Electronic Scale Elimination Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electronic Water Treatment an Alternative Solution to Removing Beerstone and Limescale
WATER & WASTEWATER solutions Electronic Water Treatment An alternative solution to removing beerstone and limescale By Jan de Baat Doelman, Scalewatcher North America Inc. eer contains 90 percent water and is the most important ingredient in determining its flavor. Water contains B calcium and is the most important mineral to the brewing process. The levels of calcium in local water have determined the type of beer produced. The different types of beer whether a light lager or a porter are for the most part due to the water profiles of the areas that made the styles famous. Calcium is by far the most influential mineral in the brewing process. It reacts with phosphates, forming precipitates that involve the release of hydrogen ions and in turn lowers the pH of the mash. Calcium is the principal mineral of hardness, an unhygienic surface that can harbor microorganisms. An which increases mash acidity and inverts malt phosphate. It unhygienic surface will infect the beer. Beerstone can cause stimulates enzyme activity and improves protein digestion. “off flavors” or shorten the shelf life of beer. In the worst case Calcium also extracts the fine bittering principles of the hop. scenario, undesirable organisms can ruin an entire batch of However, although calcium is the most important ingredient beer, costing time and money to replace. in brewing beer it also has a negative effect on brewing equipment as it creates beerstone and limescale. LIMESCALE Although calcium is an essential ingredient in beer production BEERSTONE it also creates limescale, which has a negative effect on heat Beerstone is calcium oxalate that appears in mash kegs, exchangers, reverse osmosis (RO), pipes and vessels used boiling kegs, tanks and lines. -
The American University in Cairo
The American University in Cairo School of Sciences and Engineering Magnetic Treatment of Brackish Water for Sustainable Agriculture By Kareem Khaled Hassan A Thesis Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Environmental Engineering Under the supervision of: Dr. Ahmed El- Gendy Dr. Mohamed Hamdy Nour October, 2015 ACKNOWLEDGMENT Firstly, I would like to express my sincere gratitude to my advisors Dr. Ahmed EL- Gendy and Dr. Mohamed Hamdy Nour for their continuous support of my M.Sc. study and related research. Their patience, motivation, and immense knowledge were the main drive to finalize this work. They were supporting me by all means of technical support. In addition to their unforgotten personal advices that reshaped my mentality and personality. Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Ashraf Ghanem, Prof. Basel Kamel and Dr. Sherien El-Baradei for their insightful comments, and their valuable questions which incented me to widen my research outcomes from various perspectives. I am very beholden to my fruitful parents Hanan Abdo and Khaled Hassan, who enlighten my life, and none of my achievements would have been possible without their love and encouragement. Also I would like to express my heart-felt gratitude to my sisters and brothers; Heba, Ola, Mahmoud and Abdel-Rahman. I warmly appreciate the generosity and understanding of my beloved family throughout this endeavor. I want to express my deep sincere and gratitude to Chemist Ahmed Saad for his help and technical support in the Environmental Engineering laboratory and for his appreciated advices. -
Reducing Formation of Caco3 Scales of Groundwater by Magnetic Treatment
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 01,January-2015 Reducing Formation of CaCO3 Scales of Groundwater by Magnetic Treatment MA Tantawy, Abdulaziz A Alomari, HMA Alghamdi, M A Tantawy RSA Alzahrani and SMA Alsehami Chemistry department Chemistry Department Faculty of Science, Minia University, Faculty of Science and Arts, Mukhwah, Baha University Minia, Egypt Mukhwah, Baha, KSA Abstract— The aim of this paper is to investigate the effect of thermal transfer coefficient in heat exchangers. Scale can clog magnetic treatment on the ability of groundwater to form scales. pipes and fittings. Scale deposits can also increase corrosion Sample of groundwater was provided from well located at of metal pipes and fittings. Hard water can be treated by Ghamid Al Zanad district and used in this study. Magnetic chemical and physical methods to reduce the total dissolved treatment process was carried out using a laboratory made solids of water and scale. The chemical method such as soda- magnetic treatment system using three neodymium magnets of total magnetic strength of xxx tesla. Groundwater sample was lime softening, cation exchange and complexing agents are treated by passing it throw the magnetic treatment system with a very effective however employs chemical product harmful to rate of 10 liters per hour. The treatment was repeated twice. The the environment and human health [2]. The magnetic ability of scale formation of groundwater was assessed by treatment of water involves the use of magnetic field from measuring scale weight, hardness, total dissolved solids and pH strong magnets to intercept the water flow path. -
Reduction of Scaling in Industrial Water Cooling Circuits by Means of Magnetic and Electrostatic Treatment
REDUCTION OF SCALING IN INDUSTRIAL WATER COOLING CIRCUITS BY MEANS OF MAGNETIC AND ELECTROSTATIC TREATMENT WRC Report submitted to the Water Research Commission bv PP Coetzee and J Haarhoff Rand Afrikaans University Department of Chemistry and Department of Civil Engineering WRC Report No. 612/1/97 ISBN 1 86845 326 X TABLE OF CONTENTS ACKNOWLEDGEMENTS iv LIST OF TABLES v LIST OF FIGURES vi LIST OF ABBREVIATIONS vii EXECUTIVE SUMMARY viii INTRODUCTION 1 LITERATURE REVIEW 2 The basic claims and effects 3 Crystal morphology Particle size Rate of crystallization Descaling Water structure Flocculation Impurities Biological effects Memory effect Zeta potential Infrared absorption of water Solubility of minerals Surface tension and viscosity Hydration of diamagnetic ions PWT functional types 6 Design details Operating conditions Industrial investigations 9 Mechanistic explanations 11 Model 1: The nucleation and crystal growth model Model 2: The water structure model LABORATORY INVESTIGATIONS 14 Experimental criteria and design 14 Parameters that were controlled Parameters that were tested Experimental procedures Cleaning procedures Preparation of test solutions The batch method for determining crystallization kinetics Determination of crystal morphology and crystal structure Physical water treatment devices Type: High frequency electric field Type: Permanent magnet Type: Catalytic converter Type: Permanent magnet with inert coating Typical laboratory test loops Results and discussion 22 Precipitation chemistry of CaCO3 Crystallization kinetics -
Magnetics Report
The Water Quality Association The Water Quality Association (WQA) is the not-for-profit trade association representing the household, commercial, light industrial, and small system water treatment industry. WQA’s primary objectives are to: • Ensure fairness in legislative, regulatory, and media coverage of the industry, • Foster dedication to integrity by expanding education opportunities, enhancing technical expertise, substantiation of product performances, and ethical standards in responsible marketing and advertising, and • Broaden acceptance of the industry through consumer confidence and trust in water treatment products and services. THE WATER QUALITY ASSOCIATION 4151 Naperville Road Lisle, Illinois 60532-1088 Phone: 630 505 0160 Fax: 630 505 9637 Web site Address: www.wqa.org i TABLE OF CONTENTS 1. Preface.................................................................................................................. 1 2. Introduction.......................................................................................................... 2 3. Summaries of 34 Scientific Papers ...................................................................... 3 4. Discussion............................................................................................................ 27 5. Conclusion ........................................................................................................... 30 6. Bibliography ........................................................................................................ 32 ii PREFACE -
Magnetic Treatment of Brackish Water for Sustainable Agriculture
American University in Cairo AUC Knowledge Fountain Theses and Dissertations 2-1-2015 Magnetic treatment of brackish water for sustainable agriculture Kareem Hassan Follow this and additional works at: https://fount.aucegypt.edu/etds Recommended Citation APA Citation Hassan, K. (2015).Magnetic treatment of brackish water for sustainable agriculture [Master’s thesis, the American University in Cairo]. AUC Knowledge Fountain. https://fount.aucegypt.edu/etds/122 MLA Citation Hassan, Kareem. Magnetic treatment of brackish water for sustainable agriculture. 2015. American University in Cairo, Master's thesis. AUC Knowledge Fountain. https://fount.aucegypt.edu/etds/122 This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more information, please contact [email protected]. The American University in Cairo School of Sciences and Engineering Magnetic Treatment of Brackish Water for Sustainable Agriculture By Kareem Khaled Hassan A Thesis Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Environmental Engineering Under the supervision of: Dr. Ahmed El- Gendy Dr. Mohamed Hamdy Nour October, 2015 ACKNOWLEDGMENT Firstly, I would like to express my sincere gratitude to my advisors Dr. Ahmed EL- Gendy and Dr. Mohamed Hamdy Nour for their continuous support of my M.Sc. study and related research. Their patience, motivation, and immense knowledge were the main drive to finalize this work. They were supporting me by all means of technical support. In addition to their unforgotten personal advices that reshaped my mentality and personality. -
Got Scale? Get the Facts!
EVERPURE® GOT SCALE? GET THE FACTS! “Scale” is anything and everything include hydroxide scale, silica FACT: Water filters alone do solid that is deposited onto surfaces scale, even phosphate scale, plus not remove scale. Water filters that come into contact with water. ordinary dirt, rust, etc. that settle as with scale inhibitors treat water The most important and common sediment and get incorporated into so that scale does not form in type is limescale, but other types other scale types. water-using equipment. DIFFERENT KINDS OF SCALE Limescale is limestone that is first The changes that cause limescale to dissolved from the ground and then precipitate are: caused to re-form later in water- • pH increase (a pH of 8 is ten times using equipment when the water more scale forming than a pH of 7) chemistry changes. It is mostly calcium carbonate (CaCO3), but in • high temperature many places magnesium carbonate • any increase in concentration of may account for up to 1/3 of the total. hardness, TDS, and/or alkalinity Hydroxide Scale is a fluffy, cloud- like “floc” that forms around ions of certain metals at high pH and then settles into a gooey sludge that sometimes acts like a cement. Examples are iron hydroxide floc and aluminum hydroxide floc. Silica Scale is essentially glass, and it forms wherever soluble silica levels above about 15 ppm encounter a heat transfer surface, such as is found in a coffee brewer. Phosphate Scale occurs only if to ortho- (single) phosphate by polyphosphate treatment is flawed. excessive storage temperature, If the dosage is excessive, calcium ordinary calcium phosphate can polyphosphate may precipitate. -
THE CHEMISTRY of LIMESCALE Limescale Can Clog up Your Kitchen Appliances, and Build up on Your Bathroom Surfaces
THE CHEMISTRY OF LIMESCALE Limescale can clog up your kitchen appliances, and build up on your bathroom surfaces. What actually causes this build up? Here’s a quick look at the chemistry behind limescale formation, chemicals that can help prevent it, and others that help to remove it. WATER HARDNESS WATER SOFTENERS IN OUT CALCIUM IONS SULFATE IONS Na+ Na+ Na+ Na+ O OH 2+ – O O 2+ + 2+ Na Ca Ca + Ca2+ Ca2+ Na+ Na 2+ Mg 2– HCO3 Ca2+ Na+ HO OH + + + + Ca SO4 Na Na Na Na OH MAGNESIUM IONS BICARBONATE IONS ION EXCHANGE RESIN CITRIC ACID ‘Hard water’ is water which contains a large amount of mineral Appliances such as dishwashers can soften water ions, most commonly calcium and magnesium ions. Permanent by passing it through an ion exchange resin. This hard water is mainly due to dissolved calcium and magnesium exchanges scale-causing metal ions in the water for sulfates. Temporary hard water is mainly due to dissolved calcium bicarbonate. Temporary hardness can be removed by boiling the sodium ions. Compounds such as citric acid and sodium water, but permanent hardness cannot. sesquicarbonate can be used to soften laundry water. LIMESCALE & SOAP SCUM 2+ 2– REMOVING LIMESCALE 2+ – O Ca (aq) + 2HCO3 (aq) CaCO3(s) + CO2(aq) + H2O(l) Ca CO3 O O H N S OH HO P OH Calcium bicarbonate can decompose when heated to form insoluble OH 2 H Cl Limescale consists mainly of calcium calcium carbonate – known in this context as limescale – along OH O OH with water and carbon dioxide. -
Fouling 7 01.Pdf
LIMESCALE By Jan de Baat Doelman ControllingControlling ScaleScale DepositionDeposition andand IndustrialIndustrial FoulingFouling ook at the heating element of a growth of algae and bacteria (bio-fouling), washing machine or dishwasher the consolidation of loose particles (particu- Lin a hard water area and you will late fouling, [e.g., corrosion by products]) see a white encrustation containing hard- and the accumulation of “coke” like deposits ness salts. This is commonly referred to as (chemical reaction fouling). limescale and is an example of domestic fouling. The limescale (calcium carbonate) What Can Go Wrong? that deposits on the heating element will, if Process managers should be concerned untreated, reduce the efficiency of the about fouling. Deposits are an insulating layer machine, induce corrosion of the element on heat transfer surfaces. These deposits lead and ultimately lead to appliance failure. to more power being consumed or to the Industrial fouling poses a far greater installation of heavier duty, more expensive L Treatment options for limescale build-up include problem than in the domestic sector. This heat exchangers to compensate. It is estimat- inhibitor chemicals, descalers, ion exchange, is because huge volumes of fluids are han- ed that 40 percent more energy is needed to physical cleaning, magnets and electronic devices. dled and the systems that contain the fluids heat water in a system fouled with 0.25″ of can become fouled. The quality of water calcium carbonate scale. Scaled boiler tubes to maintain throughput volumes but this is streams used by industry varies widely and mechanically fail as a result of overheating, only a temporary solution to the problem. -
Research on the Influence of Alternating Electromagnetic Field on Conductivity of Hard Water
Int. J. Electrochem. Sci., 11 (2016) 3123 - 3136 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Research on the Influence of Alternating Electromagnetic Field on Conductivity of Hard Water Yong Han1 , Xiao Wang2 and Shutao Wang1,* 1Measurement Technology and Instrumentation Key Laboratory of Hebei Province, School of Electrical Engineering, Yanshan University, 438 Hebei Street, Hai Gang, Qinhuangdao 066004, China 2School of Science, Harbin Institute of Technology, 92 West street, Nan Gang, Harbin, 150001, China * E-mail: [email protected] Received: 15 January 2016 / Accepted: 22 February 2016 / Published: 1 March 2016 The influence to the conductivity of the hard water caused by alternating electromagnetic field was investigated. Through experimental research it was found that the hydrolysis reaction in the hard aqueous solution was promoted during alternating electromagnetic field treatment. The promoted hydrolysis reaction was considered as the main cause for the change of the conductivity, and further more was considered as the anti-fouling mechanism of alternating electromagnetic field treatment because promoted hydrolysis reaction decreased hard water's pH value. Through the experiment research the optimized frequency and output power of excitation signal were also investigated to make more promotion to the hydrolysis reaction in solution. Keywords: Alternating electromagnetic field; Conductivity; Anti-fouling; Calcium carbonate; Hydrolysis reaction 1. INTRODUCTION Scale problem is a key problem to the heat exchanger, such as cooling tower and boiler. The scale problem roots on using hard water. The alternating electromagnetic field anti-fouling (AEFA) technology is a very useful physical water treatment method to the scale problem. But to the best knowledge, the anti-fouling mechanism of AEFA technology is still not all clear as yet. -
Strong Gradients in Weak Magnetic Fields Induce DOLLOP Formation in Tap Water
water Article Strong Gradients in Weak Magnetic Fields Induce DOLLOP Formation in Tap Water Martina Sammer 1, Cees Kamp 2, Astrid H. Paulitsch-Fuchs 1, Adam D. Wexler 1, Cees J. N. Buisman 1 and Elmar C. Fuchs 1,* 1 Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; [email protected] (M.S.); [email protected] (A.H.P.-F.); [email protected] (A.D.W.); [email protected] (C.J.N.B.) 2 Kamp Consult, Deventerweg 81, 7203 AD Zutphen, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-58-284-3162 Academic Editor: Wilhelm Püttmann Received: 21 January 2016; Accepted: 23 February 2016; Published: 3 March 2016 Abstract: In 2012 Coey proposed a theory on the mechanism of magnetic water treatment based on the gradient of the applied field rather than its absolute strength. We tested this theory by measuring the effect of very weak field magnets (¤ 10 G) containing strong magnetic inhomogeneities (DB = 770 G¨m´1 (WCM 62081992) and 740 G¨m´1 (WCM 62083545)) on tap water samples by the use of electric impedance spectroscopy (EIS) and laser scattering. Our results show an increased formation of nm-sized prenucleation clusters (dynamically ordered liquid like oxyanion polymers or “DOLLOPs”) due to the exposure to the magnetic field and thus are consistent with Coey’s theory which is therefore also applicable to very weak magnetic fields as long as they contain strong gradients. Keywords: magnetic water treatment; EIS; DOLLOPs 1. Introduction 1.1. -
Water Hardness & Limescale
Water Hardness & Limescale Corrosion Scale "Slight corrosion of iron promotes the precipitation of calcium carbonate (Lime-scale), 2+ since the Fe ions enable the nucleation of CaCO3 at low super-saturations" E.REVAULT, J.BARON, J.LÃ DION, Influence des ions Fe2+ sur le pouvoir entartrant de l'eau. Lime-scale (Hard water) When rain falls through the atmosphere, it takes into solution a certain amount of carbon dioxide making it slightly acidic. This acidity together with the fact that pure water such as rain water is a good solvent causes substances in the ground such as lime stone and chalk to be dissolved. They react with the acidity of the carbonic acid H2CO3 to form soluble salts. These salts exist in the main as either relatively insoluble carbonates or quite soluble bicarbonates of calcium and magnesium. Carbonates are said to be substances which cause "permanent" hardness and bicarbonates cause "temporary hardness". The latter cause most of the problems associated with hard water since the application of heat causes them to break down according to the following equation causing scale. Calcium Bicarbonate plus heat gives Calcium carbonate plus water plus carbon dioxide. Ca (HCO3)2 + HEAT CaCO3 + H2O + CO2 This reverses the original reaction between carbonic acid and the calcium carbonate. The insoluble calcium carbonate is deposited upon heating surfaces and pipes as a result. In the main, chemical methods have been used to combat the expensive and inconvenient problems, which arise as a result of using hard water. Water softeners which use salt to regenerate special resins, which remove calcium ions from water are now less environmentally acceptable, in some countries they have been banned due to the contamination of ground water which contains large amounts of salt effluent from water softeners.