CORNELL CLEO's F

Total Page:16

File Type:pdf, Size:1020Kb

CORNELL CLEO's F Top, the spectrum of the phi meson plus pion combination seen in the CLEO detector at the Cornell CESR electron-positron ring, showing the clear F meson signal at 1970 MeV. The phi mesons are picked up from their decay into two kaons. Bottom, using kaon pairs away from the phi mass makes the signal disappear. Getting under way is an extensive programme of testing and calibra­ tion of production shower counters, hadron calorimeters and tracking chambers, using Tevatron beams. If all goes well, there will be a prelimi­ nary test run of the partially com­ pleted detector with colliding beams of low luminosity in 1985. Most of the central and forward calorimetry should be in place, but it is unlikely that the complete tracking, trigger, and data acquisition systems will be available until the full physics runs begin in 1986. CORNELL CLEO's F The CLEO (Cornell / Harvard / Ithaca College / Ohio State / Rochester / Rutgers / Syracuse / Vanderbilt) col­ laboration working at the CESR elec­ tron-positron ring at Cornell has found an F meson candidate in a new decay mode and at a lower mass than previously observed. The charmed F meson is the strange­ ness-carrying partner of the D me­ sons, and consists of a charmed quark bound with a strange anti- quark. Although observations of D me­ sons are routine, the F meson has remained elusive. A DASP (DESY) electron-positron annihilation experi­ ment and a more recently CERN pho­ ton experiments utilizing the Omega spectrometer provided the stron­ gest F evidence. The Omega experi­ the weak decay of the charmed kaons. A clear phi signal above a ments gave the F mass as quark. The previous experiments substantial background was ob­ 2020 ± 15MeV. have relied on detection of one or served in the two-kaon mass spec­ The F meson can be observed more pions along with an eta, ob­ trum. Charged kaon pairs, consistent through the weak decay of its served through its decay into two with the phi mass, were selected for charmed quark into a strange quark. photons. In the CLEO detector, the further analysis. They were com­ The decay modes most accessible to phi-pi mode was observed by recon­ bined with other charged particles, experimental detection are those in structing the phi from two charged assumed to be pions, to give a phi which the new strange quark and the kaons. plus pion mass spectrum, and the original strange antiquark combine Phi-meson candidates were iden­ mass peak at 1970 ± 5 MeV has a to form either an eta or a phi meson, tified from combinations of oppo­ width consistent with the exper­ with a few pions being produced by sitely charged tracks interpreted as imental resolution. No mass peak is CERN Courier, January/February 1984 15 At the DESY Theory Workshop — Gerhard Mack and Harry Lehmann (right). (Photo DESY) observed if two-kaon masses above or below the phi are used to create the phi-pi mass spectrum. This un­ derlines that the observed peak is due to phi mesons and not back­ ground combinations. Further evidence that this en­ hancement is the F meson comes from examining its production and decay. In background electron-posi­ tron annihilation, charmed quark pro­ duction accounts for 40 per cent of the event rate. The momentum frac­ tion (momentum/beam energy) dis­ PETRA improvement programme in the DESY calendar. The sixth such tribution of F events agrees with which began back in 1982. From workshop, held a few months ago, those of D events measured earlier 37.2 GeV, the energy was nudged to explored the new jet information by CLEO. Also, the product of the F 40.2 towards the end of 1982, and culled from the summer conference production rate and the relative oc­ reached 43.19 last July (see October season. However the number of out­ currence of the phi-pi decay is one- 1983 issue, page 311). To achieve standing questions in this area still third of the product for D° production 45 GeV, the PETRA r.f. power and appears to exceed that of clear an­ followed by decay to kaon plus pion, the number of accelerating cavities swers. in good agreement with a simple were eventually doubled. The organizing committee, L. Sto- quark counting argument. To run at 45 GeV, all the available dolsky (chairman), K. Schilling (depu­ Angular distributions of the two space is filled by accelerating cavi­ ty chairman), H. Joos and T. Walsh kaons and the pion further support ties. There are now 112 of them had in the back of their minds a the proposition. The phi meson has working at 500 MHz, with a total of comparison of simple models with spin 1, the pion has spin zero, and 672 cells. In addition, 24 cavities standard quark-gluon gauge theory the F meson should have spin zero. running at 1 GHz with a total of 152 (QCD). However, it became clear that These assignments lead to two cells are used to improve the accel­ the qualitative successes of QCD characteristic angular distributions, eration process. This 1 GHz system have so shaped our thinking that sim­ which are in good agreement with is used at lower energies to increase ple models don't generate much en­ the data in the peak, after subtracting the bunch length. thusiasm any more. On the other background. The energy required to run this hand quantitative tests of QCD are This observation of an F signal at system amounts to about 17 MW only at an accuracy of about 20 per 1970MeV in the phi-pi spectrum (from the mains) of which 9.6 reach cent, which leaves much theoretical was announced last summer and has the cavities. Since they are not su­ and experimental work to be done. been confirmed by the ARGUS ex­ perconducting, the cavities' losses Discussion of observed jet struc­ periment at DORIS (see December are high — only about 1 MW is finally ture was fuelled by comparison of 1983 issue, page 423). used by the beam to compensate results from proton-antiproton colli­ for emitted synchrotron radiation. sions and electron-positron annihila­ These energy losses underline the tion. Although mainly gluon jets are DESY potential usefulness of supercon­ studied in proton-antiproton colli­ 45 GeV - and still ducting cavities for handling high en­ sions at the CERN Collider and quark- ergy electron beams. antiquark jets in electron-positron in­ topless! teractions, the jet similarities are Late in the evening of 9 December, Theory workshop nevertheless striking. However K. the champagne was broken out at Fialkowski mentioned that multiplici­ DESY. The PETRA electron-positron Concentrating on the common ty of different types of jets at me­ storage ring passed from 44.98 GeV ground between current theory and dium energies could differ. total energy to 45.01, thus surpas­ experiment, the annual Theory For a quantitative explanation of sing the 45 GeV design value for the Workshop is now a traditional event jet structure, the theoretical input to 16 CERN Courier, January/February 1984 .
Recommended publications
  • Flavour Physics
    May 21, 2015 0:29 World Scientific Review Volume - 9in x 6in submit page 1 TASI Lectures on Flavor Physics Zoltan Ligeti Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ∗E-mail: [email protected] These notes overlap with lectures given at the TASI summer schools in 2014 and 2011, as well as at the European School of High Energy Physics in 2013. This is primarily an attempt at transcribing my hand- written notes, with emphasis on topics and ideas discussed in the lec- tures. It is not a comprehensive introduction or review of the field, nor does it include a complete list of references. I hope, however, that some may find it useful to better understand the reasons for excitement about recent progress and future opportunities in flavor physics. Preface There are many books and reviews on flavor physics (e.g., Refs. [1; 2; 3; 4; 5; 6; 7; 8; 9]). The main points I would like to explain in these lectures are: • CP violation and flavor-changing neutral currents (FCNC) are sen- sitive probes of short-distance physics, both in the standard model (SM) and in beyond standard model (BSM) scenarios. • The data taught us a lot about not directly seen physics in the past, and are likely crucial to understand LHC new physics (NP) signals. • In most FCNC processes BSM/SM ∼ O(20%) is still allowed today, the sensitivity will improve to the few percent level in the future. arXiv:1502.01372v2 [hep-ph] 19 May 2015 • Measurements are sensitive to very high scales, and might find unambiguous signals of BSM physics, even outside the LHC reach.
    [Show full text]
  • Incomplete Document
    Improved measurement of the Pseudoscalar Decay Constants fDS from D∗+ γµ+ ν data sample s → Abstract + − Determination of fDS using 14 million e e cc¯ events obtained with the CLEO → II and CLEO II.V detector is presented. New measurement of the branching ratio gives Γ (D+ µ+ν)/Γ (D+ φπ+) = 0.137 0.013 0.022. Using Γ (D+ µ+ν) = 0.036 S → S → ± ± S → 0.09, fDS was calculated and found to be (247 12 20 31) MeV. Comparison ± ± ± ± of these results with other theoretical and experimental results are also presented. 1 Introduction Purely leptonic decay modes of heavy mesons predict their decay constants, which is connected with measured quantities such as CKM matrix elements. Currently it is not possible to measure fB experimentally, but measurements of the Cabibbo-flavor pseudoscalar decay constants such as fDS is possible. This measurement provides a check of these theoretical calculations and helps to establish different theoretical models. + The decay width of Ds is given by [1] G2 m2 Γ(D+ ℓ+ν)= F f 2 m2M 1 ℓ V 2 (1) s 6π DS ℓ DS 2 cs → − MDS ! | | where MDS is the Ds mass, mℓ is the mass of the final state lepton, Vcs is a CKM matrix element equal to 0.974 [2] and GF is the Fermi coupling constant. Various theoretical predictions of fDS range from 190 MeV to 350 MeV. The relative widths of three lepton flavors are 10 : 1 : 10−5 for tau, muon and electron respectively. Helicity suppression reduces smaller width for low mass electron.
    [Show full text]
  • J. Stroth Asked the Question: "Which Are the Experimental Evidences for a Long Mean Free Path of Phi Mesons in Medium?"
    J. Stroth asked the question: "Which are the experimental evidences for a long mean free path of phi mesons in medium?" Answer by H. Stroebele ~~~~~~~~~~~~~~~~~~~ (based on the study of several publications on phi production and information provided by the theory friends of H. Stöcker ) Before trying to find an answer to this question, we need to specify what is meant with "long". The in medium cross section is equivalent to the mean free path. Thus we need to find out whether the (in medium) cross section is large (with respect to what?). The reference would be the cross sections of other mesons like pions or more specifically the omega meson. There is a further reference, namely the suppression of phi production and decay described in the OZI rule. A “blind” application of the OZI rule would give a cross section of the phi three orders of magnitude lower than that of the omega meson and correspondingly a "long" free mean path. In the following we shall look at the phi production cross sections in photon+p, pion+p, and p+p interactions. The total photoproduction cross sections of phi and omega mesons were measured in a bubble chamber experiment (J. Ballam et al., Phys. Rev. D 7, 3150, 1973), in which a cross section ratio of R(omega/phi) = 10 was found in the few GeV beam energy region. There are results on omega and phi production in p+p interactions available from SPESIII (Near- Threshold Production of omega mesons in the Reaction p p → p p omega", Phys.Rev.Lett.
    [Show full text]
  • Design and Application of the Reconstruction Software for the Babar Calorimeter
    Design and application of the reconstruction software for the BaBar calorimeter Philip David Strother Imperial College, November 1998 A thesis submitted for the degree of Doctor of Philosophy of the University of London, and Diploma of Imperial College 2 Abstract + The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e e− collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximise the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel Bo J=ΨKo has been studied in the two lepton, two π0 final state.
    [Show full text]
  • Charged Particle Tracking in the CLEO II Detector
    Charged Particle Tracking in the CLEO II Detector for Neutrino Reconstruction Michell Morgan Computer Science Department, Wayne State University, Detroit, Michigan, 48204 Abstract In neutrino reconstruction analyses, we rely on information from tracks from other particles in the event to determine the neutrino momentum. It is very important to nd out as much information as possible about those tracks for neutrino reconstruction. Currently, events with one or more tracks with no z t are not used, leading to an ineciency of about 15%. However, such tracks do have hits with z information on charge division wires which are ignored by the tracking program, because charge division hits z information has been observed to be very inaccurate on occasion. We have traced the inaccuracies to the z calibration which was performed only for central tracks and involved tting with a cubic polynomial. However, for forward tracks, the cubic leads to hits with z positions very far from the actual path of the track. We have investigated solutions to this problem so that we may be able to recover some z information on tracks in events that we currently throw away and use them in neutrino reconstruction. Introduction Neutrinos are neutral particles that pass through the detector at the speed of light. Because neutrinos are neutral and weakly interacting, they do not leave tracks in the detector nor hits in the calorimeter. Thus, for neutrino reconstruction, we have to know the energy and momentum of the other particles in the event. The total momentum of the colliding system is zero and thus the nal particles in the event must balance.
    [Show full text]
  • Understanding the J/Psi Production Mechanism at PHENIX Todd Kempel Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Understanding the J/psi Production Mechanism at PHENIX Todd Kempel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Kempel, Todd, "Understanding the J/psi Production Mechanism at PHENIX" (2010). Graduate Theses and Dissertations. 11649. https://lib.dr.iastate.edu/etd/11649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the J= Production Mechanism at PHENIX by Todd Kempel A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Nuclear Physics Program of Study Committee: John G. Lajoie, Major Professor Kevin L De Laplante S¨orenA. Prell J¨orgSchmalian Kirill Tuchin Iowa State University Ames, Iowa 2010 Copyright c Todd Kempel, 2010. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES . v LIST OF FIGURES . vii CHAPTER 1. Overview . 1 CHAPTER 2. Quantum Chromodynamics . 3 2.1 The Standard Model . 3 2.2 Quarks and Gluons . 5 2.3 Asymptotic Freedom and Confinement . 6 CHAPTER 3. The Proton . 8 3.1 Cross-Sections and Luminosities . 8 3.2 Deep-Inelastic Scattering . 10 3.3 Structure Functions and Bjorken Scaling . 12 3.4 Altarelli-Parisi Evolution .
    [Show full text]
  • Measurement of Production and Decay Properties of Bs Mesons Decaying Into J/Psi Phi with the CMS Detector at the LHC
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Measurement of Production and Decay Properties of Bs Mesons Decaying into J/Psi Phi with the CMS Detector at the LHC Giordano Cerizza University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Elementary Particles and Fields and String Theory Commons Recommended Citation Cerizza, Giordano, "Measurement of Production and Decay Properties of Bs Mesons Decaying into J/Psi Phi with the CMS Detector at the LHC. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1279 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Giordano Cerizza entitled "Measurement of Production and Decay Properties of Bs Mesons Decaying into J/Psi Phi with the CMS Detector at the LHC." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Physics. Stefan M. Spanier, Major Professor We have read this dissertation and recommend its acceptance: Marianne Breinig, George Siopsis, Robert Hinde Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Measurements of Production and Decay Properties of Bs Mesons Decaying into J/Psi Phi with the CMS Detector at the LHC A Thesis Presented for The Doctor of Philosophy Degree The University of Tennessee, Knoxville Giordano Cerizza May 2012 c by Giordano Cerizza, 2012 All Rights Reserved.
    [Show full text]
  • QCD Studies in Two-Photon Collisions at CLEO Vladimir Savinov University of Pittsburgh, Pittsburgh
    W03 hep-ex/0106013 QCD Studies in Two-Photon Collisions at CLEO Vladimir Savinov University of Pittsburgh, Pittsburgh We review the results of two-photon measurements performed up to date by the CLEO experiment at Cornell University, Ithaca, NY.These + − measurements provide an almost background-free virtual laboratory to study strong interactions in the process of the e e scattering. We discuss the measurements of two-photon partial widths of charmonium, cross sections for hadron pairs production, antisearch for glueballs ∗ and the measurements of γ γ → pseudoscalar meson transition form factors. We emphasize the importance of other possible analyses, favorable trigger conditions and selection criteria of the presently running experiment and the advantages of CLEOc—the future τ-charm factory with the existing CLEO III detector. 1. INTRODUCTION a time-of-flight (TOF) plastic scintillator system and a muon system (proportional counters embedded at various depths in One of the ways to study properties of strong interactions, the steel absorber). Two thirds of the data were taken with the surprisingly, is to collide high energy photons. Photons do not CLEO II.V configuration of the detector where the innermost interact strongly, however, in the presence of other photons drift chamber was replaced by a silicon vertex detector [4] and they can fluctuate into quark pairs that have a sizable probabil- the argon-ethane gas of the main drift chamber was changed ity to realize as hadrons. Space-like photons of relatively high to a helium-propane mixture. This upgrade led to improved energies can be obtained in the process of the e+e− scattering, resolutions in momentum and specific ionization energy loss that is, in the e+e− → e+e−hadrons reactions, where hadrons (dE/dx) measurements.
    [Show full text]
  • On the Scent of Glue
    On the scent of glue by Frank Close Although this work was not new Soon after the quark model was in­ has been intensifying over the last for the specialists, the underlying vented twenty years ago, people re­ several years. Where have all the message was clear. 'Because of its alized that it was in trouble. The Pauli flowers gone? inherent singularities, classical gen­ exclusion principle ruled out many eral relativity predicts its own down­ well known states, in particular the How colour forces work fall,' stated Hawking, 'just as the configuration of three identical classical picture of the atom was also strange quarks that formed the ome­ Electrical charges are the sources doomed'. ga-minus. The very hadron whose of electromagnetic forces. As every The meeting merited two closing discovery had confirmed the Eight­ schoolchild knows, opposite char­ lectures. For the cosmologists, Mar­ fold Way seemingly killed its off­ ges attract while like charges repel. tin Rees of Cambridge confessed to spring, the quark model. Quarks possess electric charge and finding the symposium an 'unusual In those days, many people were so feel electromagnetic forces. That experience'. For the particle physi­ reluctant to accept the idea of frac­ is why even electrically uncharged cists, John Ellis described particle tionally charged quarks which had particles like neutrons have electro­ physics and cosmology as having 'a never been seen. The Pauli paradox magnetic interactions; they contain brilliant past in front of them' — refer­ suggested that quarks were at best electrically charged constituents. ring to the new common interest in no more than a bookkeeping device, Quarks also have colour and it ap­ the primaeval Big Bang and its imme­ not physical particles.
    [Show full text]
  • Charm and QCD at CLEO-III and CLEO-C Jim Napolitano (RPI
    Charm and QCD at CLEO-III and CLEO-c Jim Napolitano (RPI & Cornell) Physics topics: 0 − − + 1) Measurement of Ξc → pK K π (CLEO-III) 2) Form factors in D0 → {π−,K−}e+ν (CLEO-III ⇒ CLEO-c) 3) Disentangling glueballs and qq¯ states (CLEO-c) XXXIX Rencontres de Moriond QCD and High Energy Hadronic Interactions 28 March - 04 April, 2004 1 2230902-007 109 CLEO Integrated Luminosities CLEO Physics (1D) 8 CLEO Upgrades 10 ACP Limits RICH CESR Upgrades B I New DD Mixing Tracking Limit B K* 2cm BP CLEO III bs Silicon 7 He-propane 10 B K 9x5 Bunches B K SC IR Quads ear B / CLEO II.V Y SC RF I CsI 9x4 Bunches 3.5cm BP I BB / Crossing Angle 106 (BB Mixing) CLEO II 9X3 Bunches b u New Tracking 1 IR Ds CLEO I.V 5 b c 10 B Decay (4S), (5S) Microbeta CLEO I 7 Bunches Pretzel Orbits 104 1980 1985 1990 2 1995 2000 2005 CLEO III Solenoid 2230801-005 Coil RICH Calorimeter Drift Chamber Muon SC and Chambers Rare Earth Quads Silicon Magnet Vertex Detector Iron 3 0 − − + 1) Measurement of Ξc → pK K π See arXiv:hep-ex/0309020, to appear in Physical Review D 0 − ¯? 0 Physics: The decay Ξc → pK K (892) cannot proceed through external W decay, so it is “color suppressed”. ⇒ Want to separate it from nonresonant four-body decays. 0 − − + 0 − + Measured Ξc → pK K π rate relative to Ξc → Ξ π Needs extensive p, K, π particle identification made possible by RICH in CLEO-III Only previous result: ACCMOR 1990 (four events, all K¯ ?) 4 0 RESULTS: Ξc Decay 0 Ξc Decay modes 150 0990803-002 pK−K−π+ ) 2 100 K−π+ mass distribution: 50 Entries / 6 (MeV/c 0 2.30 2.40 2.50 2.60 I M(pK K I +) (GeV/c2) 100 0991203-003 Ξ−π+ ) 75 2 0 − − + B(Ξc → pK K π )/ 0 − + 50 B(Ξc → Ξ π ) = 0.35±0.06±0.03 25 Entries / 6 (MeV/c B(Ξ0 → pK−K−π+; No K¯ ?)/ 0 c 2.30 2.40 2.50 2.60 0 − + M( I +) (GeV/c2) B(Ξc → Ξ π ) = 0.21±0.04±0.02 5 2) Form Factors in D0 → {π−,K−}e+ν New CLEO-III analysis to be published soon.
    [Show full text]
  • PARTICLE DECAYS the First Kaons from the New DAFNE Phi-Meson
    PARTICLE DECAYS K for KLi The first kaons from the new DAFNE phi-meson factory at Frascati underline a fascinating chapter in the evolution of particle physics. As reported in the June issue (p7), in mid-April the new DAFNE phi-meson factory at Frascati began operation, with the KLOE detector looking at the physics. The DAFNE electron-positron collider operates at a total collision energy of 1020 MeV, the mass of the phi- meson, which prefers to decay into pairs of kaons.These decays provide a new stage to investigate CP violation, the subtle asymmetry that distinguishes between mat­ ter and antimatter. More knowledge of CP violation is the key to an increased understanding of both elemen­ tary particles and Big Bang cosmology. Since the discovery of CP violation in 1964, neutral kaons have been the classic scenario for CP violation, produced as secondary beams from accelerators. This is now changing as new CP violation scenarios open up with B particles, containing the fifth quark - "beauty", "bottom" or simply "b" (June p22). Although still on the neutral kaon beat, DAFNE offers attractive new experimental possibilities. Kaons pro­ duced via electron-positron annihilation are pure and uncontaminated by background, and having two kaons produced coherently opens up a new sector of preci­ sion kaon interferometry.The data are eagerly awaited. Strange decay At first sight the fact that the phi prefers to decay into pairs of kaons seems strange. The phi (1020 MeV) is only slightly heavier than a pair of neutral kaons (498 MeV each), and kinematically this decay is very constrained.
    [Show full text]
  • The CLEO RICH Detector Design
    SUHEP 20-2005 June, 2005 THE CLEO RICH DETECTOR M. Artuso a, R. Ayad a, K. Bukin a, A. Efimov a, C. Boulahouache a, E. Dambasuren a, S. Kopp a, Ji Li a, G. Majumder a, N. Menaa a, R. Mountain a, S. Schuh a, a a, a a T. Skwarnicki , S. Stone ∗, G. Viehhauser , J.C. Wang aDepartment of Physics, Syracuse University, Syracuse, NY 13244-1130, USA T.E. Coan b, V. Fadeyev b, Y. Maravin b, I. Volobouev b, J. Ye b bDepartment of Physics, Southern Methodist University, Dallas, TX 75275-0175, USA S. Anderson c, Y. Kubota c, A. Smith c cSchool of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455-0112, USA Abstract We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel “sawtooth”-shaped exit surface. Photons in the wavelength interval 135–165 nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent π/K separation is demonstrated. arXiv:physics/0506132v2 [physics.ins-det] 26 Jul 2005 Key words: Cherenkov, Particle-identification PACS: 03.30+p, 07.85YK ∗ Corresponding author. Email address: [email protected] (S. Stone). Preprint submitted to Elsevier Science 15 August 2018 1 INTRODUCTION The CLEO II detector was revolutionary in that it was the first to couple a large magnetic tracking volume with a precision crystal electromagnetic calorimeter capable of measuring photons down to the tens of MeV level [1].
    [Show full text]