Handbook Indian Spiders

Total Page:16

File Type:pdf, Size:1020Kb

Handbook Indian Spiders Spiders,. though ubQuitous, have re .. mained a. neglected group and aoout eighty five years agio a consolidated vo'ume on entire Arachnida was published by Pocock (1900) in the Fauna of British India. During the last 3,0 years, mainly through the work of the author. enormous amount of infor­ mation on Indian spiders has been gathered. The first (1980) and second volume (1982). and the third volume on scorpions ( 1983) were published by the author. The present Handbook on spiders deals wi,th and gives complete information about Arach­ nida and especially the spiders o,f India. Apart from systematic studi:es on spiders belonging to 43 families, the author has given a detailed general account of external and internal anatomy, characters of taxonomic importance, habitat, food and feeding habits and other phenomenon of their life. Keys of the families and list of higher categories, and other infor­ mations related to each family of spiders are given along with the orb­ weaving mechani,sm of spiders in the famity Araneidae ( == Argiopidae). It is earnesUy hoped that the present Handbook will provide a handy tool to speciali.sts, research students and naturalists in India and elsewhere · interested in the study of Indian Arach­ nida, especially the spiders. Front Cover : Typical Orb-weaving spider Argiope aemula (Walckenaer) on the web. Back Co,ver : Animals al.pana, Pea­ cock in the centre, then fishes and elephants at the outer circle. Cover theme and design by : Dr. B. K. Tikader. HANDBOOK INDIAN SPIDERS A Manual for the study of the Spiders and their relatives-The Scorpions, Pseudoscorpions, W'hip scorpions, Harvestmen and all members of the Class Arachnida found in India with analytical keys for their classmca tion and biology. By B. K. TIKADER Zoological Survey of India, Calcutta Edited by the Director ZOOLOGICAL SURVEY OF INDIA, CALCU'ITA 1987 © Copyright, Government of India, 1987 Published : July 1987 Price: India: Irs. 190.00 Foreign: £ 28.00 $ 34.00 PRI~'TED IN INDIA AT NAVANA PRINTING 'YORKS P. LTD. 47, GA!Io.T£SH CHUNDER AVENUE, CALCUTTA-700 013 AND PUBLISHED BY THE DIRECTOR, zOOLOGICAL SURVEY OF INDIA, CALCU'lTA FOREWORD One of the obJe,ctives of the Zoological Survey of ndia (ZSI) is to provide comprehensive systematic accounts on various groups of tbe Indian fauna. To achieve this objective, the, ZSI undertakes faunistic survey programmes and publishes the results in the form of research papers and reports under the s8,ries '''Fauna of India~', "The Handbooks" and "Technic,at M onographsn The present cont ibu tion on the spiders is the sixth in the series of "Handbooks" This is a very primitive group of animals which bas a role in the conservation of Nature. The present "Handbook" gives a comprehensive taxonomic ,a,cCQunt of 43 families and detailed general account of external and internal anatomy, characters of taxonomic importanc,e, habitat, food and feeding habits and other phenomenon of their life. Keys to the identification of f.amilies and list of higher cat,egories, and other infonnation related to each family of spiders is given along with orbweavingmechanism of spiders in the family Araneida'e (= Argiopidae). I congratulate the author for undertaking this work \vhich I am sure will prove useful to students and researchers in the ~eld of Ara,chnology both in India and abroad. I would also like to put on record my appreciation of Dr. B. K. 'Tikader (former Director, ZSI) for his dedication, devotion to duty and for In·tiating a number of pr~grammes on the Fauna of India as also in building p public a\vareness about wildlife con­ servation. T. N. Kboshoo (former Secretal'Y, Department of 'Environment) Distinguished Scientist (CSIR) New Delhi 110003. EDITOR'S PREFACE After independence the responsibility for publication of "Fauna of British India" was passed on from the Secretary of State for India (to the British Government) to the Government of India and consequently the Director, Zoological Survey of India \vas entrusted with the task of editing the series. In keeping with the changed political set up. after August, 1947, the title of the series was also changed as "Fauna of India" Spiders, though ubiquitous, have remained a neglected group and about eighty five years ago a consolidated volume on entire Arachnida was published by Pocock (1900) in the Fauna of British India. During last 30 years, mainly through the work of Dr. B. K. Tikader, former Director, Zoological Survey of India, enormous amount of information on Indian spiders has been gathered. The first (1980) and second volume on spiders (1982) and the third volume on scorpions (1983) were published by Dr. Tikader. The present Handbook on spiders deals with and gives complete information about Arachnida and especial­ ly the" spiders of India. This Handbook is the sixth volume in this series and seventh and eighth are in press. Assignments have been made to other specialists to write further volume on groups so far not covered or which require up-to-date information and these are expeqted to be published within a couple of years. It is my privilege that I am able to \vrite the preface to this popular series of publication of 'Handbook'. It is hoped that this illustrated book will serve as an important and handy tool to specialists, research students and naturalists in India and abroad interested in the faSCinating study of this primi­ tive animals which are very important for their role of biolo­ gical control of insects fauna of our country. B. S. LAMBA Joint Director-in-Charge, Zoological Survey of India, Zoolo1lical Survey of India Calcutta AUTHOR'S PREFACE The HANDBOOK OF SPIDERS will serve the needs of beginners and mature students of Arachnida, especially the spiders in India and elsewhere for the study of Indian spiders as well as spider fauna of the oriental regions. It brings to­ gether for the first time in a concise form the wealth of infor­ mation on the structure, habits and classification of the Indian arachnids, mainly spiders. It emphasizes the interest and keen enjoyment in store for all who study' these creatures. The need for this Handbook of Spiders is realised by the fact that there are at present more serious students and amateurs interested in spiders and this is unique in the history of Indian Arachnology. In the course of my systematic and ecological studies on Indian spiders, since last three decades, I felt the necessity of a Handbook of spiders for the benefit of amateurs as \vell as students of Arachnology for an easy understanding of Indian spiders and to create interest in this subject. The present handbook deals with the near relatives of spiders) of the other orders of the class Arachnida to which the spiders belong. A detailed account of morphology of spiders, characters of taxonomic importance, habitat, food and feeding habits and other phenomenon of their lives avd keys to the families are given. List of higher categories and detailed characters and other informations of each family of spiders are also given ,vith proper illustrations. The list of the species so far known from Indian subcontinent has been included for ready reference. At the end I have included all available references on Indian spiders and their relatives. It \vould be a great pleasure for me if this handbook serve the purpose to some extent and stimulate abundant interest among the spider lovers and be used as a stepping stone for the future advancement in arachnology in India. "URNAN ABHAH B. K. TIKADER Salt Lake City, CI-B5, Sector-II, CALCUTTA-700 091 Dol ~Urnima, 15th March, 1987. CONTENTS Pages FOREWO.RD ....... ....... ....... ...... ..... .... ....... ........ ............... ...... 111 EDITOR'S PREFACE ............ .... .......................................... v AUTIlOR'S PREFACE.... .... ...... ........ ........ .......................... vii ACKN 0 WLEDG EMENTS ................................................. Xl IN1R.ODUCTION ............................................................... 1 Chapter 1. SPIDERS AND THEIR RELATIVES ................. 3 1. Systematic position ofthe Class Arachnida .................... 3 2. Orders of the Arachnida ............................................... 7 3. Characters of the Arachnida ......... '............................ eo.. 5 ] Chapter II. ANATOMY OF SPIDERS ................................. 55 1. External Anatomy of spider .......................................... 55 2. Internal Anatomy of spider ........................................... 60 Chapter III. LIFE OF SPIDERS. .......................................... 80 1. Development of spiders ............................................... 80 2. Food of spiders ............................................................ 81 3. Spiders and their prey.... ............................................... 83 4. Silk ofspiders ............................................................... 85 5. Types of webs of spiders ............................................... 90 6. Orb-weaving mechanism ofIndian Araneid spiders ....... 92 7. Methods of study ......................................................... 111 8. Collection and preservation ofspiders ........................... III 9. Dispersal device of spiders ..................................... .,.... 113 10. Nestsofspiders ............................................................ 114 11. Social spiders ............................................................... 116 12. Pairing of spiders. .... ........ ...... ...................... .......... ...... 1i 7 13. Motherhood ofspiders
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • FNN 314 Final Version.Pub
    Field Nats News No.314 Newsletter of the Field Naturalists Club of Victoria Inc. Editor: Joan Broadberry 03 9846 1218 1 Gardenia Street, Blackburn Vic 3130 Founding editor: Dr Noel Schleiger Telephone 03 9877 9860 Reg. No. A0033611X P.O. Box 13, Blackburn 3130 www.fncv.org.au Understanding Patron: The Honourable Linda Dessau, AC Our Natural World Newsletter email: [email protected] Est. 1880 (Office email: [email protected]) Governor of Victoria Office Hours: Monday and Tuesday 10.00 am - 4 pm. December 2020/January 2021 This is the last FNN for 2020 and I would From the President like to thank and congratulate the editorial As this issue covers two months, team for a sterling effort under very trying December 2020 and January circumstances. I encourage everyone to continue sending photos and observations 2021, the due date for FNN 315 to Joan for inclusion in forthcoming editions. I wish you all a safe and productive (the February edition) will be holiday season and hope to see you in person in 2021 when possible. 10 am Tuesday 5th January 2021. We will be upgrading the washrooms/toilets at the hall over the break to provide safe hand washing facilities as part of a covid-19 safety management strategy. A hot water system will be installed along with hands-free taps, hands-free soap dispensers and hands-free air dryers. Where possible, hands-free door opening will be adopted. The final procedures and overall strategy will depend upon the current regulatory requirements. We have been running a number of successful Zoom meetings and presentations and expect to continue them as needed in 2021 and beyond.
    [Show full text]
  • Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
    Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • Diversity of Spiders from Zolambi Region of Chandoli National Park
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 10, Issue 2 Ver. 1 (Mar -Apr. 2015), PP 30-33 www.iosrjournals.org Diversity of Spiders from Zolambi Region of Chandoli National Park Dr. Suvarna More Dept. of Zoology P. V. P. Mahavidyalaya, Kavathe Mahankal, Dist. -Sangli. (MS), India 416405 Abstract: Diversity of spiders from Zolambi region of Chandoli National Park in Western Ghats is studied for the first time. A total of 90 species belonging to 55 genera and 19 families are recorded from the study area during 2011-2013 with a dominance of Araneid, Salticid and Lycosid spiders. Key words: Spider diversity, Western Ghats I. Introduction Spiders comprise one of the largest orders of animals. The spider fauna of India has never been studied in its entirety despite of contributions by many arachnologists since Stoliczka (1869). The pioneering contribution on the taxonomy of Indian spiders is that of European arachnologist Stoliczka (1869). Review of available literature reveals that the earliest contribution by Blackwall (1867); Karsch (1873); Simon (1887); Thorell (1895) and Pocock (1900) were the pioneer workers of Indian spiders. They described many species from India. Tikader (1980, 1982), Tikader, described spiders from India. Tikader (1980) compiled a book on Thomisidae spiders of India, comprising two subfamilies, 25 genera and 115 species. Pocock (1900) and Tikader (1980, 1987) made major contributions to the Indian Arachnology, have high lightened spider studies to the notice of other researcher. Tikader (1987) also published the first comprehensive list of Indian spiders, which included 1067 species belonging to 249 genera in 43 families.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • Zootaxa, Araneae, Agelenidae, Agelena
    Zootaxa 1021: 45–63 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1021 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) On Agelena labyrinthica (Clerck, 1757) and some allied species, with descriptions of two new species of the genus Agelena from China (Araneae: Agelenidae) ZHI-SHENG ZHANG1,2*, MING-SHENG ZHU1** & DA-XIANG SONG1*** 1. College of Life Sciences, Hebei University, Baoding, Hebei 071002, P. R. China; 2. Baoding Teachers College, Baoding, Hebei 071051, P. R. China; *[email protected], **[email protected] (Corresponding author), ***[email protected] Abstract Seven allied species of the funnel-weaver spider genus Agelena Walckenaer, 1805, including the type species Agelena labyrinthica (Clerck, 1757), known to occur in Asia and Europe, are reviewed on the basis of the similarity of genital structures. Two new species are described: Agelena chayu sp. nov. and Agelena cuspidata sp. nov. The specific name A. silvatica Oliger, 1983 is revalidated. The female is newly described for A. injuria Fox, 1936. Two specific names are newly synony- mized: Agelena daoxianensis Peng, Gong et Kim, 1996 with A. silvatica Oliger, 1983, and A. sub- limbata Wang, 1991 with A. limbata Thorell, 1897. Some names are proposed for these species to represent some particular genital structures: conductor ventral apophysis, conductor median apo- physis, conductor distal apophysis and conductor dorsal apophysis for male palp and spermathecal head, spermathecal stalk, spermathecal base and spermathecal apophysis for female epigynum. Key words: genital structure, revalidation, synonym, review, taxonomy Introduction The funnel-weaver spider genus Agelena was erected by Walckenaer (1805) with the type species Araneus labyrinthicus Clerck, 1757.
    [Show full text]
  • Download Download
    Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally.
    [Show full text]
  • Frontenac Provincial Park
    FRONTENAC PROVINCIAL PARK One Malaise trap was deployed at Frontenac Provincial Park in 2014 (44.51783, -76.53944, 176m ASL; Figure 1). This trap collected arthropods for twenty weeks from May 9 – September 25, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 3372 BINs were obtained. Half of the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and true bugs (Hemiptera; Figure 2). In total, 750 arthropod species were named, representing 24.6% of the BINs from the site (Appendix 1). All but 1 of the BINs were assigned Figure 1. Malaise trap deployed at Frontenac at least to family, and 58.2% were assigned to a genus Provincial Park in 2014. (Appendix 2). Specimens collected from Frontenac represent 232 different families and 838 genera. Diptera Hymenoptera Lepidoptera Hemiptera Coleoptera Trombidiformes Psocodea Trichoptera Araneae Mesostigmata Entomobryomorpha Thysanoptera Neuroptera Orthoptera Sarcoptiformes Blattodea Mecoptera Odonata Symphypleona Ephemeroptera Julida Opiliones Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Frontenac. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Clubionidae Clubiona Clubiona obesa Dictynidae Emblyna Emblyna annulipes Emblyna sublata Gnaphosidae Cesonia Cesonia bilineata Linyphiidae Ceraticelus Ceraticelus fissiceps Pityohyphantes Pityohyphantes
    [Show full text]