Parallel Multiple Sequence Alignment with Local Phylogeny Search by Simulated Annealing∗

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Multiple Sequence Alignment with Local Phylogeny Search by Simulated Annealing∗ Parallel Multiple Sequence Alignment with Local Phylogeny Search by Simulated Annealing∗ Jaroslaw Zola1, Denis Trystram1, Andrei Tchernykh2, Carlos Brizuela2 1Laboratoire ID–IMAG 2Computer Science Department 51 av. J. Kuntzmann CICESE Res. Center 38330 Montbonnot, France Ensenada, BC, 22860, Mexico {zola,trystram}@imag.fr {chernykh,cbrizuel}@cicese.mx Abstract phylogeny reconstruction (e.g. minimum parsimony or maximum likelihood methods) require MSA as an in- The problem of multiple sequence alignment is one of put data. Moreover, the quality of the trees recon- the most important problems in computational biology. structed by these methods depends on the quality of In this paper we present a new method that simultane- the input alignment [11]. On the other hand, looking ously performs multiple sequence alignment and phy- for similarities among sequences we should be aware logenetic tree inference for large input data sets. We of the fact, that they are a result of some complex describe a parallel implementation of our method that evolutionary process. Thus, in the optimal case, we utilises simulated annealing metaheuristic to find lo- should know their relationship which is described by cally optimal phylogenetic trees in reasonable time. To some phylogenetic tree. validate the method, we perform a set of experiments In our previous contributions [19, 26] we have re- with synthetic as well as real–life data. ported a new heuristic to solve GTA problem in paral- lel. In this paper, we extend this approach by adding a simulated annealing (SA) metaheuristic to find optimal 1 Introduction partial phylogenetic trees during a phylogenetic analy- sis step of our method. The results we report show that application of SA allows running time of our software Multiple sequence alignment (MSA) is undoubtedly to be decreased by several orders of magnitude while the most commonly performed task in the computa- preserving a good quality of final solutions. tional biology. It is an essential prerequisite of many The remainder of this paper is organised as follows: other complex problems like, for example, database In Section 2 we provide a brief overview of the Par- search or phylogenetic analysis [1, 12]. Unfortunately, allel PhylTree method. Section 3 contains description finding an accurate multiple alignment is a hard op- of our strategy to infer local phylogenetic tree by SA. timisation problem. Firstly, because it is difficult to In Section 4 we show some experimental results with provide a formalisation which would be satisfactory actual biological data. Finally, possible extensions of from the biological viewpoint. Secondly, having a good this work are discussed in Section 5. model usually means it is algorithmically very hard to find the best (or optimal) alignment. Indeed, the Gen- eralized Tree Alignment Problem (GTA), which seems 2 Parallel multiple sequence alignment to be the most accurate formalisation of MSA, has been shown to be Max–SNP–Hard [13]. 2.1 The PhylTree method Multiple sequence alignment and phylogenetic tree reconstruction are typically considered separately, The PhylTree method is a generic, parallel multiple however, both these problems are directly linked. For sequence alignment procedure which has been proposed instance, most of the character based approaches to the recently [19, 26]. As it has been presented in detail ∗This work has been supported by the LAFMI project in our previous papers, we provide here only its basic (http://lafmi.imag.fr). concepts with no technical details. 1-4244-0054-6/06/$20.00 ©2006 IEEE The PhylTree method was designed to build a multi- Master Worker ple alignment and the corresponding phylogenetic tree sequences simultaneously. It can be characterised as an iterative compute pairwise clustering method whose principle is to group closely distances alignment related sequences [10]. It consists of two successive assembly distance phases: first it generates a distance matrix for all in- matrix 1st phase put sequences (based on the all–to–all pairwise align- create 2nd phase ments). Then, it searches for the optimal partial so- neighbourhoods tree topologies find lutions which are later combined to obtain the final optimal optimal trees tree phylogenetic tree and multiple alignment. repeat find The method uses two principles: neighbourhood and clusters new taxa cluster.Aneighbourhood is a set of k closely related update k distance taxa, where is an input parameter of the PhylTree matrix procedure and is a constant integer value (typically, k ≥ 4, not larger than 10). A cluster is a group of m ≤ k taxa which creates a part of the final phylogeny. Figure 1. General scheme of the Parallel Phyl- To determine the clusters the PhylTree algorithm Tree method. generates a neighbourhood for every input sequence, then it finds the best phylogenetic tree for each neigh- bourhood, and finally, it analyses all the found trees scheduling strategy [20]. Such approach allows the load to extract their common subtrees. These subtrees de- imbalance imposed by the heterogeneous environment scribe a set of highly related taxa and correspond to to be minimised. Please note that heterogeneity may clusters. The above process is iterative. be the result of high diversity in the length of input The accuracy of the method depends mostly on the sequences, and not only differences in the hardware ar- parameter k. Increasing k will widen the search space chitectures. Processing the distance matrix, a worker analysed to find the clusters. Unfortunately, while this analyses its efficiency by measuring the number of base improves the accuracy of the final solution, it also in- pairs aligned per second. Thanks to this analysis, the creases the number of computations required to process master node can rank all the workers accordingly to a single neighbourhood. Basically, to process a neigh- (2k−2)! their efficiency. In the second phase, only the process- bourhood we have to compute all possible k−1 2 (k−1)! ing of the neighbourhoods is parallelised. That is: at trees to find the optimal one. each iteration, the master determines the neighbour- An important property of PhylTree is its general- hood sets, and then it starts to generate all possible ity, which means that the method can use different tree topologies for each neighbourhood. Each worker alignment algorithms and different scoring functions. receives its part of the generated topologies and looks Moreover, it is possible to use various definitions of a for one with the highest alignment score. At this point neighbourhood and neighbourhoods of variable size (a we assume that for each neighbourhood an optimal par- variant called QuickTree has been proposed as a way of tial solution must be generated. To achieve this objec- rapid solving large instances with decreased accuracy). tive, worker has to compute MSA for every single topol- ogy. Because the number of created tree topologies for 2.2 Parallelisation scheme all neighbourhoods is usually much greater than the number of workers, again dynamic scheduling is used. Due to high time complexity of the PhylTree method However, at this stage, the host priorities computed in we have implemented its parallel version based on the the first phase are utilised. Half of the total number of decentralised cache of alignments [26]. topologies is distributed proportionally to the workers’ The Parallel PhylTree method takes advantage of priorities. Then, the other part is distributed using the the inherent parallelism of the original algorithm, and guided self–scheduling. When a worker completes its it utilises master–worker architecture combined with part of the computations it sends back the resulting the cache system working in the peer–to–peer manner. best tree topology and the corresponding alignment The Parallel PhylTree method proceeds as follows to the master. To complete an iteration, the master (see Figure 1): First, the master processor reads the computes the clusters and updates the distance matrix input sequences and broadcasts them to all workers. accordingly. Next, each worker receives a part of the distance ma- Since neighbourhoods of sequences may overlap, and trix to compute. At this stage, we use the guided self– pairwise alignments computed in the first phase of the method are reused in the second phase, the Phyl- we provide scoring functions based on the parsimony Tree method exhibits high redundancy of computa- criterion with linear gap penalties but also basic sum tions. Therefore, in the parallel version we provide de- of pairs function, and consistency based function COF- centralised cache of alignments [26]. Our cache stores FEE [18]. all intermediate results of alignment, and is organised While the ability to use various scoring schemes ex- into content addressable network [21]. Thanks to this tends possible applications of PhylTree, it makes diffi- a significant speedup can be achieved even in a single cult to apply faster than exact trees enumeration search run of the Parallel PhylTree. techniques. For instance, to find an optimal tree un- der parsimony criterion a branch and bound strategy 2.3 Related work could be used, whereas it is not necessarily true for other scoring functions. Both multiple sequence alignment and phylogeny are of great importance to biologists, but at the same 3.1 The simulated annealing approach time these problems are very computationally demand- ing. That is why parallel and distributed programming To improve efficiency of the PhylTree we have de- is often used to improve the efficiency of existing bioin- cided to apply metaheuristic search approach based formatics applications. on simulated annealing [14]. Our solution is based In the last few years several popular MSA packages on the observation that groups of closely related ele- have been parallelised, for example DiAlign [23] or Pra- ments, which are recognised as phylo–clusters, should line [15]. Yet, most of the attention was focused on be detectable even when suboptimal trees for anal- the ClustalW tool. There are numerous parallel ver- ysed neighbourhoods will be found.
Recommended publications
  • Errors in Multiple Sequence Alignment and Phylogenetic Reconstruction
    Multiple Sequence Alignment Errors and Phylogenetic Reconstruction THESIS SUBMITTED FOR THE DEGREE “DOCTOR OF PHILOSOPHY” BY Giddy Landan SUBMITTED TO THE SENATE OF TEL-AVIV UNIVERSITY August 2005 This work was carried out under the supervision of Professor Dan Graur Acknowledgments I would like to thank Dan for more than a decade of guidance in the fields of molecular evolution and esoteric arts. This study would not have come to fruition without the help, encouragement and moral support of Tal Dagan and Ron Ophir. To them, my deepest gratitude. Time flies like an arrow Fruit flies like a banana - Groucho Marx Table of Contents Abstract ..........................................................................................................................1 Chapter 1: Introduction................................................................................................5 Sequence evolution...................................................................................................6 Alignment Reconstruction........................................................................................7 Errors in reconstructed MSAs ................................................................................10 Motivation and aims...............................................................................................13 Chapter 2: Methods.....................................................................................................17 Symbols and Acronyms..........................................................................................17
    [Show full text]
  • The Tree Alignment Problem Andres´ Varon´ and Ward C Wheeler*
    Varon´ and Wheeler BMC Bioinformatics 2012, 13:293 http://www.biomedcentral.com/1471-2105/13/293 RESEARCH ARTICLE Open Access The tree alignment problem Andres´ Varon´ and Ward C Wheeler* Abstract Background: The inference of homologies among DNA sequences, that is, positions in multiple genomes that share a common evolutionary origin, is a crucial, yet difficult task facing biologists. Its computational counterpart is known as the multiple sequence alignment problem. There are various criteria and methods available to perform multiple sequence alignments, and among these, the minimization of the overall cost of the alignment on a phylogenetic tree is known in combinatorial optimization as the Tree Alignment Problem. This problem typically occurs as a subproblem of the Generalized Tree Alignment Problem, which looks for the tree with the lowest alignment cost among all possible trees. This is equivalent to the Maximum Parsimony problem when the input sequences are not aligned, that is, when phylogeny and alignments are simultaneously inferred. Results: For large data sets, a popular heuristic is Direct Optimization (DO). DO provides a good tradeoff between speed, scalability, and competitive scores, and is implemented in the computer program POY. All other (competitive) algorithms have greater time complexities compared to DO. Here, we introduce and present experiments a new algorithm Affine-DO to accommodate the indel (alignment gap) models commonly used in phylogenetic analysis of molecular sequence data. Affine-DO has the same time complexity as DO, but is correctly suited for the affine gap edit distance. We demonstrate its performance with more than 330,000 experimental tests. These experiments show that the solutions of Affine-DO are close to the lower bound inferred from a linear programming solution.
    [Show full text]
  • Sequence Alignment in Molecular Biology
    JOURNAL OF COMPUTATIONAL BIOLOGY Volume 5, Number 2,1998 Mary Ann Liebert, Inc. Pp. 173-196 Sequence Alignment in Molecular Biology ALBERTO APOSTÓLICO1 and RAFFAELE GIANCARLO2 ABSTRACT Molecular biology is becoming a computationally intense realm of contemporary science and faces some of the current grand scientific challenges. In its context, tools that identify, store, compare and analyze effectively large and growing numbers of bio-sequences are found of increasingly crucial importance. Biosequences are routinely compared or aligned, in a variety of ways, to infer common ancestry, to detect functional equivalence, or simply while search- ing for similar entries in a database. A considerable body of knowledge has accumulated on sequence alignment during the past few decades. Without pretending to be exhaustive, this paper attempts a survey of some criteria of wide use in sequence alignment and comparison problems, and of the corresponding solutions. The paper is based on presentations and lit- erature at the on held at in November given Workshop Sequence Alignment Princeton, N.J., 1994, as part of the DIMACS Special Year on Mathematical Support for Molecular Biology. Key words: computational molecular biology, design and analysis of algorithms, sequence align- ment, sequence data banks, edit distances, dynamic programming, philogeny, evolutionary tree. 1. INTRODUCTION taxonomy is based ON THE assumption that conspicuous morphological and functional Classicalsimilarities in species denote close common ancestry. Likewise, modern molecular taxonomy pursues phylogeny and classification of living species based on the conformation and structure of their respective ge- netic codes. It is assumed that DNA code presides over the reproduction, development and susteinance of living organisms, part of it (RNA) being employed directly in various biological functions, part serving as a template or blueprint for proteins.
    [Show full text]
  • Algorithmic Complexity in Computational Biology: Basics, Challenges and Limitations
    Algorithmic complexity in computational biology: basics, challenges and limitations Davide Cirillo#,1,*, Miguel Ponce-de-Leon#,1, Alfonso Valencia1,2 1 Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain 2 ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain. # Contributed equally * corresponding author: [email protected] (Tel: +34 934137971) Key points: ● Computational biologists and bioinformaticians are challenged with a range of complex algorithmic problems. ● The significance and implications of the complexity of the algorithms commonly used in computational biology is not always well understood by users and developers. ● A better understanding of complexity in computational biology algorithms can help in the implementation of efficient solutions, as well as in the design of the concomitant high-performance computing and heuristic requirements. Keywords: Computational biology, Theory of computation, Complexity, High-performance computing, Heuristics Description of the author(s): Davide Cirillo is a postdoctoral researcher at the Computational biology Group within the Life Sciences Department at Barcelona Supercomputing Center (BSC). Davide Cirillo received the MSc degree in Pharmaceutical Biotechnology from University of Rome ‘La Sapienza’, Italy, in 2011, and the PhD degree in biomedicine from Universitat Pompeu Fabra (UPF) and Center for Genomic Regulation (CRG) in Barcelona, Spain, in 2016. His current research interests include Machine Learning, Artificial Intelligence, and Precision medicine. Miguel Ponce de León is a postdoctoral researcher at the Computational biology Group within the Life Sciences Department at Barcelona Supercomputing Center (BSC). Miguel Ponce de León received the MSc degree in bioinformatics from University UdelaR of Uruguay, in 2011, and the PhD degree in Biochemistry and biomedicine from University Complutense de, Madrid (UCM), Spain, in 2017.
    [Show full text]
  • A New Approach for Tree Alignment Based on Local Re-Optimization
    A New Approach For Tree Alignment Based on Local Re-Optimization Feng Yue and Jijun Tang Department of Computer Science and Engineering University of South Carolina Columbia, SC 29063, USA yuef, jtang ¡ @engr.sc.edu Abstract be corrected later, even if those alignments conflict with sequences added later[8]. T-Coffee is another popular Multiple sequence alignment is the most fundamental sequence alignment tool and can be viewed as a variant task in bioinformatics and computational biology. In this of the progressive method. It has been reported to get the paper, we present a new algorithm to conduct multiple se- highest scores on the BAliBASE benchmark database [9]. quences alignment based on phylogenetic trees. It is widely The significant improvement is achieved by pre-processing accepted that a good phylogenetic tree can help produce a data set of all pair-wise alignments and thus allowing for high quality alignment, but the direct dynamic program- much better use of information in early stages. ming solution grows exponentially [13]. To overcome this An alternative way to compare multiple sequences is tree problem, we first devise a procedure that can produce opti- alignment, which is motivated by the fact that in most cases mal alignment for three sequences and infer their common the sequences are not independent of each other but rather ancestor. We then extend the above procedure to compute related by a revolutionary tree [18]. The tree alignment the alignment of a given tree with more sequences by itera- problem was developed principally by Sankoff, who also tively relabeling the internal nodes.
    [Show full text]
  • Tree Alignment
    Tree Alignment Tandy Warnow February 13, 2017 Tree alignment Tandy Warnow Today's material: I Review of last class I Optimization problems for multiple sequence alignment I Tree Alignment and Generalized Tree Alignment Section 9.5 in the textbook covers this material. Pairwise alignments and evolutionary histories Recall: 0 I If we know how a sequence s evolves into another sequence s , we know the true alignment between the two sequences. I We can use dynamic programming to find a minimum cost transformation of s into s0, where each single letter indel costs C and each substitution costs C 0. This algorithm is called Needleman-Wunsch. I We can extend the Needleman-Wunsch algorithm to handle more general cost functions: where the cost for a gap of length L isn't just CL, and where the cost of a substitution depends on the pair of letters. Multiple sequence alignment (MSA) Now that we have a way of defining the \cost" of a pairwise alignment, we can extend the definition to a set of three or more sequences in at least two ways: I Sum-of-pairs (SOP) score (find MSA to minimize the sum of costs of all induced pairwise scores) I Treelength (find tree and sequences at all nodes of the tree to minimize the sum of costs on the edges of the tree) Both problems are NP-hard. Treelength and Tree Alignments I Input: We are given a tree T with sequences at the leaves, and a cost C for indels and cost C 0 for substitutions. I Output: Sequences at each node to minimize the total treelength (summing over all the edges) of the tree.
    [Show full text]
  • Multiple Sequence Alignment
    Chapter 7 Multiple Sequence Alignment In multiple sequence alignment, the goal is to align k sequences, so that residues in each column share a property of interest, typically descent from a common ancestor or a shared structural or functional role. Applications of multiple sequence alignment include identifying functionally important mutations, predicting RNA secondary structure, and constructing phylogenetic trees. 0 0 Given sequences s1,...,sk of lengths n1,...,nk, α = fs1,...,skg is an alignment of s1,...,sk if and only if 0 0 ∗ • sa 2 (Σ ) , for 1 ≤ a ≤ k 0 • jsaj = l, for 1 ≤ a ≤ k, where l ≥ max(n1; : : : ; nk) 0 • sa is the sequence obtained by removing gaps from sa • No column contains all gaps 7.0.1 Scoring a multiple alignment As with pairwise alignment, multiple sequence alignments (MSAs) are typically scored by assigning a score to each column and summing over the columns. The most common approach to scoring individual columns in a multiple alignment is to calculate a score for each pair of symbols in the column, and then sum over the pair scores. This is called sum-of-pairs or SP-scoring. For global multiple sequence alignment, SP-scoring can be used with either a distance metric or a similarity scoring function. The sum-of-pairs similarity score of an alignment of k sequences is 0 0 l k 0 0 Ssp(s1; : : : ; sk) = Σi=1Σa=1Σb>a p(sa[i]; sb[i]); (7.1) Computational Molecular Biology. Copyright c 2019 D. Durand. All rights reserved. 133 Chapter 7 Multiple Sequence Alignment where l is the length of the alignment.
    [Show full text]
  • An Efficient Heuristic for the Tree Alignment
    City University of New York (CUNY) CUNY Academic Works Computer Science Technical Reports CUNY Academic Works 2008 TR-2008015: An Efficient Heuristic for ther T ee Alignment Problem Andrés Varón Ward Wheeler Amotz Bar-Noy How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_cs_tr/320 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] An Efficient Heuristic for the Tree Alignment Problem Andr´esVar´on1,2, Ward Wheeler1, and Amotz Bar-Noy2 1 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, US. 2 Computer Science Department, The Graduate School and University Center, The City University of New York, 365 Fifth Avenue, New York, US. Abstract. Phylogeny and alignment estimation are two important and closely related biological prob- lems. One approach to the alignment question is known in combinatorial optimization as the Tree Alignment Problem (TAP). A number of heuristic solutions exist, with the most competitive algo- rithms using iterative methods to find solutions. However, these methods are either non-scalable, the bound is too loose, or the time and memory complexity are difficult to predict. For the simplest dis- tance functions, a widely used quick heuristic to find a solution to an instance of the problem is Direct Optimization (DO). Unfortunately, this algorithm has not been formally described, and it is currently unable to find correct solutions under an edition distance function called affine indel cost, of great im- portance for biologists analyzing DNA sequences.
    [Show full text]
  • Lecture 5: Multiple Sequence Alignment
    Introduction to Bioinformatics for Computer Scientists Lecture 5 Advertisement I ● Next round of excellence initiative ● Algorithm Engineering for Scientific Computing ● Joint Master theses with – Ralf Reussner – Carsten Sinz – Dorothea Wagner – Anne Koziolek – Peter Sanders Advertisement II ● This summer ● Not only the Bioinformatics seminar ● But also, Algorithmic Methods in Humanities with chair of Dorothea Wagner → two places available → a lot of bioinformatics methods can be applied to language analysis Missing Slides ● Taxonomy slides not discussed in lecture 2 → in next lecture: introduction to phylogenetics BLAST Index – Solution 1 The scanning phase raised a classic algorithmic problem, i.e. search a long sequence for all occurrences of certain short sequences. We investigated 2 approaches. Simplified, the first works as follows. suppose that w = 4 and map each word to an integer between 1 and 204, so a word can be used as an index into an array of size 204 = 160,000. Let the ith entry of such an array point to the list of all occurrences in the query sequence of the ith word. Thus, as we scan the database, each database word leads us immediately to the corresponding hits. Typically, only a few thousand of the 204 possible words will be in this table, and it is easy to modify the approach to use far fewer than 204 pointers. BLAST Index – Solution 2 The second approach we explored for the scanning phase was the use of a deterministic finite automaton or finite state machine (Mealy, 1955; Hopcroft & Ullman, 1979). An important feature of our construction was to signal acceptance on transitions (Mealy paradigm) as opposed to on states (Moore paradigm).
    [Show full text]
  • From Sequence Alignment to Phylogenetic Tree
    From sequence alignment to phylogenetic tree Jia-Ming Chang Department of Computer Science National Chengchi University, Taiwan 1973 https://biologie-lernprogramme.de/daten/programme/js/homologer/daten/lit/Dobzhansky.pdf 若不採用演化論,生物學的一切都說不通 Evolution • Charles Darwin’s 1859 book (On the Origin of Species By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life) introduced the theory of evolution. • At the molecular level, evolution is a process of mutation with selection. • Molecular evolution is the study of changes in genes and proteins throughout different branches of the tree of life. • Phylogeny is the inference of evolutionary relationships. 1960s: globin phylogeny • tree of 13 orthologs by Margaret Dayhoff and colleagues • Arrow 1: node corresponding to last common ancestor of a group of vertebrate globins. • Arrow 2: ancestor of insect and vertebrate globins B&FG 3e Fig. 7.1 Page 247 The neighbor-joining tree of SARS-CoV-2 related coronaviruses • CDSs were aligned based on translated amino acid sequences using MUSCLE v3.8.31 … • Phylogenetic relationships were constructed using the neighbor-joining method based on Kimura’s two-parameter model. The origin and underlying driving forces of the SARS-CoV-2 outbreak, Shu-Miaw Chaw, Jui-Hung Tai, Shi-Lun Chen, Chia-Hung Hsieh, Sui-Yuan Chang, Shiou- Hwei Yeh, Wei-Shiung Yang, Pei-Jer Chen, Hurng-Yi Wang bioRxiv 2020.04.12.038554; doi: https://doi.org/10.1101/2020.04.12.038554 Phylogenetic Relationship of CoVs • Sequence alignment was carried out using MUSCLE software. • Gblocks was used to process the gap in the aligned sequence.
    [Show full text]
  • Multiple Alignments: CLUSTALW * Identical : Conserved Substitutions
    Multiple Alignments: CLUSTALW * identical : conserved substitutions . semi-conserved substitutions gi|2213819 CDN-ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGDKK 223 gi|12656123 ----ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGD-- 31 gi|7512442 CKNKNDDDNDIMETLCKNDFALK-------------IKVKEITYINRDTK 211 gi|1344282 QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH 400 : . : * ..*:*.:*: Red: AVFPMLW (Small & hydrophobic) Blue: DE (Acidic) Magenta: RHK (Basic) Green: STYHCNGQ (Hydroxyl, Amine, Basic) Gray: Others 1/31/06 CAP5510/CGS5166 1 Multiple Alignments • Family alignment for the ITAM domain (Immunoreceptor tyrosine-based activation motif) • CD3D_MOUSE/1-2 EQLYQPLRDR EDTQ-YSRLG GN Q90768/1-21 DQLYQPLGER NDGQ-YSQLA TA CD3G_SHEEP/1-2 DQLYQPLKER EDDQ-YSHLR KK P79951/1-21 NDLYQPLGQR SEDT-YSHLN SR FCEG_CAVPO/1-2 DGIYTGLSTR NQET-YETLK HE CD3Z_HUMAN/3-0 DGLYQGLSTA TKDT-YDALHMQ C79A_BOVIN/1-2 ENLYEGLNLD DCSM-YEDIS RG C79B_MOUSE/1-2 DHTYEGLNID QTAT-YEDIV TL CD3H_MOUSE/1-2 NQLYNELNLG RREE-YDVLE KK Simple CD3Z_SHEEP/1-2 NPVYNELNVG RREE-YAVLD RR Modular CD3E_HUMAN/1-2 NPDYEPIRKG QRDL-YSGLN QR Architecture CD3H_MOUSE/2-0 EGVYNALQKD KMAEAYSEIG TK Consensus/60% -.lYpsLspc pcsp.YspLs pp Research Tool 1/31/06 CAP5510/CGS5166 2 Multiple Alignment 1/31/06 CAP5510/CGS5166 3 1 How to Score Multiple Alignments? • Sum of Pairs Score (SP) –Optimal alignment: O(dN) [Dynamic Prog] – Approximate Algorithm: Approx Ratio 2 •Locate Center: O(d2N2) • Locate Consensus: O(d2N2) Consensus char: char with min distance sum Consensus string: string of consensus char Center: input
    [Show full text]
  • Lecture 5: Multiple Sequence Alignment
    Introduction to Bioinformatics for Computer Scientists Lecture 5 Course Beers or Coffee ● Who wants to volunteer for organizing this? Plan for next lectures ● Today: Multiple Sequence Alignment ● Lecture 6: Introduction to phylogenetics ● Lecture 7: Phylogenetic search algorithms ● Lecture 8 (Kassian): The phylogenetic Maximum Likelihood Model ● Lecture 8 (Kassian): The phylogenetic Maximum Likelihood Model (continued) Insertions, Deletions & Substitutions ATTGCG CTTGCG T ATTGCG i m e ATGCG ATTGCG CTTGCG CTTGCAAG Insertions, Deletions & Substitutions ATTGCG A → C: substitution CTTGCG T ATTGCG i m e ATGCG ATTGCG CTTGCG CTTGCAAG Insertions, Deletions & Substitutions ATTGCG A → C: substitution CTTGCG T ATTGCG i m e VOID → AA: insertion ATGCG ATTGCG CTTGCG CTTGCAAG Insertions, Deletions & Substitutions ATTGCG A → C: substitution CTTGCG T ATTGCG i m e VOID → AA: insertion ATGCG ATTGCG CTTGCG CTTGCAAG We call this: “an indel” From insertion-deletion The indel length here is 2, longer indels lengths are not uncommon! Insertions, Deletions & Substitutions ATTGCG A → C: substitution CTTGCG T ATTGCG i m e VOID → AA: insertion T → VOID: deletion AT-GCG ATTGCG CTTGCG CTTGCAAG Insertions, Deletions & Substitutions ATTGCG A → C: substitution CTTGCG T ATTGCG i m T e → VOID: deletion VOID → AA: insertion AT-GCG ATTGCG CTTGCG CTTGCAAG AT-GC--G Aligned data: ATTGC--G CTTGC--G CTTGCAAG Insertions, Deletions & Substitutions ATTGCG A → C: substitution CTTGCG T ATTGCG i m T e → VOID: deletion Compute whichVOID characters → AA: shareinsertion a common evolutionary
    [Show full text]