Biology 218 – Human Anatomy Chapter 18 Adapted Form Tortora

Total Page:16

File Type:pdf, Size:1020Kb

Biology 218 – Human Anatomy Chapter 18 Adapted Form Tortora Biology 218 – Human Anatomy RIDDELL Chapter 18 Adapted form Tortora 10th ed. LECTURE OUTLINE Chapter 18 A. Spinal Cord Anatomy (p. 554) 1. Surrounding and protecting the delicate nervous tissue of the spinal cord (and, in a similar way, the brain) are: i. vertebral column, including: a. vertebrae b. vertebral ligaments ii. three spinal meninges (surrounding the brain and continuous with the spinal meninges are the cranial meninges), which include: a. outermost meninx is the dura mater - it is composed of dense, irregular connective tissue - it extends from the level of the foramen magnum to the second sacral vertebra where it is close-ended - surrounding it is the epidural space filled with fat and connective tissue which provide additional protection to the spinal cord b. middle meninx is the avascular arachnoid mater - it consists of connective tissue with a spider web-like arrangement of collagen fibers and some elastic fibers - surrounding it is the subdural space filled with interstitial fluid c. innermost meninx is the pia mater - it is attached to the surface of the spinal cord (and brain) - it is a layer of connective tissue that contains collagen fibers and some elastic fibers as well as many blood vessels that provide nutrients and oxygen to the spinal cord (and brain) - surrounding it is the subarachnoid space filled with cerebrospinal fluid All three spinal meninges cover the spinal nerves up to the point of exit from the vertebral column through the intervertebral foramina. Membranous extensions of the pia mater called denticulate ligaments suspend the spinal cord in the middle of its dural sheath to provide protection against shock and sudden displacement. iii. cushion of cerebrospinal fluid (produced in the brain) 2. External Anatomy of the Spinal Cord: (p. 554) i. It is roughly cylindrical and extends from the medulla oblongata to the superior border of the second lumbar vertebra in an adult. ii. It has two enlargements which are sites where nerves supplying the limbs emerge: a. cervical enlargement extends from the fourth cervical to the first thoracic vertebra b. lumbar enlargement extends from the ninth to the twelfth thoracic vertebra iii. At its lower end, the spinal cord has a tapering, cone-shaped portion called the conus medullaris which ends at the level of the intervertebral disc between the first and second lumbar vertebrae in an adult. iv. An extension of the pia mater called the filum terminale extends inferiorly from the conus medullaris to attach the spinal cord to the coccyx. Biology 218 – Human Anatomy RIDDELL v. The roots of spinal nerves emerging from the lower part of the spinal cord travel inferiorly to form the cauda equina. vi. Each of the 31 pairs of spinal nerves emerge from a spinal segment; the spinal nerves are named and numbered according to the region and level of the spinal cord from which they emerge: a. 8 pairs of cervical nerves (the first pair emerge between the atlas and the occipital bone) represented as C1-C8 b. 12 pairs of thoracic nerves represented as T1-T12 c. 5 pairs of lumbar nerves represented as L1-L5 d. 5 pairs of sacral nerves represented as S1-S5 e. 1 pair of coccygeal nerves (represented as Co1) vii. Each spinal nerve is attached to a spinal segment by two bundles of axons called roots: a. posterior or dorsal root contains sensory nerve fibers which transmit nerve impulses from the periphery into the spinal cord; it has an enlargement called the posterior or dorsal root ganglion which contains the cell bodies of the sensory neurons b. anterior or ventral root contains motor neuron axons which transmit nerve impulses from the spinal cord to effector organs and cells 3. Internal Anatomy of the Spinal Cord: (p. 558) i. Two grooves divide the spinal cord into right and left sides: a. anterior median fissure is a deep, wide groove on the ventral side b. posterior median sulcus is a shallow, narrow groove on the dorsal side ii. The spinal cord contains a core of gray matter, shaped like a butterfly when viewed in cross section, that is surrounded by white matter: a. the gray matter consists primarily of cell bodies of neurons, neuroglia, unmyelinated axons, and dendrites of interneurons and motor neurons b. the white matter consists of bundles of myelinated and unmyelinated axons of motor neurons, interneurons, and sensory neurons iii. The gray commissure is a region of gray matter that connects the two wings of the butterfly. iv. At the center of the gray commissure is the central canal which extends throughout the entire length of the spinal cord; it is continuous with the fourth ventricle of the brain. v. Anterior to the gray commissure is the anterior (ventral) white commissure which connects the white matter of the left and right sides of the spinal cord. vi. The gray matter contains sensory nuclei and motor nuclei; the gray matter on each side of the spinal cord is subdivided into regions called horns: a. anterior (ventral) gray horns contain cell bodies of somatic motor neurons and motor nuclei which provide nerve impulses for contraction of skeletal muscles b. posterior (dorsal) gray horns contain somatic and autonomic sensory nuclei c. lateral gray horns (which are present only in the thoracic, upper lumbar, and sacral segments of the spinal cord) contain cell bodies of autonomic motor neurons that regulate activities of involuntary effectors Biology 218 – Human Anatomy RIDDELL vii. The white matter is subdivided by the anterior and posterior gray horns into regions called columns: a. anterior (ventral) white columns b. posterior (dorsal) white columns c. lateral white columns viii. Each column contains bundles of nerve axons called tracts: a. ascending (sensory) tracts transmit nerve impulses upward to the brain b. descending (motor) tracts transmit nerve impulses downward from the brain Spinal cord tracts are continuous with tracts in the brain. ix. The various spinal cord segments vary in size, shape, relative amounts of gray and white matter, and distribution and shape of gray matter; these features are summarized in Table 18.1. B. Spinal Cord Functions (p. 560) 1. The spinal cord has two major functions in maintaining homeostasis: i. The tracts in the white matter of the spinal cord transmit nerve impulses between the brain and the periphery. ii. The gray matter of the spinal cord receives and integrates the incoming and outgoing information. 2. Sensory and Motor Tracts: i. A tract is often named according to its position in the white matter, where it begins and ends, and the direction of nerve impulse transmission; e.g., the anterior spinothalamic tract is located in the anterior white column, and it begins in the spinal cord and ends in the thalamus - since it transmits nerve impulses upward, it is an ascending (sensory) tract. The tracts are summarized in Table 21.3 and 21.4. ii. Sensory information from receptors is transmitted up the spinal cord to the brain via two main ascending routes on each side of the spinal cord: a. spinothalamic tracts transmit nerve impulses for sensing: - pain - temperature - deep pressure - itching and tickling - crude, poorly localized touch b. posterior columns transmit nerve impulses for sensing: - proprioception - discriminative touch - two-point discrimination - light pressure - vibrations iii. Motor output from the brain to skeletal muscles travels down the spinal cord via two types of descending pathways on each side of the spinal cord: a. direct (pyramidal) pathways (the lateral corticospinal, anterior corticospinal, and corticobulbar tracts) transmit nerve impulses destined to cause precise, voluntary movements of skeletal muscles b. indirect (extrapyramidal) pathways (the rubrospinal, tectospinal, and vestibulospinal tracts) transmit nerve impulses that: - govern automatic movements Biology 218 – Human Anatomy RIDDELL - help coordinate body movements with visual stimuli - maintain skeletal muscle tone and posture - play a major role in equilibrium by regulating muscle tone in response to movements of the head 3. Reflexes and Reflex Arcs: (p. 562) i. The gray matter in the spinal cord promotes homeostasis by serving as the integrating center for spinal reflexes (the brain stem is the integrating center for cranial reflexes). ii. Reflexes are fast, predictable, automatic responses to changes in the environment that help maintain homeostasis: a. somatic reflexes involve contraction of skeletal muscles b. autonomic (visceral) reflexes involve responses of smooth muscle, cardiac muscle, and glands iii. The pathway followed by nerve impulses that produce a reflex response is called a reflex arc (reflex circuit), which includes five functional components: a. sensory receptor (dendrite or associated sensory structure) responds to a specific stimulus and may trigger one or more nerve impulses b. sensory neuron transmits nerve impulses from the receptor to the gray matter of the spinal cord or brain stem c. integrating center is a region of gray matter within the CNS: - it may have a single synapse between the sensory neuron and a motor neuron to form a monosynaptic reflex arc - more commonly, it has one or more interneurons in the pathway to the motor neuron resulting in a polysynaptic reflex arc d. motor neuron transmits nerve impulses from the integrating center to a part of the body that will respond e. effector is a muscle or gland that will respond to the motor nerve impulse; its action is called a reflex: - in a somatic reflex, the effector is skeletal muscle - in an autonomic (visceral) reflex, the effector is smooth muscle, cardiac muscle, or a gland C. Spinal Nerves (p. 564) 1. A spinal nerve is formed by merger of a posterior root (containing sensory axons) and an anterior root (containing motor axons) at an intervertebral foramen; therefore, every spinal nerve is a mixed nerve. 2. Every spinal nerve (and cranial nerve) is surrounded and protected by connective tissue coverings: i.
Recommended publications
  • Remote Disruption of Function, Plasticity, and Learning in Locomotor Networks After Spinal Cord Injury
    REMOTE DISRUPTION OF FUNCTION, PLASTICITY, AND LEARNING IN LOCOMOTOR NETWORKS AFTER SPINAL CORD INJURY DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher Nelson Hansen Graduate Program in Neuroscience **** The Ohio State University 2013 Dissertation Committee: D. Michele Basso, Advisor Georgia A. Bishop John A. Buford James W. Grau Lyn B. Jakeman Copyright Christopher Nelson Hansen 2013 ABSTRACT Spinal cord injury (SCI) creates a diverse range of functional outcomes. Impaired locomotion may be the most noticeable and debilitating consequence. Locomotor patterns result from a dynamic interaction between sensory and motor systems in the lumbar enlargement of the spinal cord. After SCI, conflicting cellular and molecular processes initiate along the neuroaxis that may secondarily jeopardize function, plasticity, and learning within locomotor networks. Thus, we used a standardized thoracic contusion to replicate human pathology and identified behavioral, physiological, cellular, and molecular effects in rat and mouse models. Specifically, our goal was to identify kinematic and neuromotor changes during afferent-driven phases of locomotion, evaluate the role of axonal sparing on remote spinal learning, and identify mechanisms of neuroinflammation in the lumbar enlargement that may prevent locomotor plasticity after SCI. Eccentric muscle actions require precise segmental integration of sensory and motor signals. Eccentric motor control is predominant during the yield (E2) phase of locomotion. To identify kinematic and neuromotor changes in E2, we used a mild SCI that allows almost complete functional recovery. Remaining deficits included a caudal shift in locomotor subphases that accompanied a ii marked reduction in eccentric angular excursions and intralimb coordination.
    [Show full text]
  • Spinal Cord Organization
    Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges.
    [Show full text]
  • On the Interrnedio-Lateral Tract. Literature
    On the Interrnedio-lateral Tract. Literature. The intermedio-;ateral tract was described for the first time "by Lockhart Clarke in the Philosophical Transactions, 1851, P. 613, where he states that "at the outer border of the grey matter, between the anterior and posterior cornua, is to be found a small column of vesicular matter which is softer and more transparent than the rest. According to Clarke's original account, the column in question resembled the substantia gelatinosa of the posterior horn. It was found in the upper part of the lumbar enlargement, extended upwards through the dorsal region, where it distinctly increased in siae, to the lower part of the cervical enlargement. Here it disappeared almost entirely. In the upper cervical enlargement it was again seen, and could be traced upwards into the medulla oblongata, where, in the space immediately behind the central canal, it blended with its fellow of the opposite side. In a second paper, published in 1859, he gave a more complete account of this tract. He here proposed to calx it the "tract,us intermedio-lateralis" on account of its position. Its component cells are described as in part oval, fusiform, pyriform or triangular, smaller' and more uniform in siae than those of the anterior cornu. In the mid-dorsal .region they are least numerous and are found only near the lateral margin of the grey matter^ With the exception of some cells which lie among the white fibres beyond the margin of the grey substance. In the upper dorsal region the tract is larger, not only projecting further outwards into the lateral column of the white fibres, but also tapering inwards across the grey substance, almost to the front of Clarke's coliimn.
    [Show full text]
  • The Organization of the Spinal Cord in Reptiles with Different Locomotor Patterns A.Kusuma
    •л ^' THE ORGANIZATION OF THE SPINAL CORD IN REPTILES WITH DIFFERENT LOCOMOTOR PATTERNS A.KUSUMA THE ORGANIZATION OF THE SPINAL CORD IN REPTILES WITH DIFFERENT LOCOMOTOR PATTERNS PROMOTOR: PROF. DR. R. NIEUWENHUYS CO-REFERENT: DR. H.J. TEN DONKELAAR The investigations were supported in part by a grant from the Fpundation for Medical Research FUNGO which is subsidized by the Netherlands Organization for the Advancement of Pure Research Z.W.O. THE ORGANIZATION OF THE SPINAL CORD IN REPTILES WITH DIFFERENT LOCOMOTOR PATTERNS PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE GENEESKUNDE AAN DE KATHOLIEKE UNIVERSITEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. P.G.A.B. WIJDEVELD, VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP DONDERDAG 17 MEI 1979, DES NAMIDDAGS TE 2 UUR PRECIES DOOR ARINARDI KUSUMA GEBOREN TE MALANG (INDONESIË) 1979 Stichting Studentenpers Nijmegen ACKNOWLEDGEMENT S The present thesis was carried out at the Department of Anatomy and Embryology (Head: Prof. Dr. H.J. Lammers), University of Nijmegen, Faculty of Medicine, Nijmegen, the Netherlands. The author wishes to express his gratitude to Miss Annelies Pellegrino, Mrs. Carla de Vocht - Poort and Miss Nellie Verijdt for the preparation of the histological material, to Mr. Hendrik Jan Janssen and Mrs. Roelie de Boer - van Huizen for expert technical assistance, to Mr. Joep de Bekker and Mr. Joop Russon for the drawing, and to Mr. A.Th.A. Reijnen and Miss Annelies Pellegrino for the photomicrographs. Grateful appreciation is expressed to Mrs. Trudy van Son - Verstraeten for typing the manuscript.
    [Show full text]
  • The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine
    The University of Akron IdeaExchange@UAkron Mechanical Engineering Faculty Research Mechanical Engineering Department Spring 4-7-2014 The mpI act of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine Soroush Heidari Paylavian Theresia Yiallourou R. Shane Tubbs Alexander C. Bunck Francis Loth The University of Akron, Main Campus See next page for additional authors Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/mechanical_ideas Part of the Engineering Commons, and the Medicine and Health Sciences Commons Recommended Citation Paylavian, Soroush Heidari; Yiallourou, Theresia; Tubbs, R. Shane; Bunck, Alexander C.; Loth, Francis; Martin, Bryn A.; Goodin, Mark; and Raisee, Mehrdad, "The mpI act of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine" (2014). Mechanical Engineering Faculty Research. 35. http://ideaexchange.uakron.edu/mechanical_ideas/35 This Article is brought to you for free and open access by Mechanical Engineering Department at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Mechanical Engineering Faculty Research by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Authors Soroush Heidari Paylavian, Theresia Yiallourou, R. Shane Tubbs, Alexander C. Bunck, Francis Loth, Bryn A. Martin, Mark Goodin, and Mehrdad Raisee This article is available at IdeaExchange@UAkron: http://ideaexchange.uakron.edu/mechanical_ideas/35 The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine Soroush Heidari Pahlavian1, Theresia Yiallourou2, R.
    [Show full text]
  • Fig. 13.1 Copyright © Mcgraw-Hill Education
    Fig. 13.1 Copyright © McGraw-Hill Education. Permission required for reproduction or display. C1 Cervical Cervical enlargement spinal nerves C7 Dural sheath Subarachnoid space Thoracic spinal Spinal cord nerves Vertebra (cut) Lumbar Spinal nerve enlargement T12 Spinal nerve rootlets Medullary cone Posterior median sulcus Lumbar Subarachnoid space Cauda equina spinal nerves Epidural space Posterior root ganglion L5 Rib Arachnoid mater Terminal Sacral Dura mater filum spinal nerves S5 Col (b) (a) 1 Fig. 13.2 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Posterior Spinous process of vertebra Meninges: Dura mater (dural sheath) Arachnoid mater Fat in epidural space Pia mater Subarachnoid space Spinal cord Denticulate ligament Posterior root ganglion Spinal nerve Vertebral body (a) Spinal cord and vertebra (cervical) Anterior Posterior Gray matter: Central canal median sulcus White matter: Posterior horn Posterior column Gray commissure Lateral column Lateral horn Anterior column Anterior horn Posterior root of spinal nerve Posterior root ganglion Spinal nerve Anterior median fissure Anterior root of spinal nerve Meninges: Pia mater Arachnoid mater Dura mater (dural sheath) (b) Spinal cord and meninges (thoracic) (c) Lumbar spinal cord c: ©Ed Reschke/Getty Images 2 Table 13.1 3 Fig. 13.4 Copyright © McGraw-Hill Education. Permission required for reproduction or display. Ascending Descending tracts tracts Posterior column: Gracile fasciculus Cuneate fasciculus Anterior corticospinal tract Lateral Posterior spinocerebellar tract corticospinal tract Lateral reticulospinal tract Anterior spinocerebellar tract Tectospinal tract Anterolateral system (containing Medial reticulospinal tract spinothalamic and spinoreticular tracts) Lateral vestibulospinal tract Medial vestibulospinal tract 4 Fig. 13.5 Copyright © McGraw-Hill Education. Permission required for reproduction or display.
    [Show full text]
  • Nervous System: CNS + PNS
    Nervous System: CNS + PNS https://www.webmd.com/brain/ss/slideshow-nervous-system-overview http://paydayloans-mo.com/anatomy-and-physiology-of-central-nervous-system/nervous- system-project-awesome-anatomy-and-physiology-of-central-nervous-system/ A “typical” neuron • Is a cell • Has all the usual cellular components • Usually large nucleus • RER = “Nissl substance/bodies” • Neurites = cell processes Cell body = soma = perikaryon Go to link for animation https://en.wikipedia.org/wiki/Soma_(biology)#/media/File:Neuron_Cell_Body.png Neuron shape categories: found (mainly) in… • Bipolar: organs of special sense • Unipolar: dorsal/posterior root ganglia • Multipolar: everywhere else http://humanphysiology.academy/Neurosciences%202015/Chapter%201/P.1.3p%20Neurone%20Micro.html A simple somatic neural circuit https://www.studyblue.com/notes/hh/cell-bodies-sensory-neurons-gathered-dorsal-root-ganglion/26360419950789715 Neuroglia - “glue” CNS – central nervous system PNS – peripheral nervous system • oligodendrocyte – myelination • Schwann cell – myelination • astrocyte - bind neurons to blood • satellite cell - support nerve vessels; blood brain barrier cell bodies in ganglia • microglia - small, few processes... support & phagocytosis • ependyma - line central cavity: spinal canal & ventricles; ciliated • better circulation of CSF • cell division - growth CNS – central nervous system PNS – peripheral nervous system • nucleus – cluster of cell bodies • ganglion – cluster of cell bodies • tract – bundle of neurites • nerve – bundle of neurites
    [Show full text]
  • Digital Neuroanatomy
    DIGITAL NEUROANATOMY SKULL, MENINGES, AND SPINAL CORD George R. Leichnetz, Ph.D. Professor, Department of Anatomy & Neurobiology Virginia Commonwealth University 2004 Press the Å and Æ keys on your keyboard to navigate through this lecture Skull The interior of the skull has three depressions: Anterior the anterior, middle, cranial fossa holds frontal and posterior cranial lobe fossae. Middle cranial fossa holds temporal lobe Posterior cranial fossa holds cerebellum & brainstem Anterior Cranial Fossa Crista galli Anterior Cribriform plate of ethmoid transmits Cranial Fossa olfactory nerves (CN I) Lesser wing of sphenoid Sphenoid Bone Anterior clinoid process Sella turcica holds pituitary gland Optic foramen transmits optic nerve (CN II) Middle Cranial Fossa Superior orbital Optic foramen fissure transmits transmits optic oculomotor (III), nerve (II) trochlear (IV), and abducens (VI) nerves, plus Middle ophthalmic division of the Cranial Fossa trigeminal (V) nerve Foramen rotundum transmits maxillary division of V Foramen ovale transmits mandibular division of V Internal carotid foramen transmits internal carotid artery Foramen spinosum transmits middle menigeal artery Posterior Cranial Fossa Sella turcica Foramen rotundum Foramen ovale Foramen Internal auditory spinosum meatus transmits CN VII and VIII Internal carotid foramen and carotid canal Petrous ridge of temporal bone Sigmoid sinus Foramen magnum Jugular foramen Hypoglossal transmits CN canal transmits IX, X, and XI CN XII Meninges and Dural Sinuses The meninges include: dura mater, arachnoid membrane, and pia mater. The dura consists of two layers: an outer periosteal layer that forms the periosteum on the inside of the cranial bone (no epidural space), and an inner layer, the meningeal layer, that gives rise to dural reflections (form partitions).
    [Show full text]
  • Brain Stem 5Th Week - Transient Pontine Flexure Develops That Shapes the Central Cavity – Future 4Th Ventricle
    Michal K. Stachowiak Fulbright Distinguished Professor & Chair of Medical Sciences Professor, State University of New York at Buffalo Pathology & Anatomical Sciences Neuroscience Program Genetics, Genomics and Bioinformatics Biomedical Engineering Fulbright project: “Unravelling and combating neurodevelopmental disorders” ” Determining how the brain—an organ that perceives, thinks,“One loves,ought tohates, know remembersthat on the one, changes, hand pleasure, deceives joy, itself, andlaughter coordinates, and games, all our and conscious on the other, and grief, unconscious sorrow, bodily discontent and dissatisfaction arise only from the brain. processesIt is especially—is constructed by it that we isthink, undoubtedly comprehend, the see most and hear, challengingthat we distinguish of all developmental the ugly from the enigmas. beautiful, Athe combination bad from of thegenetic, good, cellular,the agreeable and from systems the disagreeable level approaches…….” is now giving us a very preliminary understanding of how the basicHippocrates anatomy of the brain becomes ordered”. Gregor Eichele in 1992 Mechanisms and new Theory of (neuro) Ontogeny SUNY, UB course PAS591 POL Prof. Prof. Michal K. Stachowiak Ewa K. Stachowiak Mechanisms and new Theory of (neuro) Ontogeny SUNY, UB course PAS591 POL Prof. Prof. Michal K. Stachowiak Ewa K. Stachowiak http://www.brainmuseum.org/development/index.html Mechanisms and new Theory of (neuro) Ontogeny SUNY, UB course PAS591 POL Prof. Prof. Michal K. Stachowiak Ewa K. Stachowiak Mechanisms and new
    [Show full text]
  • Functional Organization of Motor Networks in the Lumbosacral Spinal Cord of Non-Human Primates Received: 27 June 2018 Amirali Toossi1,5, Dirk G
    www.nature.com/scientificreports OPEN Functional organization of motor networks in the lumbosacral spinal cord of non-human primates Received: 27 June 2018 Amirali Toossi1,5, Dirk G. Everaert2,5, Steve I. Perlmutter3,4,5,6 & Vivian K. Mushahwar 1,2,5 Accepted: 24 August 2019 Implantable spinal-cord-neuroprostheses aiming to restore standing and walking after paralysis have Published: xx xx xxxx been extensively studied in animal models (mainly cats) and have shown promising outcomes. This study aimed to take a critical step along the clinical translation path of these neuroprostheses, and investigated the organization of the neural networks targeted by these implants in a non-human primate. This was accomplished by advancing a microelectrode into various locations of the lumbar enlargement of the spinal cord, targeting the ventral horn of the gray matter. Microstimulation in these locations produced a variety of functional movements in the hindlimb. The resulting functional map of the spinal cord in monkeys was found to have a similar overall organization along the length of the spinal cord to that in cats. This suggests that the human spinal cord may also be organized similarly. The obtained spinal cord maps in monkeys provide important knowledge that will guide the very frst testing of these implants in humans. Recent advances in neuroprostheses have motivated a new wave of technologies aiming to augment the human body or restore its lost functions1–3. Neural networks of the spinal cord are one of the targets of these neuro- prostheses for applications such as reanimating paralyzed limbs4–9, reducing mobility defcits10, and promoting targeted plasticity and recovery11 afer neural injury and disease.
    [Show full text]
  • The Intracranial Denticulate Ligament: Anatomical Study with Neurosurgical Significance
    J Neurosurg 114:454–457, 2011 The intracranial denticulate ligament: anatomical study with neurosurgical significance Laboratory investigation R. SHANE TUBB S , M.S., P.A.-C., PH.D.,1 MA rt IN M. MO rt AZAVI , M.D.,1 MA R IO S LOUKA S , M.D., PH.D., 2 MOHA mm A D A L I M. SHOJA , M.D., 3 AN D AA R ON A. COHEN -GA D O L , M.D., M.SC.3 1Pediatric Neurosurgery, Children’s Hospital, Birmingham, Alabama; 2Department of Anatomical Sciences, St. George’s University, Grenada; and 3Clarian Neuroscience, Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University, Indianapolis, Indiana Object. Knowledge of the detailed anatomy of the craniocervical junction is important to neurosurgeons. To the authors’ knowledge, no study has addressed the detailed anatomy of the intracranial (first) denticulate ligament and its intracranial course and relationships. Methods. In 10 embalmed and 5 unembalmed adult cadavers, the authors performed posterior dissection of the craniocervical junction to expose the intracranial denticulate ligament. Rotation of the spinomedullary junction was documented before and after transection of unilateral ligaments. Results. The first denticulate ligament was found on all but one left side and attached to the dura of the marginal sinus superior to the vertebral artery as it pierced the dura mater. The ligament always traveled between the vertebral artery and spinal accessory nerve. On 20% of sides, it also attached to the intracranial vertebral artery and, histologi- cally, blended with its adventitia. In general, this ligament tended to be thicker laterally and was often cribriform in nature medially.
    [Show full text]
  • 07 TAP Cardio.Fm
    Chapter 7. Cardiovascular System The increased specificity of ICD-10-CM makes it imperative that physicians document more detailed information and that coders are able to determine from documentation the code or codes appropriate for the patient’s condition. Valvular Disorders Acute rheumatic fever, a complication of strep pharyngitis in children, results in various cardiac conditions in more than a third of patients affected. Depending on the extent of heart inflammation involved, patients with the acute form of DEFINITIONS the disease may develop heart failure, pericarditis, myocarditis, and endocarditis, which is manifested as insufficiency of the mitral (65 to 70 percent of cases) and pericarditis. Inflammation affecting aortic valves (25 percent of cases). the pericardium. Figure 7.11: Valvular Function Chronic disease may result in arrhythmias, ventricular dysfunction, and dilation of the atria. In adults, acute rheumatic fever is the most common cause of mitral valve stenosis and the leading cause for valvular replacement surgery. Although the mitral valve is most commonly affected, the aortic and tricuspid valves may also be involved. Chronic manifestations due to protracted disease and continued valve deformity occur in an estimated 9 to 39 percent of adults with previous rheumatic heart disease. Two to 10 years after an acute episode of rheumatic fever, the valve apparatus may fuse, with resulting stenosis or stenosis with insufficiency. Each recurrent episode can extend the valvular damage. For acute rheumatic heart conditions, there is a one-to-one mapping of the appropriate ICD-9-CM code to the appropriate ICD-10-CM code. For instance, ICD-9-CM code 391.0 for acute rheumatic pericarditis directly correlates to code IØ1.1 in ICD-10-CM.
    [Show full text]