Quantitative Spill Risk Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Spill Risk Assessment 1790 PROPOSED BROWSE TO NWS PROJECT – DRAFT EIS/ERD Chapter 10 D.5 RPS Oil Spill Modelling Report BROWSE TO NWS PROJECT - QUANTITATIVE SPILL RISK ASSESSMENT Report MAW0815J Browse to NWS Project - Quantitative Spill Risk Assessment Rev 4 27 November 2019 ES udi T www.rpsgroup.com/mst S ical N CH E T 10D PROPOSED BROWSE TO NWS PROJECT – DRAFT EIS/ERD APPENDICES 1791 REPORT Document status Version Purpose of document Authored by Reviewed by Approved by Review date B. Gómez Rev A Internal review M. Watt D. Wright D. Wright 01/07/2019 J. Wynen-Gaugg B. Gómez Rev 0 Client review M. Watt D. Wright D. Wright 04/07/2019 J. Wynen-Gaugg B. Gómez Rev 1 Client review M. Watt R. Alexander D. Wright 25/07/2019 J. Wynen-Gaugg Rev 2 Client review J. Wynen-Gaugg R. Alexander D. Wright 29/08/2019 Rev 3 Client review J. Wynen-Gaugg R. Alexander D. Wright 05/11/2019 Rev 4 Client review N. Page D. Wright D. Wright 27/11/2019 Approval for issue David Wright 27 November 2019 This report was prepared by RPS within the terms of RPS’ engagement with its client and in direct response to a scope of services. This report is supplied for the sole and specific purpose for use by RPS’ client. The report does not account for any changes relating the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report. RPS does not accept any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report. Prepared by: Prepared for: RPS Woodside Energy Ltd Level 2, 27-31 Troode Street Mia Yellagonga, 11 Mount Street West Perth WA 6005 Perth WA 6000 T +61 8 9211 1111 T +61 8 9348 4000 ES ES udi T S UDI MAW0815J | Browse to NWS Project - Quantitative Spill Risk Assessment | Rev 4 | 27 November 2019 T S www.rpsgroup.com/mst Page ii ical N CH ical E T N CH E 10DT 1792 PROPOSED BROWSE TO NWS PROJECT – DRAFT EIS/ERD REPORT Contents Executive Summary ........................................................................................................................................13 Metocean Influences ..............................................................................................................................13 Oil Characteristics ..................................................................................................................................13 Summary of Stochastic Assessment Results .........................................................................................14 Interpretation of Contour Figures .................................................................................................14 Scenario 1: Long-Term (77-Day) Surface/Subsea Blowout of Unstabilised Torosa Condensate at the TRA-C Well ....................................................................................................14 Scenario 2: Short-Term (24-Hour) Surface Release of Stabilised Torosa Condensate after a Vessel Cargo Tank Rupture at the Torosa FPSO Location ..............................................15 Scenario 3: Short-Term (Instantaneous) Surface Release of Stabilised Torosa Condensate after an FPSO Offtake System Failure at the Torosa FPSO Location ....................16 Scenario 4: Short-Term (Instantaneous) Surface Release of Marine Diesel after a Vessel Fuel Tank Rupture near the Rowley Shoals ................................................................................16 1 INTRODUCTION ...................................................................................................................................... 1 1.1 Background .................................................................................................................................... 1 1.2 Stochastic Modelling of Spill Scenarios ......................................................................................... 3 1.3 Deterministic Analysis .................................................................................................................... 4 1.4 Report Structure ............................................................................................................................. 4 2 MODELLING METHODOLOGY .............................................................................................................. 5 2.1 Description of the Models ............................................................................................................... 5 2.1.1 SIMAP ............................................................................................................................... 5 2.1.2 OILMAP ............................................................................................................................ 6 2.2 Calculation of Exposure Risks ....................................................................................................... 7 2.3 Inputs to the Risk Assessment ....................................................................................................... 8 2.3.1 Current Data ..................................................................................................................... 8 2.3.2 Wind Data .......................................................................................................................29 2.3.3 Water Temperature and Salinity Data ............................................................................32 2.3.4 Dispersion .......................................................................................................................32 2.3.5 Replication ......................................................................................................................32 2.3.6 Contact Thresholds .........................................................................................................34 2.3.7 Oil Characteristics ...........................................................................................................35 2.3.8 Weathering Characteristics .............................................................................................38 2.3.9 Emulsification Characteristics .........................................................................................49 2.3.10 Subsea Discharge Characteristics..................................................................................50 3 STOCHASTIC ASSESSMENT RESULTS ............................................................................................53 3.1 Overview ......................................................................................................................................53 3.2 Scenario 1: Long-Term (77-Day) Surface/Subsea Blowout of Unstabilised Torosa Condensate at the TRA-C Well ....................................................................................................56 3.2.1 Discussion of Results .....................................................................................................56 3.2.2 Results Tables and Figures ............................................................................................58 3.3 Scenario 2: Short-Term (24-Hour) Surface Release of Stabilised Torosa Condensate after a Vessel Cargo Tank Rupture at the Torosa FPSO Location ..............................................79 3.3.1 Discussion of Results .....................................................................................................79 3.3.2 Results Tables and Figures ............................................................................................81 3.4 Scenario 3: Short-Term (Instantaneous) Surface Release of Stabilised Torosa Condensate after an FPSO Offtake System Failure at the Torosa FPSO Location ..................102 3.4.1 Discussion of Results ...................................................................................................102 3.4.2 Results Tables and Figures ..........................................................................................104 3.5 Scenario 4: Short-Term (Instantaneous) Surface Release of Marine Diesel after a Vessel ES Fuel Tank Rupture near the Rowley Shoals ..............................................................................125 udi T S MAW0815J | Browse to NWS Project - Quantitative Spill Risk Assessment | Rev 4 | 27 November 2019 ical www.rpsgroup.com/mst Page iii N CH E T 10D PROPOSED BROWSE TO NWS PROJECT – DRAFT EIS/ERD APPENDICES 1793 REPORT 3.5.1 Discussion of Results ...................................................................................................125 3.5.2 Results Tables and Figures ..........................................................................................127 4 DETERMINISTIC ASSESSMENT RESULTS ......................................................................................148 4.1 Overview ....................................................................................................................................148 4.2 Scenario 1: Long-Term (77-Day) Surface/Subsea Blowout of Unstabilised Torosa Condensate at the TRA-C Well ..................................................................................................149 4.2.1 Simulation with Minimum Time to Oil Contact and Accumulation at Any Shoreline Receptor at Defined Thresholds ...................................................................................149 4.2.2 Simulation with Maximum Oil Accumulation across All Shoreline Receptors and at Any Individual Shoreline Receptor at Defined Threshold .........................................150
Recommended publications
  • OSTM/Jason-2 Products Handbook
    OSTM/Jason-2 Products Handbook References: CNES : SALP-MU-M-OP-15815-CN EUMETSAT : EUM/OPS-JAS/MAN/08/0041 JPL: OSTM-29-1237 NOAA : Issue: 1 rev 0 Date: 17 June 2008 OSTM/Jason-2 Products Handbook Iss :1.0 - date : 17 June 2008 i.1 Chronology Issues: Issue: Date: Reason for change: 1rev0 June 17, 2008 Initial Issue People involved in this issue: Written by (*) : Date J.P. DUMONT CLS V. ROSMORDUC CLS N. PICOT CNES S. DESAI NASA/JPL H. BONEKAMP EUMETSAT J. FIGA EUMETSAT J. LILLIBRIDGE NOAA R. SHARROO ALTIMETRICS Index Sheet : Context: Keywords: Hyperlink: OSTM/Jason-2 Products Handbook Iss :1.0 - date : 17 June 2008 i.2 List of tables and figures List of tables: Table 1 : Differences between Auxiliary Data for O/I/GDR Products 1 Table 2 : Summary of error budget at the end of the verification phase 9 Table 3 : Main features of the OSTM/Jason-2 satellite 11 Table 4 : Mean classical orbit elements 16 Table 5 : Orbit auxiliary data 16 Table 6 : Equator Crossing Longitudes (in order of Pass Number) 18 Table 7 : Equator Crossing Longitudes (in order of Longitude) 19 Table 8 : Models and standards 21 Table 9 : CLS01 MSS model characteristics 22 Table 10 : CLS Rio 05 MDT model characteristics 23 Table 11 : Recommended editing criteria 26 Table 12 : Recommended filtering criteria 26 Table 13 : Recommended additional empirical tests 26 Table 14 : Main characteristics of (O)(I)GDR products 40 Table 15 - Dimensions used in the OSTM/Jason-2 data sets 42 Table 16 - netCDF variable type 42 Table 17 - Variable’s attributes 43 List of figures: Figure 1
    [Show full text]
  • Nitrogen Interception and Export by Experimental Salt Marsh Plots Exposed to Chronic Nutrient Addition
    Vol. 400: 3–17, 2010 MARINE ECOLOGY PROGRESS SERIES Published February 11 doi: 10.3354/meps08460 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Nitrogen interception and export by experimental salt marsh plots exposed to chronic nutrient addition Lindsay D. Brin1, 2,*, Ivan Valiela2, Dale Goehringer3, Brian Howes3 1Brown University, Department of Ecology & Evolutionary Biology, 80 Waterman Street, Box G-W, Providence, Rhode Island 02912, USA 2The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, Massachusetts 02543, USA 3School of Marine Science and Technology, University of Massachusetts, Dartmouth, 706 South Rodney French Blvd., New Bedford, Massachusetts 02744, USA ABSTRACT: Mass balance studies conducted in the 1970s in Great Sippewissett Salt Marsh, New England, showed that fertilized plots intercepted 60 to 80% of the nitrogen (N) applied at several treatment levels every year from April to October, where interception mechanisms include plant uptake, denitrification and burial. These results pointed out that salt marshes are able to intercept land-derived N that could otherwise cause eutrophication in coastal waters. To determine the long-term N interception capacity of salt marshes and to assess the effect of different levels of N input, we measured nitrogenous materials in tidal water entering and leaving Great Sippewissett experimental plots in the 2007 growing season. Our results, from sampling over both full tidal cycles and more inten- sively sampled ebb tides, indicate high interception of Salt marshes limit the amount of land-derived nitrogen externally added N. Tidal export of dissolved inorganic carried by ebbing tides out to receiving coastal waters N (DIN) was small, although it increased with tide + Photo: Ivan Valiela height and at high N input rates.
    [Show full text]
  • Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model
    Washington State Department of Ecology Publication No. 12-03-049 PNNL-20384 Rev 1 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model by T Khangaonkar and W Long of the Pacific Northwest National Laboratory and B Sackmann, T Mohamedali, and M Roberts of the Washington State Department of Ecology November 2012 This page is purposely left blank This page is purposely left blank PNNL-20384 Rev 1 Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model by T Khangaonkar and W Long of the Pacific Northwest National Laboratory B Sackmann, T Mohamedali, and M Roberts of the Washington State Department of Ecology October 2012 Prepared for the Washington State Department of Ecology under an Interagency Agreement with the U.S. Department of Energy Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the authors or the Department of Ecology. If you need this document in a format for the visually impaired, call 360-407-6764. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341. This page is purposely left blank Summary The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own.
    [Show full text]
  • How a Tide Clock Works.Pub
    Conventional time clocks have a 12 hour cycle, with 1 hand for hours, another for minutes. Tide clocks have a single hand, and a cycle of 12 hours 25 minutes, coinciding to an average time of about 6 hours 12 minutes between high and low tides. High tide is indicated when the hand is at the ‘12 o’clock’ position, low tide is indicated with the hand at the ‘6 o’clock’ position. A tide clock is not indicating 6 or 12 o’clock of course. It is merely a convenient reference point on the dial, showing us when our local tide is high or low. 12 is marked as High, 6 is marked as Low. However, the hour markings on the dial between the High and Low tide points do show us the number of hours since the last high or low tide, and the hours before the next high or low tide. A tide clock which has been initially set correctly will continue to display tide predictions quite accurately, requiring resetting only at intervals of about 4 months, depending upon the location. A brief explanation of how the tidal cycle works The Moon is the major cause of the tides. The ‘lunar day’ (the time it takes for the Moon to re-appear at the same place in the sky) is 24 hours and 50 minutes. New Zealand, and many other places in the world, have 2 high tides and 2 low tides each day. These are called semi-diurnal tides. Some areas of the world (eg Freemantle in Australia), have only one tide cycle per day, known as diurnal tides.
    [Show full text]
  • Marine Pollution Bulletin 84 (2014) 191–200
    Marine Pollution Bulletin 84 (2014) 191–200 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul The effects of river run-off on water clarity across the central Great Barrier Reef ⇑ K.E. Fabricius a, , M. Logan a, S. Weeks b, J. Brodie c a Australian Institute of Marine Science, PMB No. 3, Townsville, Queensland 4810, Australia b Biophysical Oceanography Group, School of Geography, Planning and Environmental Management, University of Queensland, Brisbane 4072, Australia c Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Queensland 4811, Australia article info abstract Article history: Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were inves- Available online 23 May 2014 tigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and Keywords: tidal effects. Across the 25,000 km2 area, photic depth was strongly related to river freshwater and Turbidity phosphorus loads (R2 = 0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced Photic depth by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After Generalized additive mixed models onset of the seasonal river floods, photic depth was reduced for on average 6–8 months, gradually return- Great Barrier Reef ing to clearer baseline values. Relationships were strongest inshore and midshelf ( 12–80 km from the Nutrient runoff River floods coast), and weaker near the chronically turbid coast.
    [Show full text]
  • Coupling of Repetitive Multibeam Surveys and Hydrodynamic Modelling to Understand Bedform Migration and Delta Evolution by Danar
    Coupling of Repetitive Multibeam Surveys and Hydrodynamic Modelling to Understand Bedform Migration and Delta Evolution by Danar Guruh Pratomo B.Sc.Eng GGE, Institut Teknologi Bandung, 2003 M.Sc.Eng GGE, Institut Teknologi Bandung, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate Academic Unit of Geodesy and Geomatics Engineering Supervisor: John Hughes Clarke, Ph.D., Geodesy and Geomatics Engineering Examining Board: Susan Haigh, Ph.D., Fisheries and Oceans Canada Katy Haralampides, Ph.D., Civil Engineering Ian Church, Ph.D., University of Southern Mississippi External Examiner: Peter Talling, Ph.D., National Oceanography Course Southampton, UK This dissertation is accepted by the Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK June, 2016 ©Danar Guruh Pratomo, 2016 ABSTRACT This study addresses channelized delta top sediment transport on the Squamish estuary in Howe Sound, British Columbia. The mechanism of bedform migration and delta evolution is affected by the manner in which the available sediment flux from the feeder fluvial system is distributed. The present study is complementary to a parallel project looking at the sediment migrating on the delta slope as landslides or turbidity currents. The termination of the Squamish River consists of a single channel that flows between flanking intertidal sand bars and over a mouth bar at the lip of the delta. The delta front is growing rapidly with about 1 million m3 of sediment being input from the river system annually. There is a 3 to 5 m tidal range that strongly modulates the flow in the channel and over the adjacent intertidal sand banks.
    [Show full text]
  • Tide Clock Print Ver Instructions.Pub
    THANK YOU FOR PURCHASING THIS TIDE CLOCK An ‘AA’ size battery is required for operation. Insert into the holder on the rear of the movement A high quality battery will last longer and is also much less likely to leak corrosive fluid. Never leave a discharged battery in the clock. Properly cared for, this clock should provide years of service SETTING YOUR CLOCK Conventional time clocks have a 12 hour cycle. Tide clocks have a cycle of 12 hours 25 minutes. This coincides to an average time of about 6 hours 12 minutes between high and low tides. For the reasons outlined in more detail below, and to attain the best accuracy, it is recommended to first set the clock on a day when your local high tide coincides with a full Moon. Obtain a local tide table and calendar showing phases of the Moon from the links page of our website, www.cruisingelectronics.co.nz or your local newspaper, a Nautical Almanac or similar. On the day of a full Moon, use the small adjusting wheel on the rear of the clock movement to adjust the clock hand to the high tide position at your exact local time of high tide. Set in this way, the clock will exhibit a minimum error throughout the month, usually less than 30 minutes DO NOT adjust your tide clock for daylight saving time Please read below for a more detailed description of the tides and their influences. A brief explanation of how the Tidal cycle works The Moon is the major cause of the tides.
    [Show full text]
  • Shapel Tide Clocks
    Shapel Tide Clocks How to set the tide indicator Setting Instructions IMPORTANT To achieve the maximum accuracy from your Tide-Time indicator it should be set at the ‘High Tide’ position on the day of a full moon. The tide hand is already set in this position so all you need to do is to insert an ‘AA’ battery at this time to start it going. By setting the tide function in this way it will display the minimum error throughout the month. This can vary from zero to around 30 minutes earlier or later. However, on the following full moon these discrepancies will cancel themselves out and the time will again be accurate. How Does it Work? The major cause of the tide cycle is the moon. The tide clock is based on the ‘lunar Day’ (the time it takes for the moon to reappear in the same place in the sky). This time is 24 hours and 50 minutes. Since there are two high and low tides each day the clock hand is set to rotate once every 12 hours and 25 minutes. Thus the tide clock always stays in step with the moon. There are however many other factors which can have a slight bearing on the tide ie: the sun, wind etc. If for any reason the hand needs to be adjusted there is an adjusting ring on the back of the movement. Once again, for best accuracy, any adjustments should be made on the full moon. Proudly designed & hand made in Australia by Sole Supplier: Artisans on the Hill 702 Tinonee Road | Mondrook (Tinonee) 2430 | (02) 6553 1199 | [email protected].
    [Show full text]
  • Generic Tide Clock Instructions.Cdr
    HOW YOUR TIDE CLOCK WORKS. Tides are caused mainly by the moon’s gravitational pull on the oceans. The time it takes the moon to reappear at the same place in the sky each day is 24 hours and 50 minutes. Most areas in the world have two high tides and two low tides a day, so the tide clock has been specially designed to rotate twice each lunar day (every 12 hours and 25 minutes) giving you a quick and easy indication of high and low water. Your Quartz tide clock will always stay synchronised to the moon. Setting your tide clock. Establish your local high tide time by logging on to www.ashortwalk.com At exactly high tide set the clock in its high tide position (hand pointing straight up). You can adjust the hand by turning . the small wheel on the back of the movement. DO NOT PHYSICALLY PUSH THE HAND as this will damage the movement. Insert battery (size AA). One AA battery will last around two years. Moon Phase Clock The moon’s cycle is every 29 days, 12 hours and 44 minutes. During this time the moon's gravitational pull causes the oceans to bulge in its direction, intensifying the tides. When the Sun and Moon are aligned, these forces are exceptionally strong causing very low and very high tides. These are called Spring Tides, although they have nothing to do with the season. When the sun and moon are not aligned during a Quarter Moon, these tides are less intense and called Neap tides.
    [Show full text]
  • Surveys of the Sea Snakes and Sea Turtles on Reefs of the Sahul Shelf
    Surveys of the Sea Snakes and Sea Turtles on Reefs of the Sahul Shelf Monitoring Program for the Montara Well Release Timor Sea MONITORING STUDY S6 SEA SNAKES / TURTLES Dr Michael L Guinea School of Environment Faculty of Engineering, Health, Science and the Environment Charles Darwin University Darwin 0909 Northern Territory Draft Final Report 2012-2013 Acknowledgements: Two survey by teams of ten and eleven people respectively housed on one boat and operating out of three tenders for most of the daylight hours for 20 days and covering over 2500 km of ocean can only succeed with enthusiastic members, competent and obliging crew and good organisation. I am indebted to my team members whose names appear in the personnel list. I thank Drs Arne Rasmussen and Kate Sanders who gave their time and shared their knowledge and experiences. I thank the staff at Pearl Sea Coastal Cruises for their organisation and forethought. In particular I thank Alice Ralston who kept us on track and informed. The captains Ben and Jeff and Engineer Josh and the coxswains Riley, Cam, Blade and Brad; the Chef Stephen and hostesses Sunny and Ellen made the trips productive, safe and enjoyable. I thank the Department of Environment and Conservation WA for scientific permits to enter the reserves of Sandy Islet, Scott Reef and Browse Island. I am grateful to the staff at DSEWPaC, for facilitating and providing the permits to survey sea snakes and marine turtles at Ashmore Reef and Cartier Island. Activities were conducted under Animal Ethics Approval A11028 from Charles Darwin University. Olive Seasnake, Aipysurus laevis, on Seringapatam Reef.
    [Show full text]
  • West Australian Marine Parks
    Ashmore Reef West Australian Long Reef Marine Parks Argo-Rowley Terrace Rowley Shoals Montebellos Ningaloo 2 oceans 10 parks 12 locations Shark Bay 23 degrees of latitude 28 expeditions 150 pelagic taxa 2,850 midwater BRUVS 55,290 individual animals Perth Canyon Geographe Bay Recherche Archipelago Gracetown Bremer Canyon Ashmore Reef • Ashmore Reef Marine Park is a 583 km2 combination of both sanctuary (IUCN Ia) and recreational use (IUCN IV) zones located 630 kilometres north of Broome in the Australian External Territory of Ashmore and Cartier Islands. • These waters hold historical significance for traditional Indonesian fisherman, they retain access to resources in certain areas of the MPA. Our surveys • Two surveys were conducted in the dry seasons of 2017 and 2018. • 200 samples in waters up to 354 metres deep. • 809 individuals counted from 42 taxa representing 19 families. • Observations included a whale shark (Rhincodon typus) and an ocean sunfish (Mola mola). • The waters are dominated by predators and large prey. Key findings • The threatened silvertip shark (Carcharhinus albimarginatus) is more abundant here than any other location. • We saw a decrease in abundance on the second year of sampling, yet the average length of the animals observed almost doubled. predators large prey small prey Why Ashmore Reef matters • It is one of the 65 Australian Ramsar sites, which are locations of significant importance to seabirds, shorebirds, and other marine life they support. • This habitat seems to be an important site for vulnerable reef-associated species of shark such as the silvertip shark. • Ashmore Reef might act as a stopover on Whale shark (Rhincodon typus) the migration path of whale sharks.
    [Show full text]
  • Parks Australia Science News Edition 8 — July 2020
    Parks Australia science news Edition 8 — July 2020 Welcome to the 8th edition of the Parks Australia science news. In this edition we take a second trip to Ashmore Reef and share results from the first voyage. We also check in on Booderee’s eastern quolls, get an update on the Christmas Island blue-tailed skink translocation, and see how Kakadu has made use of the recent lockdown to undertake an opportune survey. Field highlights from Ashmore Reef In July last year, we took you to the heart of the Timor Sea, tracking the adventures of an intrepid team of scientists that spent two weeks surveying the islands of Ashmore Reef Marine Park. These tiny dots in the middle of the ocean are a magnet for seabirds, turtles and shorebirds, some of which travel many hundreds of miles to eat, rest and breed. Learn more about the vegetation, bird and invasive species surveys the team completed during the first half of the Ashmore Environmental Assessment Project by reading Ashmore Reef Marine Park: An Indian Ocean Oasis which was published in 4th edition of the Parks Australia Science Newsletter. If you’re short on time, you can just watch the short video below. Ashmore Reef Marine Park: an isolated sanctuary Ashmore Environmental Assessment Project The project set out to see how life is fairing at Ashmore Reef and what management steps will be needed to address threats to this ecosystem. In this article, we’ll share some field highlights from the second half of the project and overall project results. In mid-2019, a different team of scientists from institutes across Australia, including CSIRO and the University of Western Australia, gathered in Broome for the 30-hour trip to the marine park.
    [Show full text]