notices; inspection and investigative reports; licensee event Copies of industry codes and standards used in a reports; and Commission papers and their substantive manner in the NRC regulatory process are attachments. maintained at The NRC Technical Library NRC publications in the NUREG series, NRC Two White Flint North regulations, and Title 10, Energy, in the Code of 11545 Rockville Pike FederalRegulations may also be purchased from one Rockville, MD 20852-2738 of these two sources. 1. The Superintendent of Documents These standards are available in the library for U.S. Government Printing Office reference use by the public. Codes and standards are Mail Stop SSOP usually copyrighted and may be purchased from the Washington, DC 20402-0001 originating organization or, if they are American Internet: bookstore.gpo.gov National Standards, from Telephone: 202-512-1800 American National Standards Institute Fax: 202-512-2250 11 West 4 2nd Street 2. The National Technical Information Service New York, NY 10036-8002 Springfield, VA 22161-0002 www.ansi.org www.ntis.gov 212-642-4900 1-800-553-6847 or, locally, 703-605-6000 A single copy of each NRC draft report for comment is Legally binding regulatory requirements are stated available free, to the extent of supply, upon written only in laws; NRC regulations; licenses, including request as follows: technical specifications; or orders, not in Address: Office of the Chief Information Officer, NUREG-series publications. The views expressed Reproduction and Distribution in contractor-prepared publications in this series Services Section are not necessarily those of the NRC. U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 The NUREG series comprises (1) technical and E-mail: [email protected] administrative reports and books prepared by the Facsimile: 301-415-2289 staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of Some publications in the NUREG series that are conferences (NUREG/CP-XXXX), (3) reports posted at NRC's Web site address resulting from international agreements www.nrc.gov/NRC/NUREGS/indexnum.html (NUREG/IA-XXXX), (4) brochures are updated periodically and may differ from the last (NUREG/BR-XXXX), and (5) compilations of legal printed version. Although references to material found decisions and orders of the Commission and on a Web site bear the date the material was Atomic and Safety Licensing Boards and of accessed, the material available on the date cited may Directors' decisions under Section 2.206 of NRC's subsequently be removed from the site. regulations (NUREG-0750). DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights. NUREG/CR-6705 SAND2000-2554 Historical Case Analysis of Uranium Plume Attenuation Manuscript Completed: January 2001 Date Published: February 2001 Prepared by C.F. Jove Colon, P.V. Brady, M.D. Siegel, E.R. Lindgren Sandia National Laboratories Albuquerque, NM 87185-0750 E. O'Donnell, NRC Project Manager Division of Regulatory Applications and Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code W6811 Abstract Groundwater plumes containing dissolved The magnitude of the original contaminant uranium at levels above natural source, the geologic setting, and the background exist adjacent to uranium ore hydrologic regime were rarely similar a bodies at uranium mines, milling from site to site. Plumes also spanned set of locations, and at a number of explosive vast range of ages and no complete a test facilities. Public health concerns time-series plume analyses exist for require that some assessment of the particular site. Despite the accumulated potential for further plume movement in uncertainties and variabilities, the plume the future be made. Reaction-transport data set gave a clear and reasonably models, which might conceivably be used consistent picture of U plume behavior. to predict plume movement, require Specifically, uranium plumes: extensive data inputs that are often * Appear to reach steady-state, that uncertain. Many of the site-specific inputs is, they quit spreading rapidly are physical parameters that can vary (within a few years). spatially and with time. Limitations in * Exceed roughly 2 km in length data availability and accuracy mean that only in special cases e.g. where in reaction-transport predictions can rarely situ leaching has been carried out. provide more than order-of-magnitude The majority is much smaller. bounding estimates of contaminant * Exhibit very similar U chemistry movement in the subsurface. A more between sites. This implies direct means for establishing the limits of analogous contaminant attenuation contaminant transport is to examine actual mechanisms despite their location. plumes to determine if, collectively, they spread and attenuate in a reasonably consistent and characteristic fashion. Here a number of U plumes from ore bodies and contaminated sites were critically examined to identify characteristics of U plume movement. iii CONTENTS Abstract ..................................................................................................................................... 111 1.0 Introduction ........................................................................................................................ 1 2.0 Uranium in Soils ....................................................................................................... 1 2.1 Ore Formation and W eathering .................................................................................. 2 2.2 M icrobes and U ..................................................................................................... 7 2.3 Adsorption ............................................................. ................................................ 7 2.4 Colloids ......................................................................................................................... 8 3.0 Uranium Plum es ........................................................................................................ 9 3.1 Artificial Plum es ....................................................................................................... 9 3.2 Natural Plumes ............................................................................................................. 15 3.2.1 Koongarra ................................................................................................................. 16 3.2.2 0klo ........................................................................................................................... 17 3.2.3 Pogos de Caldas ................................................................................................... 17 3.2.4 Cigar Lake ................................................................................................................. 18 4.0 Plume Analysis ................................................................................................................ 18 5.0 Discussion and Conclusions ....................................................................................... 24 6.0 Acknowledgements ..................................................................................................... 30 References ............................................................................................................................... 31 FIGURES Figure 1 Uranyl speciation at 25'C and 1 bar as a function of pH under oxidizing conditions. f02 = 0.2 atm and pCO2 = 10-3.5 atm ............................................................................ 2 Figure 2. Uranium speciation at 25°C and 1 bar as a function of f02 and pH for an [U]total concentration is 10-14 molal ......................................................................................... 2 Figure 3. UM TRA Ground Water Project Title I site locations ...................................... 10 Figures 4a and 4b. Eh-pH diagrams at 25°C and 1 bar showing U phase boundaries
Recommended publications
  • Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores
    JfipwK LEACHING TIME REAGENTS TEMPERATURE FLOCCULANT CLARITY AREA COUNTER CURRENT DECANTATION It 21 21 J^^LJt TECHNICAL REPORTS SERIES No.19 6 Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores \W# INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1980 SIGNIFICANCE OF MINERALOGY IN THE DEVELOPMENT OF FLOWSHEETS FOR PROCESSING URANIUM ORES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957.
    [Show full text]
  • Françoisite-(Ce)
    American Mineralogist, Volume 95, pages 1527–1532, 2010 Françoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis NICOLAS MEISSER,1,* JOËL BRUGGER,2,3 STEFA N AN SER M ET ,1 PHILI pp E THÉLI N ,4 A N D FRA N ÇOIS BUSSY 5 1Musée de Géologie and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland 2South Australian Museum, North Terrace, 5000 Adelaide, Australia 3TRaX, School of Earth and Environmental Sciences, University of Adelaide, 5005 Adelaide, Australia 4Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland 5Laboratoire de la microsonde électronique, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland AB STRACT The new mineral françoisite-(Ce), (Ce,Nd,Ca)[(UO2)3O(OH)(PO4)2]·6H2O is the Ce-analog of françoisite-(Nd). It has been discovered simultaneously at the La Creusaz uranium deposit near Les Marécottes in Valais, Switzerland, and at the Number 2 uranium Workings, Radium Ridge near Mt. Painter, Arkaroola area, Northern Flinders Ranges in South Australia. Françoisite-(Ce) is a uranyl- bearing supergene mineral that results from the alteration under oxidative conditions of REE- and U4+- bearing hypogene minerals: allanite-(Ce), monazite-(Ce), ±uraninite at Les Marécottes; monazite-(Ce), ishikawaite-samarskite, and an unknown primary U-mineral at Radium Ridge. The REE composition of françoisite-(Ce) results from a short aqueous transport of REE leached out of primary minerals [most likely monazite-(Ce) at Radium Ridge and allanite-(Ce) at La Creusaz], with fractionation among REE resulting mainly from aqueous transport, with only limited Ce loss due to oxidation to Ce4+ during transport.
    [Show full text]
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Weeksite K2(UO2)2(Si5o13)·4H2O
    Weeksite K2(UO2)2(Si5O13)·4H2O Crystal Data: Monoclinic. Point Group: 2/m: As bladed or acicular crystals, flattened on {010} and elongated along [001], and as flat plates; also as spherulites and radiating fibrous clusters. - Twinning: By two-fold rotation around [401 ]. Physical Properties: Cleavage: Two good prismatic cleavages noted. Hardness = < 2 D(meas.) = ~ 4.1 D(calc.) = 3.80 Radioactive. Optical Properties: Transparent to translucent. Color: Yellow. Luster: Waxy to silky. Optical Class: Biaxial (-). α = 1.596 β = 1.603 γ = 1.606 2V(meas.) = ~ 60° 2V(calc.) = 66° Pleochroism: X = colorless, Y = pale yellow-green, Z = yellow-green. Dispersion: r > v, strong. Orientation: X = b, Y = c, Z = a. Cell Data: Space Group: C2/m. a = 14.26(2) b = 35.88(10) c = 14.20(2) β = 111.578(3)° Z = 4 X-ray Powder Pattern: Thomas Range, Utah, USA. 7.11 (10), 5.57 (9), 8.98 (8), 3.55 (7), 3.30 (7), 2.91 (6), 3.20 (5) Chemistry: (1) (1) Na2O 0.53 Al2O3 0.6 K2O 4.73 SiO2 29.44 CaO 0.67 UO3 55.78 BaO 3.11 H2O [7.02] MgO 0.18 Total 101.28 SrO 0.20 (1) Anderson mine, Arizona, USA; average of 8 electron microprobe analyses, supplemented by TGA, H2O calculated from structure, corresponds to (K1.031Na0.176Ca0.123Ba0.208)Σ=1.537(UO2)2.002 (Si5.030O13)·4H2O. Occurrence: In “opal" veinlets in rhyolite, agglomerates, sandstones and limestones. Association: “Opal," “chalcedony," calcite, gypsum, fluorite, uraninite, thorogummite, uranophane, boltwoodite, carnotite, margaritasite. Distribution: In the USA, in Utah, at the Autunite No.
    [Show full text]
  • Seznam Publikací Wos Q1 a Q2
    Přehled publikací pracovníků/studentů ÚGV PřF MU Brno v časopisech 1./2. kvartilu v období 2003-2021 2021 (celkem 22 článků, 7 studentů spoluautorů – červeně) Adameková, K., Lisá, L., Neruda, P., Petřík, J., Doláková, N., Novák, J., Volánek, J. (2021): Pedosedimentary record of MIS 5 as an interplay of climatic trends and local conditions: Multi-proxy evidence from the Palaeolithic site of Moravský Krumlov IV (Moravia, Czech Republic). Catena, 200, 105174. doi: 10.1016/j.catena.2021.105174 WoS: IF2020: 5,198; Q1 (12/98) in Water Resources; Q1 (7/37) in Soil Science; Q1 (22/199) in Geosciences, Multidisciplinary; počet citací: 1 Bábek, O., Kumpan, T., Calner, M., Šimíček, D., Frýda, J., Holá, M., Ackerman, L., Kolková, K. (2021): Redox geochemistry of the red „orthoceratite limestone“ of Baltoscandia: Possible linkage to mid-ordoviian palaeoceanographic changes. Sedimentary Geology, 420, 105934. doi: 10.1016/j.sedgeo.2021.105934 WoS: IF2020: 3,397; Q1 (7/48) in Geology; počet citací: 0 Bonilla-Salomón, I., Čermák, S., Luján, Á.H., Horáček, I., Ivanov, M., Sabol, M. (2021): Early Miocene small mammals from MWQ1/2001 Turtle Joint (Mokrá-Quarry, South Moravia, Czech Republic): biostratigraphical and palaeoecological considerations. Bulletin of Geosciences, 96, 1, 99–122. WoS: IF2020: 1,600; Q2 (27/57) in Paleontology; Q4 (157/199) in Geosciences, Multidisciplinary; počet citací: 0 Březina, J., Alba, D.M., Ivanov, M., Hanáček, M., Luján, Á.H. (2021): A middle Miocene vertebrate assemblage from the Czech part of the Vienna Basin: Implications for the paleoenvironments of the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 575, 110473. WoS: IF2020: 3,318; Q2 (21/50) in Geography, Physical; Q1 (2/54) in Paleontology; Q2 (74/199) in Geosciences, Multidisciplinary; počet citací: 0 Čopjaková, R., Prokop, J., Novák, M., Losos, Z., Gadas, P., Škoda, R., Holá, M.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • United States Department of the Interior Geological Survey
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY A CATALOG OF STUDY MATERIAL OF RADIOACTIVE MINERALS T. W. Stern October 1950 Trace Elements Investigations Report 129 JAN 1 0 2081' CONTENTS Page Introduction ......................... Group A. Uranium and thorium minerals Group B. Minerals with minor amounts of uranium and thorium ................................ 62 Group C. Synthetic uranium compounds pre­ pared by the U. S. Geological Survey ............... ^9 A CATALOG OF STUDY MATERIAL OF RADIOACTIVE MINERALS by T. W. Stern Introduction This catalog is a list of specimens of radioactive minerals for which the Geological Survey has been collecting optical, X-ray dif­ fraction, and other data. The specimens are in the study collections of the U. S. National Museum, the Mineralogical Museum of Harvard University (including some specimens on loan at Harvard from the American Museum of Natural History), and the Geological Survey. The listing does not include all specimens in these institutions, but it does include those specimens for which X-ray patterns can be made available as well as representative specimens from significant local­ ities. In addition, references are given to material on deposit, at the U. S. National Museum, that has been described in the literature. Because of the rarity of much of the material here listed, re­ quests for study material must be considered individually. Regardless of the quantity of material, any request granted by the U. S. National Museum will have to be accepted on the terms laid down by that organ­ ization to conserve limited or rare minerals. Those minerals that show external crystal form but do not give X-ray powder diffraction patterns are listed with the word "ignited" after the X-ray powder diffraction photograph number.
    [Show full text]
  • Thn Auertcan M Rlueralocrsr
    THn AUERTcANM rluERALocrsr JOURNAL OF TIIE MINDRALOGICAL SOCIETY OF ANIERICA vbl.41 JULY-AUGUST, 1956 Nos. 7 and 8 MTNERAL COMPOSTTTON OF G'UMMTTE*f Crrllonl FnoNonr, H artard Llniaersity,Cambrid,ge, M ass., and. U. S. GeologicalSurwy, Washington, D.C. ABSTRACT The name gummite has been wideiy used for more than 100 years as a generic term to designate fine-grained yellow to orange-red alteration products of uraninite whose true identity is unknown. A study of about 100 specimens of gummite from world-wide localities has been made by r-ray, optical, and chemical methods. rt proved possible to identify almost all of the specimens with already known uranium minerals. Gummite typicalty occurs as an alteration product of uraninite crystals in pegmatite. Such specimensshow a characteristic sequenceof alteration products: (1) A central core of black or brownish-black uraninite. (2) A surrounding zone, yellow to orange-red, composed chiefly of hydrated lead uranyl oxides. This zone constitutes the traditional gummite. It is principally composed of fourmarierite, vandendriesscheite and two unidentified phases (Mineral -4 and Mineral c). Less common constituents are clarkeite, becquerelite, curite, and schoepite. (3) An outer silicate zone. This usually is dense with a greenish-yellow color and is composed of uranophane or beta-uranophane; it is sometimes soft and earthy with a straw-yellow to pale-brown color and is then usually composed of kasolite or an unidenti- fied phase (Minerat B). Soddyite and sklodowskite occur rarely. There are minor variations in the above general sequence. rt some specimens the core may be orange-red gummite without residual uraninite or the original uraninite crystal may be wholly converted to silicates.
    [Show full text]
  • Follow up the Leaching Efficiency of Uranium Series from High-Grade Granite Sample with High Concentration of Sulfuric Acid
    PROCEEDINGS: Nada et al. Follow up the leaching efficiency of uranium series from high-grade granite sample with high concentration of sulfuric acid A. Nada1, N. Imam2*, A. Ghanem1 1 Physics Department, Faculty of Women for Art, Science and Education, Ain Shams University, 11757, Egypt. 2 National Institute of Oceanography and Fisheries, Cairo, 11516, Egypt Keywords: Leaching efficiency, Granite sample, Sulfuric acid Presenting author, e-mail: [email protected] Introduction Materials and methods Uranium is the most representative actinide element that Sample preparation is of fundamental importance in the nuclear fuel cycle. The red granite sample from Gabal Gattar, the Northern Uranium is a naturally occurring radionuclide which has Eastern Desert (2352.8 ppm), was crushed and grinded 238 9 235 three isotopes ( U (t1/2=4.5x10 yr) 99.72 %, U into 63 mesh and then quartered to obtain representative 8 234 5 (t1/2=7.1x10 yr) 0.0055 % and U (t1/2=2.5x10 yr) sample. The mineralogical characterization of the granite 0.72 %. It has several oxidation states tetravalent and sample was done using X-Ray Diffraction (XRD) (Model hexavalent which dominant in the environment. D8 discover manufacture by USA). The sample is Hexavalent uranium is more dissoluble and mobile than measured by y-spectrometry, using an HPGe-detector to tetravalent uranium. Extraction of uranium is indeed determine the activity concentrations (Bq) of Uranium a hydrometallurgical operation in which uranium is isotopes (238U, 235U, and 234U), 230Th and 226Ra series. The directly leached first by suitable acid or alkaline reagents conditions of the leaching procedures were 50 g of sample, (Kraiz et al., 2016).
    [Show full text]
  • CNWRA Paper Element Mobility in Uranium Deposits of the Sierra
    Elemental Mobility in Uranium Deposits of the Sierra Peiia Blanca as a Natural Analog of Radionuclide Migration in a High-Level Nuclear Waste Repository English C. Pearcy and M. Murphy Southwest ResearchWilliam Institute San Antonio, Texas Phillip C. Goodell University of Texas El Paso, Texas For many years research interest in uranium ore deposits was mainly directed toward understanding the mechanisms and processes of formation of the deposits. Motivation for these studies derived from the economic value of the uranium as fuel for nuclear reactors. More recently, concern with disposal of the spent nuclear fuel has prompted research on uranium deposits because they can provide information on the behavior of nuclear waste in geologic repositories. Because high-level nuclear waste (HLW) will constitute a threat to public safety for many thousands of years, it is necessary to attempt to predict the performance of a HLW repository far into the future. Although such times are short on a geologic scale, they are far in excess of experimental capabilities. In addition, the size of a geologic repository greatly exceed that of laboratory facilities. One approach to theseHLW problems of large timewill and space scales is to study natural systems. For example, natural materials which approximate components of a repository may be studied to gain a better understanding of the behavior to be expected from the repsirory marerial. Similarly, a process which occurs (or has occurred) in nature and which may be significant to the performance of a repository may be investigated to learn of possible effects on a repository system. By studying such natural analogs, which have existed for time spans comparable to radionuclide isolation requirements and which are of comparable scale to a repository, the uncertainty inherent in projecting such large scale processes far into the future can be reduced.
    [Show full text]
  • SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE and COMPLEX URANYL HYDROXIDES in ORES Andrey A
    New Data on Minerals. 2011. Vol. 46 71 SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE AND COMPLEX URANYL HYDROXIDES IN ORES Andrey A. Chernikov Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected], [email protected] The review of published and new own data of simple uranium oxides revealed that the formation of five simple oxides is probable: nasturan, sooty pitchblende, uraninite, uranothorianite, and cerianite. Among simple oxides, nasturan, sooty pitchblende, and uraninite are the most abundant in ores varied in genesis and mineralogy. Uranothorianite or thorium uraninite (aldanite) is occasional in the ores, while cerianite is believed in U-P deposits of Northern Kazakhstan. Hydrated nasturan is the most abundant among three uranium (IV+VI) hydroxides in uranium ores. Insignificant ianthinite was found in few deposits, whereas cleusonite was indentified only in one deposit. Simple uranyl hydroxides, schoepite, metaschoepite, and paraschoepite, are widespread in the oxidized ores of the near-surface part of the Schinkolobwe deposit. They are less frequent at the deeper levels and other deposits. Studtite and metastudtite are of insignificant industrial importance, but are of great inter- est to establish genesis of mineral assemblages in which they are observed, because they are typical of strongly oxidized conditions of formation of mineral assemblages and ores. The X-ray amorphous urhite associated with hydrated nasturan and the X-ray amorphous hydrated matter containing ferric iron and U6+ described for the first time at the Lastochka deposit, Khabarovsk krai, Russia are sufficiently abundant uranyl hydroxides in the oxidized uranium ores. Significant complex uranyl hydroxides with interlayer K, Na, Ca, Ba, Cu, Pb, and Bi were found basically at a few deposits: Schinkolobwe, Margnac, Wölsendorf, Sernyi, and Tulukuevo, and are less frequent at the other deposits, where quite large monomineralic segregations of nasturan and crystals of uraninite were identified.
    [Show full text]
  • Clarkeite (Na, Ca, Pb)(UO2)O(OH) • 0−1H2O C 2001-2005 Mineral Data Publishing, Version 1
    Clarkeite (Na, Ca, Pb)(UO2)O(OH) • 0−1H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32/m. As dense microcrystalline replacements of uraninite, which may be mineralogically zoned. Physical Properties: Fracture: Conchoidal to splintery. Tenacity: Brittle. Hardness = 4–4.5 D(meas.) = 6.29–6.39 D(calc.) = 6.74 Radioactive. Optical Properties: Opaque, transparent in thin grains. Color: Dark brown, mahogany- brown, chocolate-brown, or reddish orange; reddish brown to orange-brown or orange in transmitted light. Streak: Yellowish brown. Luster: Slightly waxy. Optical Class: Biaxial (–). Pleochroism: Weak; in darker oranges. Dispersion: r< v,weak. α = 1.997 β = 2.098 γ = 2.108 2V(meas.) = 30◦–50◦ Cell Data: Space Group: R3m. a = 3.954(1) c = 17.660(3) Z = 3 X-ray Powder Pattern: Fanny Gouge mine, North Carolina, USA. 3.195 (100), 5.903 (64), 3.365 (56), 2.707 (34), 1.9772 (33), 2.945 (28), 1.6410 (23) Chemistry: (1) (2) (3) (1) (2) (3) UO3 81.72 79.9 83.14 MgO 0.28 SiO2 0.50 0.03 CaO 2.84 2.1 0.37 UO2 0.8 SrO 0.29 ThO2 2.4 0.49 Na2O 3.44 2.3 7.01 Al2O3 0.92 K2O 0.48 0.42 + Y2O3 0.82 H2O 3.36 4.2 − RE2O3 2.62 H2O 1.3 Fe2O3 0.18 H2O [3.47] PbO 3.71 7.9 3.96 insol. 0.14 0.2 Total 100.19 101.1 [100.00] (1) Spruce Pine, North Carolina, USA.
    [Show full text]