Distributed Source Coding and Its Applications in Relaying-Based Transmission

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Source Coding and Its Applications in Relaying-Based Transmission Received January 10, 2016, accepted January 26, 2016, date of publication March 2, 2016, date of current version May 11, 2016. Digital Object Identifier 10.1109/ACCESS.2016.2537739 Distributed Source Coding and Its Applications in Relaying-Based Transmission ABDULAH JEZA ALJOHANI, SOON XIN NG, (Senior Member, IEEE), AND LAJOS HANZO, (Fellow, IEEE) University of Southampton, Southampton SO17 1BJ, U.K. Corresponding author: L. Hanzo ([email protected]) This work was supported in part by the European Research Council within the BeamMeUp Project, in part by the U.K. Engineering and Physical Sciences Research Council under Grant EP/Noo4558/1 and Grant EP/L018659/1, in part by the Saudi Ministry of Higher Education and in part by the Royal Society's Wolfson Research Merit Award. ABSTRACT Distributed source coding (DSC) schemes rely on separate encoding but joint decoding of statistically dependent sources, which exhibit correlation. DSC has numerous promising applications ranging from reduced-complexity handheld video communications to onboard hyperspectral image coding under computational limitations. The concept of separate encoding at the first sight compromises the attainable encoding performance. However, the DSC theory proves that independent encoding can in fact be designed as efficiently as joint encoding, as long as joint decoding is allowed. More specifically, distributed joint source- channel coding (DJSC) is associated with the scenario, where the correlated source signals are transmitted through a noisy channel. In this paper, we present a concise historic background of DSC concerning both its theory and its practical aspects. In addition, a series of turbo trellis-coded modulation (TTCM)-aided DJSC-based cooperative transmission schemes are proposed. DJSC scheme is conceived for the transmission of a pair of correlated sources to a destination node (DN). The first source sequence is TTCM encoded, and then, it is compressed before it is transmitted both over a Rayleigh fading channel, where the second source signal is assumed to be perfectly decoded side-information at the DN for the sake of improving the achievable decoding performance of the first source. The proposed scheme is capable of performing reliable communications for various levels of correlation near to the theoretical Slepian–Wolf/Shannon (SW/S) limit. Pursuing our objective of designing practical DJSC schemes, we further extended the above-mentioned arrangement to a more realistic cooperative communication system, where the pair of correlated sources are transmitted to a DN with the aid of a relay node (RN). Explicitly, the pair of correlated source sequences are TTCM encoded and compressed before transmission over a Rayleigh fading multiple access channel, where our proposed scheme is capable of operating within 0:55 dB from the SW/S limit for a correlation coefficient value of ρ D 0:8, and within 0:07 bits of the minimum SW compression rate. The RN transmits both users' signal with the aid of a powerful superposition modulation technique that judiciously allocates the transmit power between the two signals. The correlation is beneficially exploited at both the RN and the DN using our powerful iterative joint decoder, which is optimized using extrinsic information transfer characteristics charts. INDEX TERMS Distributed joint source coding, distributed source coding, Slepian-Wolf Coding, joint source-channel decoding, TTCM, superposition modulation. I. INTRODUCTION both satellites, which are referred to as STEREO Ahead Let us commence by considering the stereographic images and STEREO Behind, is shown in Fig. 2. On the 20th of of the Sun in Fig. 1, which were captured using a pair September 2013 they were more than 50 million km away of satellites that are part of NASA's Solar Terrestrial from each other. In such a scenario, is it not readily fea- Relations Observatory (STEREO) project.1 The location of sible for them to communicate with each other. Similarly, each satellite has very limited communications with planet 1The STEREO project aims for providing revolutionary stereoscopic imaging of the sun in order to reveal the solar surface activities, such as the Earth [1], [3]. Thus, the employment of source compression Coronal Mass Ejection (CME) [1], [2]. is desirable, but the encoding of images has to be carried 2169-3536 2016 IEEE. Translations and content mining are permitted for academic research only. 1940 Personal use is also permitted, but republication/redistribution requires IEEE permission. VOLUME 4, 2016 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. A. J. Aljohani et al.: DSC and Its Applications in Relaying-Based Transmission FIGURE 1. Stereographic solar images taking by NASA's both STEREO satellites Ahead and Behind c NASA [1]. (a) STEREO Ahead solar image. (b) STEREO Behind solar image. FIGURE 3. Decoded stereographic images of Fig. 1 after transmission over uncorrelated Rayleigh fading channels at SNR D 1:0 dB. (a) Ahead view, DJSC of Sec. V-B. (b) Behind view, DJSC of Sec. V-B. (c) Ahead view, non-DJSC benchmark of Sec. V-B. (d) Behind view, non-DJSC benchmark of Sec. V-B. attaining perfect images recovery. By contrast, for the same amount of transmit power, both the Ahead and Behind images were severely corrupted upon using exactly the same coding FIGURE 2. Positions of both STEREO satellites Ahead and Behind scheme dispensing with joint decoding. Thus, exploiting the recorded on the 20th September 2013 c NASA [1]. correlation between the images by jointly decoding them has lead to a significant power reduction, while maintaining reliable communication. This room for improvement can be out separately at the satellites, while decoding may be car- also utilised for further source sequence compression, as it is ried out jointly at the Earth station, where both the power going to be illustrated in the subsequent sections. and computational constraints are relaxed. Intuitively, sepa- rate encoding would only allow separate compression of the II. DISTRIBUTED SOURCE CODING images of the distant satellites even though there is substantial DSC refers to the problem of compressing several phys- correlation between their images. However, the Distributed ically separated, but correlated sources, which are unable Source Coding (DSC) theorem of [4] states that separate to communicate with each other by exploiting that the encoding may be invoked instead of joint encoding without receiver can perform joint decoding of the encoded any loss of compression efficiency as long as the correlation signals [3], [4], [7]–[9]. However, Distributed Joint Source- among the sources is preserved throughout their transmission Channel coding (DJSC) is specific to the case, when the to the receiver, provided that they are jointly decoded [4]–[6]. correlated sources signals are transmitted over noisy chan- To offer a glimpse on the benefits of applying the DSC nels [8], [10]–[17]. More explicitly, a single channel code technique, we have separately encoded both satellite views of is employed for both source compression (via Slepian-Wolf Fig. 1 before their transmission over a uncorrelated Rayleigh Coding (SWC)) and channel error protection. Typically, the 2 fading channel. As Fig. 3 illustrates, when joint decoding is channel code in DJSC schemes is jointly designed to per- activated by invoking our decoder of Sec. V-B.1, no higher form both source compression as well as error protection. than 1:0 dB Signal-to-Noise Ratio (SNR) is required for Intuitively, the joint source-channel coding approaches would be less powerful than their separate counterparts [10], [11]. 2Both images were encoded separately using 1=2-rate Turbo However, this deficiency could be compensated through Trellis-Coded Modulation (TTCM) and decoded jointly using the decoder of Sec. V-B which is illustrated in Fig. 26, readers can have a quick look at exploiting the correlation between the sources at the joint Table 8 for main simulations parameters summary. decoder [10], [11]. VOLUME 4, 2016 1941 A. J. Aljohani et al.: DSC and Its Applications in Relaying-Based Transmission For both DSC and DJSC schemes the ultimate goal is to exploit the existing correlation for the sake of minimis- ing the transmission energy required by the sources, while maintaining reliable communication. From an architectural perspective, distributed techniques may be categorised into two main families [3], [10], [18], namely the class of oper- ating in the presence of perfect side-information and in the absence of perfect side-information schemes. The schematic of the former [3], [9], [18] is shown in Fig. 4, where the source sequence fb1g is compressed before its transmission, f g FIGURE 5. Schematic diagram of dispensing with perfect while the correlated source signal b2 is assumed to be side-information DSC. flawlessly available at the decoder, but not at the source fb1g. By contrast, in the scenario dispensing with perfect side- information both sources are compressed at a rate lower than their corresponding entropy rates, in which any point between the locations A and B of Fig. 7 can be reached. A special case of the latter scenario, when both users are compressed at the same rate, represented by point C in Fig. 7. The encoder has to compress fb1g without knowing fb2g, yet the decoder is capable of exploiting the knowledge of fb2g for recovering fb1g. FIGURE 4. Schematic diagram of relying on perfect side-information DSC. The rest of the paper is organised as seen in Fig. 6. Explicitly, the main principles as well as the historical back- ground concerning both the theory and practice of DSC are presented in Sec. II. Then, our source correlation model is illustrated in Sec. III. Next, in Sec. IV we discuss our DJSC scheme under the idealized simplifying assumption of having FIGURE 6. Paper structure. perfect side information, before conceiving our cooperative DJSC scheme in Sec. V. Finally, we conclude our discourse in Sec.
Recommended publications
  • Lecture 3: Entropy, Relative Entropy, and Mutual Information 1 Notation 2
    EE376A/STATS376A Information Theory Lecture 3 - 01/16/2018 Lecture 3: Entropy, Relative Entropy, and Mutual Information Lecturer: Tsachy Weissman Scribe: Yicheng An, Melody Guan, Jacob Rebec, John Sholar In this lecture, we will introduce certain key measures of information, that play crucial roles in theoretical and operational characterizations throughout the course. These include the entropy, the mutual information, and the relative entropy. We will also exhibit some key properties exhibited by these information measures. 1 Notation A quick summary of the notation 1. Discrete Random Variable: U 2. Alphabet: U = fu1; u2; :::; uM g (An alphabet of size M) 3. Specific Value: u; u1; etc. For discrete random variables, we will write (interchangeably) P (U = u), PU (u) or most often just, p(u) Similarly, for a pair of random variables X; Y we write P (X = x j Y = y), PXjY (x j y) or p(x j y) 2 Entropy Definition 1. \Surprise" Function: 1 S(u) log (1) , p(u) A lower probability of u translates to a greater \surprise" that it occurs. Note here that we use log to mean log2 by default, rather than the natural log ln, as is typical in some other contexts. This is true throughout these notes: log is assumed to be log2 unless otherwise indicated. Definition 2. Entropy: Let U a discrete random variable taking values in alphabet U. The entropy of U is given by: 1 X H(U) [S(U)] = log = − log (p(U)) = − p(u) log p(u) (2) , E E p(U) E u Where U represents all u values possible to the variable.
    [Show full text]
  • An Introduction to Information Theory
    An Introduction to Information Theory Vahid Meghdadi reference : Elements of Information Theory by Cover and Thomas September 2007 Contents 1 Entropy 2 2 Joint and conditional entropy 4 3 Mutual information 5 4 Data Compression or Source Coding 6 5 Channel capacity 8 5.1 examples . 9 5.1.1 Noiseless binary channel . 9 5.1.2 Binary symmetric channel . 9 5.1.3 Binary erasure channel . 10 5.1.4 Two fold channel . 11 6 Differential entropy 12 6.1 Relation between differential and discrete entropy . 13 6.2 joint and conditional entropy . 13 6.3 Some properties . 14 7 The Gaussian channel 15 7.1 Capacity of Gaussian channel . 15 7.2 Band limited channel . 16 7.3 Parallel Gaussian channel . 18 8 Capacity of SIMO channel 19 9 Exercise (to be completed) 22 1 1 Entropy Entropy is a measure of uncertainty of a random variable. The uncertainty or the amount of information containing in a message (or in a particular realization of a random variable) is defined as the inverse of the logarithm of its probabil- ity: log(1=PX (x)). So, less likely outcome carries more information. Let X be a discrete random variable with alphabet X and probability mass function PX (x) = PrfX = xg, x 2 X . For convenience PX (x) will be denoted by p(x). The entropy of X is defined as follows: Definition 1. The entropy H(X) of a discrete random variable is defined by 1 H(X) = E log p(x) X 1 = p(x) log (1) p(x) x2X Entropy indicates the average information contained in X.
    [Show full text]
  • L11-IT-Handouts.Pdf
    Today’s Topics Information Theory • Communication Channel • Noiseless binary channel Mohamed Hamada • Binary Symmetric Channel (BSC) Software Engineering Lab The University of Aizu • Symmetric Channel Email: [email protected] URL: http://www.u-aizu.ac.jp/~hamada • Mutual Information • Channel Capacity 1 Digital Communication Systems Digital Communication Systems 1. Huffman Code. 1. Memoryless 2. Two-pass Huffman Code. 2. Stochastic 3. Lemple-Ziv Code. 3. Markov 4. Fano code. Information User of Information 4. Ergodic User of Source 5. Shannon Code. Information Source Information 6. Arithmetic Code. Source Source Source Source Encoder Decoder Encoder Decoder Channel Channel Channel Channel Encoder Decoder Encoder Decoder Modulator De-Modulator Modulator De-Modulator Channel Channel 2 3 INFORMATION TRANSFER ACROSS CHANNELS Communication Channel Sent Received A (discrete ) channel is a system consisting of an input alphabet messages messages X and output alphabet Y and a probability transition matrix symbols p(y|x) that expresses the probability of observing the output symbol y given that we send the symbol x Channel Channel Source Source Channel sourcecoding coding decoding decoding receiver Examples of channels: Compression Error Correction Decompression CDs, CD – ROMs, DVDs, phones, Source Entropy Channel Capacity Ethernet, Video cassettes etc. Rate vs Distortion Capacity vs Efficiency 4 5 1 Communication Channel Noiseless binary channel Noiseless binary channel Channel Channel 00 input x p(y|x) output y Transition probabilities 11 Memoryless: - output only on input Transition Matrix - input and output alphabet finite 01 p(y | x) = 0 10 1 01 6 7 Binary Symmetric Channel (BSC) Binary Symmetric Channel (BSC) (Noisy channel) (Noisy channel) 00BSC Channel 1 p 1-p 1-p Error Source 00 e BSC Channel p 110 y = x e p 1-p xi i i + 11 Input Output p 1-p 00 1-p 1 1 p BSC Channel 8 9 Symmetric Channel (Noisy channel) Channel XY In the transmission matrix of this channel , all the rows are permutations of each other and so the columns.
    [Show full text]
  • Package 'Infotheo'
    Package ‘infotheo’ February 20, 2015 Title Information-Theoretic Measures Version 1.2.0 Date 2014-07 Publication 2009-08-14 Author Patrick E. Meyer Description This package implements various measures of information theory based on several en- tropy estimators. Maintainer Patrick E. Meyer <[email protected]> License GPL (>= 3) URL http://homepage.meyerp.com/software Repository CRAN NeedsCompilation yes Date/Publication 2014-07-26 08:08:09 R topics documented: condentropy . .2 condinformation . .3 discretize . .4 entropy . .5 infotheo . .6 interinformation . .7 multiinformation . .8 mutinformation . .9 natstobits . 10 Index 12 1 2 condentropy condentropy conditional entropy computation Description condentropy takes two random vectors, X and Y, as input and returns the conditional entropy, H(X|Y), in nats (base e), according to the entropy estimator method. If Y is not supplied the function returns the entropy of X - see entropy. Usage condentropy(X, Y=NULL, method="emp") Arguments X data.frame denoting a random variable or random vector where columns contain variables/features and rows contain outcomes/samples. Y data.frame denoting a conditioning random variable or random vector where columns contain variables/features and rows contain outcomes/samples. method The name of the entropy estimator. The package implements four estimators : "emp", "mm", "shrink", "sg" (default:"emp") - see details. These estimators require discrete data values - see discretize. Details • "emp" : This estimator computes the entropy of the empirical probability distribution. • "mm" : This is the Miller-Madow asymptotic bias corrected empirical estimator. • "shrink" : This is a shrinkage estimate of the entropy of a Dirichlet probability distribution. • "sg" : This is the Schurmann-Grassberger estimate of the entropy of a Dirichlet probability distribution.
    [Show full text]
  • Arxiv:1907.00325V5 [Cs.LG] 25 Aug 2020
    Random Forests for Adaptive Nearest Neighbor Estimation of Information-Theoretic Quantities Ronan Perry1, Ronak Mehta1, Richard Guo1, Jesús Arroyo1, Mike Powell1, Hayden Helm1, Cencheng Shen1, and Joshua T. Vogelstein1;2∗ Abstract. Information-theoretic quantities, such as conditional entropy and mutual information, are critical data summaries for quantifying uncertainty. Current widely used approaches for computing such quantities rely on nearest neighbor methods and exhibit both strong performance and theoretical guarantees in certain simple scenarios. However, existing approaches fail in high-dimensional settings and when different features are measured on different scales. We propose decision forest-based adaptive nearest neighbor estimators and show that they are able to effectively estimate posterior probabilities, conditional entropies, and mutual information even in the aforementioned settings. We provide an extensive study of efficacy for classification and posterior probability estimation, and prove cer- tain forest-based approaches to be consistent estimators of the true posteriors and derived information-theoretic quantities under certain assumptions. In a real-world connectome application, we quantify the uncertainty about neuron type given various cellular features in the Drosophila larva mushroom body, a key challenge for modern neuroscience. 1 Introduction Uncertainty quantification is a fundamental desiderata of statistical inference and data science. In supervised learning settings it is common to quantify uncertainty with either conditional en- tropy or mutual information (MI). Suppose we are given a pair of random variables (X; Y ), where X is d-dimensional vector-valued and Y is a categorical variable of interest. Conditional entropy H(Y jX) measures the uncertainty in Y on average given X. On the other hand, mutual information quantifies the shared information between X and Y .
    [Show full text]
  • GAIT: a Geometric Approach to Information Theory
    GAIT: A Geometric Approach to Information Theory Jose Gallego Ankit Vani Max Schwarzer Simon Lacoste-Julieny Mila and DIRO, Université de Montréal Abstract supports. Optimal transport distances, such as Wasser- stein, have emerged as practical alternatives with theo- retical grounding. These methods have been used to We advocate the use of a notion of entropy compute barycenters (Cuturi and Doucet, 2014) and that reflects the relative abundances of the train generative models (Genevay et al., 2018). How- symbols in an alphabet, as well as the sim- ever, optimal transport is computationally expensive ilarities between them. This concept was as it generally lacks closed-form solutions and requires originally introduced in theoretical ecology to the solution of linear programs or the execution of study the diversity of ecosystems. Based on matrix scaling algorithms, even when solved only in this notion of entropy, we introduce geometry- approximate form (Cuturi, 2013). Approaches based aware counterparts for several concepts and on kernel methods (Gretton et al., 2012; Li et al., 2017; theorems in information theory. Notably, our Salimans et al., 2018), which take a functional analytic proposed divergence exhibits performance on view on the problem, have also been widely applied. par with state-of-the-art methods based on However, further exploration on the interplay between the Wasserstein distance, but enjoys a closed- kernel methods and information theory is lacking. form expression that can be computed effi- ciently. We demonstrate the versatility of our Contributions. We i) introduce to the machine learn- method via experiments on a broad range of ing community a similarity-sensitive definition of en- domains: training generative models, comput- tropy developed by Leinster and Cobbold(2012).
    [Show full text]
  • On a General Definition of Conditional Rényi Entropies
    proceedings Proceedings On a General Definition of Conditional Rényi Entropies † Velimir M. Ili´c 1,*, Ivan B. Djordjevi´c 2 and Miomir Stankovi´c 3 1 Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Beograd, Serbia 2 Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd, Tucson, AZ 85721, USA; [email protected] 3 Faculty of Occupational Safety, University of Niš, Carnojevi´ca10a,ˇ 18000 Niš, Serbia; [email protected] * Correspondence: [email protected] † Presented at the 4th International Electronic Conference on Entropy and Its Applications, 21 November–1 December 2017; Available online: http://sciforum.net/conference/ecea-4. Published: 21 November 2017 Abstract: In recent decades, different definitions of conditional Rényi entropy (CRE) have been introduced. Thus, Arimoto proposed a definition that found an application in information theory, Jizba and Arimitsu proposed a definition that found an application in time series analysis and Renner-Wolf, Hayashi and Cachin proposed definitions that are suitable for cryptographic applications. However, there is still no a commonly accepted definition, nor a general treatment of the CRE-s, which can essentially and intuitively be represented as an average uncertainty about a random variable X if a random variable Y is given. In this paper we fill the gap and propose a three-parameter CRE, which contains all of the previous definitions as special cases that can be obtained by a proper choice of the parameters. Moreover, it satisfies all of the properties that are simultaneously satisfied by the previous definitions, so that it can successfully be used in aforementioned applications.
    [Show full text]
  • Noisy Channel Coding
    Noisy Channel Coding: Correlated Random Variables & Communication over a Noisy Channel Toni Hirvonen Helsinki University of Technology Laboratory of Acoustics and Audio Signal Processing [email protected] T-61.182 Special Course in Information Science II / Spring 2004 1 Contents • More entropy definitions { joint & conditional entropy { mutual information • Communication over a noisy channel { overview { information conveyed by a channel { noisy channel coding theorem 2 Joint Entropy Joint entropy of X; Y is: 1 H(X; Y ) = P (x; y) log P (x; y) xy X Y 2AXA Entropy is additive for independent random variables: H(X; Y ) = H(X) + H(Y ) iff P (x; y) = P (x)P (y) 3 Conditional Entropy Conditional entropy of X given Y is: 1 1 H(XjY ) = P (y) P (xjy) log = P (x; y) log P (xjy) P (xjy) y2A "x2A # y2A A XY XX XX Y It measures the average uncertainty (i.e. information content) that remains about x when y is known. 4 Mutual Information Mutual information between X and Y is: I(Y ; X) = I(X; Y ) = H(X) − H(XjY ) ≥ 0 It measures the average reduction in uncertainty about x that results from learning the value of y, or vice versa. Conditional mutual information between X and Y given Z is: I(Y ; XjZ) = H(XjZ) − H(XjY; Z) 5 Breakdown of Entropy Entropy relations: Chain rule of entropy: H(X; Y ) = H(X) + H(Y jX) = H(Y ) + H(XjY ) 6 Noisy Channel: Overview • Real-life communication channels are hopelessly noisy i.e. introduce transmission errors • However, a solution can be achieved { the aim of source coding is to remove redundancy from the source data
    [Show full text]
  • Networked Distributed Source Coding
    Networked distributed source coding Shizheng Li and Aditya Ramamoorthy Abstract The data sensed by differentsensors in a sensor network is typically corre- lated. A natural question is whether the data correlation can be exploited in innova- tive ways along with network information transfer techniques to design efficient and distributed schemes for the operation of such networks. This necessarily involves a coupling between the issues of compression and networked data transmission, that have usually been considered separately. In this work we review the basics of classi- cal distributed source coding and discuss some practical code design techniques for it. We argue that the network introduces several new dimensions to the problem of distributed source coding. The compression rates and the network information flow constrain each other in intricate ways. In particular, we show that network coding is often required for optimally combining distributed source coding and network information transfer and discuss the associated issues in detail. We also examine the problem of resource allocation in the context of distributed source coding over networks. 1 Introduction There are various instances of problems where correlated sources need to be trans- mitted over networks, e.g., a large scale sensor network deployed for temperature or humidity monitoring over a large field or for habitat monitoring in a jungle. This is an example of a network information transfer problem with correlated sources. A natural question is whether the data correlation can be exploited in innovative ways along with network information transfer techniques to design efficient and distributed schemes for the operation of such networks. This necessarily involves a Shizheng Li · Aditya Ramamoorthy Iowa State University, Ames, IA, U.S.A.
    [Show full text]
  • Lecture 11: Channel Coding Theorem: Converse Part 1 Recap
    EE376A/STATS376A Information Theory Lecture 11 - 02/13/2018 Lecture 11: Channel Coding Theorem: Converse Part Lecturer: Tsachy Weissman Scribe: Erdem Bıyık In this lecture1, we will continue our discussion on channel coding theory. In the previous lecture, we proved the direct part of the theorem, which suggests if R < C(I), then R is achievable. Now, we are going to prove the converse statement: If R > C(I), then R is not achievable. We will also state some important notes about the direct and converse parts. 1 Recap: Communication Problem Recall the communication problem: Memoryless Channel n n J ∼ Uniff1; 2;:::;Mg −! encoder −!X P (Y jX) −!Y decoder −! J^ log M bits • Rate = R = n channel use • Probability of error = Pe = P (J^ 6= J) (I) (I) The main result is C = C = maxPX I(X; Y ). Last week, we showed R is achievable if R < C . In this lecture, we are going to prove that if R > C(I), then R is not achievable. 2 Fano's Inequality Theorem (Fano's Inequality). Let X be a discrete random variable and X^ = X^(Y ) be a guess of X based on Y . Let Pe = P (X 6= X^). Then, H(XjY ) ≤ h2(Pe) + Pe log(jX j − 1) where h2 is the binary entropy function. ^ Proof. Let V = 1fX6=X^ g, i.e. V is 1 if X 6= X and 0 otherwise. H(XjY ) ≤ H(X; V jY ) (1) = H(V jY ) + H(XjV; Y ) (2) ≤ H(V ) + H(XjV; Y ) (3) X = H(V ) + H(XjV =v; Y =y)P (V =v; Y =y) (4) v;y X X = H(V ) + H(XjV =0;Y =y)P (V =0;Y =y) + H(XjV =1;Y =y)P (V =1;Y =y) (5) y y X = H(V ) + H(XjV =1;Y =y)P (V =1;Y =y) (6) y X ≤ H(V ) + log(jX j − 1) P (V =1;Y =y) (7) y = H(V ) + log(jX j − 1)P (V =1) (8) = h2(Pe) + Pe log(jX j − 1) (9) 1Reading: Chapter 7.9 and 7.12 of Cover, Thomas M., and Joy A.
    [Show full text]
  • Information Theory and Maximum Entropy 8.1 Fundamentals of Information Theory
    NEU 560: Statistical Modeling and Analysis of Neural Data Spring 2018 Lecture 8: Information Theory and Maximum Entropy Lecturer: Mike Morais Scribes: 8.1 Fundamentals of Information theory Information theory started with Claude Shannon's A mathematical theory of communication. The first building block was entropy, which he sought as a functional H(·) of probability densities with two desired properties: 1. Decreasing in P (X), such that if P (X1) < P (X2), then h(P (X1)) > h(P (X2)). 2. Independent variables add, such that if X and Y are independent, then H(P (X; Y )) = H(P (X)) + H(P (Y )). These are only satisfied for − log(·). Think of it as a \surprise" function. Definition 8.1 (Entropy) The entropy of a random variable is the amount of information needed to fully describe it; alternate interpretations: average number of yes/no questions needed to identify X, how uncertain you are about X? X H(X) = − P (X) log P (X) = −EX [log P (X)] (8.1) X Average information, surprise, or uncertainty are all somewhat parsimonious plain English analogies for entropy. There are a few ways to measure entropy for multiple variables; we'll use two, X and Y . Definition 8.2 (Conditional entropy) The conditional entropy of a random variable is the entropy of one random variable conditioned on knowledge of another random variable, on average. Alternative interpretations: the average number of yes/no questions needed to identify X given knowledge of Y , on average; or How uncertain you are about X if you know Y , on average? X X h X i H(X j Y ) = P (Y )[H(P (X j Y ))] = P (Y ) − P (X j Y ) log P (X j Y ) Y Y X X = = − P (X; Y ) log P (X j Y ) X;Y = −EX;Y [log P (X j Y )] (8.2) Definition 8.3 (Joint entropy) X H(X; Y ) = − P (X; Y ) log P (X; Y ) = −EX;Y [log P (X; Y )] (8.3) X;Y 8-1 8-2 Lecture 8: Information Theory and Maximum Entropy • Bayes' rule for entropy H(X1 j X2) = H(X2 j X1) + H(X1) − H(X2) (8.4) • Chain rule of entropies n X H(Xn;Xn−1; :::X1) = H(Xn j Xn−1; :::X1) (8.5) i=1 It can be useful to think about these interrelated concepts with a so-called information diagram.
    [Show full text]
  • Week 8 Information Channels Suppose That Data Must Be Sent Through a Channel Before It Can Be Used
    CSC 310: Information Theory University of Toronto, Fall 2011 Instructor: Radford M. Neal Week 8 Information Channels Suppose that data must be sent through a channel before it can be used. This channel may be unreliable, but we can use a code designed counteract this. Some questions we aim to answer: • Can we quantify how much information a channel can transmit? • If we have low tolerance for errors, will we be able to make full use of a channel, or must some of the channel’s capacity be lost to ensure a low error probability? • How can we correct (or at least detect) errors in practice? • Can we do as well in practice as the theory says is possible? Error Correction for Memory Blocks The “channel” may transmit information through time rather than space — ie, it is a memory device. Many memory devices store data in blocks — eg, 64 bits for RAM, 512 bytes for disk. Can we correct some errors by adding a few more bits? For instance, could we correct any single error if we use 71 bits to encode a 64 bit block of data stored in RAM? Error Correction in a Communications System In other applications, data arrives in a continuous stream. An overall system might look like this: Encoder for Data often sent in blocks Data Compression Error-Correcting In Program Code Noise Channel Decoder for Decompression Data Error-Correcting Code Program Out Error Detection We might also be interested in detecting errors, even if we can’t correct them: • For RAM or disk memory, error detection tells us that we need to call the repair person.
    [Show full text]