Metamorphic Core Complexes and Related Features

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphic Core Complexes and Related Features Metamorphic Core Complexes 173 CHAPTER 13 Metamorphic Core Complexes and Related Features Continental and Oceanic Core Complexes A core complex “is a domal or arched geologic structure Cordilleran composed of ductilely deformed rocks and associated metamorphic intrusions underlying a ductile-to-brittle high-strain core complex zone that experienced tens of kilometers of normal- locations in the sense displacement in response to lithospheric American west. extension” (Whitney and colleagues, 2013, p. 274). Modified after Core complex structures occur in both oceanic and Coney (1973). continental crust in regions where extension of the crust has produced the exhumation of ductile portions of the deep crust and/or upper mantle. These regions include slow-spreading mid-ocean ridges, core complexes in the continents, and at continental rifted margins. Extension causes the brittle upper crust to pull apart along normal faults. If the extension occurs along a few faults, ductile lower crust or mantle material moves upward to shallow levels of the crust and is exhumed in the footwall of normal faults and exposed at the surface. characterized Oceanic core by complexesfault-bounded were domal first discoveredstructures in similarseafloor to images the metamorphic of the Mid-Atlantic core complexes Ridge; they of the were continents. Since then, oceanic core complexes to hundreds of meters. Corrugations may be called “megamullions” for oceanic core complexes. Antarctichave been Discordance. found in the Southwest Indian Ridge, the Typically, continental core complexes are elliptical Caribbean-NorthBoth continental American and oceanic Ridge, core and complexesthe Australian- in plan view and have a long axis between 6 and 24 may have corrugated or undulating detachment miles (10 and 40 km), although a few are larger such fault surfaces. In such cases, the corrugation axis is as the Shuswap complex. Also, the footwall tends to be elevated above surrounding rocks by as much as corrugations may have wavelengths of hundreds of metersaligned toparallel tens of to kilometers the direction and of amplitudes extension; of and tens the complexes are characterized by mylonite zones several hundred1.2 miles meters(2 km) thick.of relief. Most of the Cordilleran core 174 Idaho Geology Listric faults are normal faults with a concave- upwards fault plane that gradually flattens at depth. Detachment Faults The displacement of the brittle surface rocks or upper plate occurred along low-angle detachment n areas of extreme extension, such as the Basin faults. The deep, highly deformed middle crustal rocks of the lower plate are exposed by the removal metamorphic core complexes) have had the upper of the brittle relatively undeformed rocks along the layersand Range of brittle Province, rock strippedmany areas off (referredthe underlying to as ductile detachment fault. These detachment structures are rocks along detachment faults. The east-west extension characterized by parallel bands of mylonite formed occurs along parallel to subparallel listric normal faults along the shear zone in the lower plate. that merge at depth with the detachment fault. The In the detachment zone, structural fabric indicates detachment fault, which is commonly represented by the direction of transport of the upper plate, which a thick zone or layers of mylonite, occurs along the transition zone separating the ductile metamorphic core complexes are characterized by broad domal and plutonic core rocks below from the overlying upliftmay be presumably in response caused to regional by isostatic tectonics. adjustment Most to brittle rocks. The brittle rocks above are moved tens tectonic removal of the upper layers. The once planar of kilometers to the east or west along detachment detachment faults or layers of mylonite are now arched faults and the metamorphic and plutonic rocks that had previously been buried by as much as 12 miles of the upper plate rocks is consistent throughout theupwards; complex. however, Extension the direction of many metamorphic of tectonic transfer Core fault are generally represented by one or more layers of(20 mylonite km) are with exposed. gently Rocks dipping below foliation. the detachment In some plutonism but the role of these intrusions is somewhat cases the mylonitic rocks are deformed by cataclasis controversial.complexes appears to be influenced or facilitated by indicating a change from ductile to brittle deformation as the rocks were exposed to a lower pressure and temperature environment. There is a close association Development of Gneissic Domes of the magmatism and large-scale extension of the Again, there are two kinds of extensional faults in Cenozoic extension in the Cordilleran of North detachment faults associated with metamorphic core Americaupper crust has in revealed the Basin metamorphic and Range Province.core complexes complexesthe Basin and where Range horizontal Province: extension low-angle may normal exceed 200 in several locations in Idaho. Core complexes typically percent and the more typical high-angle normal faults have a window to a lower plate of high-grade metamorphic and igneous rocks separated by a low- angle detachment fault from an upper plate of less complexesthat caused develop the Basin along and detachment Range Province. faults. The deformed rocks. In the detachment fault system, the detachment Metamorphic fault mergesdomes ininto the a metamorphicductile shear zonecore upper layers are characterized by brittle deformation in the crust. Above the shear zone, curved or listric producing breccia and the deeper more ductile portions normal faults merge with the detachment fault. The fault blocks are tilted because they move down the same extensional event. curved listric faults. produce mylonites; however, they are all related to the Metamorphic Core Complexes 175 As the extension faulting thins and removes the upper plate, the lower plate rises from thermal expansion and from isostatic adjustment. Consequently, exposedplate of Precambrian in the metamorphic gneisses core. dated An at upper 2 Ga andplate the footwall is at least partially exposed at the surface Cretaceous to Early Paleogene granitic rocks are having risen from 6 to 12 miles (10 to 20 km) below the overlain by Challis volcanic rocks surrounds the surface by a process called tectonic exhumation. Finally, metamorphicof unmetamorphosed core. The Paleozoic Wild Horse sedimentary detachment rocks system a dome of high-grade metamorphic rocks is exposed at separates the upper plate from the lower plate. the surface. Timing of Metamorphic Core Complex produced Through east-west the Mesozoic, compression the subduction and thickening of the of the Pacific plate and the intrusion of the Idaho batholith Extension extension produced structures such as the Wildhorse detachmentcrust. By the fault. early ThisPaleogene detachment (50 Ma) fault the involved transition to by the Siletzia accretion and then the Cascadia about 10 miles (17 km) of separation and the upper subduction,The termination gravitational of the flat collapse slab subduction of the thickened followed plate moved northwest relative to the lower plate. The crust could cause extension. Immediately after the Siletzia accretion, Laramide orogeny compression was extension related to the trans-Challis fault system was changed to metamorphic core complex extension and alsoChallis part volcanic of this episodeextension. that Low-angle occurred faults 50 to removed40 Ma and the brittle sedimentary cover of the uppercrustal rocks ignimbrite flare-up. This ignimbrite volcanism was most likely caused by the flat-slab removal and slab upperfrom the crust Pioneer exposed Mountains high-grade about metamorphic 40 to 50 Ma. rocks From up rollback. The ignimbrite flare-up propagated from 45 to37 2.3 to 34billion Ma, finalyears uplift old. and removal of the overlying Ma in the north to 21 Ma in the south. Most of the core complexes started 50 to 15 Ma—well before Basin and Range faulting. Bitterroot Metamorphic Core Complex Clearwater and Priest River Metamorphic The Bitterroot metamorphic core complex is an Core Complexes unroofed metamorphic complex straddling the Idaho- Vervoort and colleagues (2016) have examined the core complexes, the area experienced crustal thickening North American Cordillera in northern Idaho at duringMontana the border Cordilleran in east-central east-west Idaho. compression Like the followed other Precambrian crystalline basement underlying the associated with extension led to exhumation of the gneissesthe Clearwater that represent and Priest two River discrete metamorphic periods in core the complex.by extension starting about 50 Ma. Granitic intrusions complexes. They identified and dated two basement that these gneisses were generated by two periods of METAMORPHIC CORE COMPLEX OF Neoarchean and Paleoproterozoic. They determined THE ALBION MOUNTAINS Ga and a later addition to the crust at 1.86 Ga involving amagmatism: mix of pre-existing and initial Neoarchean formation crust of the and crust juvenile at 2.66 mantle. These Neoarchean basement rocks represent the The Albion Mountains are a representative portion of Thisa larger metamorphic region referred core complexto as the hasRaft resulted River-Grouse in diverse exposed in the northwest excluding the Wyoming igneous,Creek-Albion metamorphic Mountains and metamorphic sedimentary core rocks complex. with ages largest area of Paleoproterozoic and Archean crust depths of 20 to 30 km during the early Eocene as a together in
Recommended publications
  • Pressure-Temperature Evolution of Metapelites Within the Anaconda Metamorphic Core Complex, Southwestern Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 PRESSURE-TEMPERATURE EVOLUTION OF METAPELITES WITHIN THE ANACONDA METAMORPHIC CORE COMPLEX, SOUTHWESTERN MONTANA Erin Haney The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Haney, Erin, "PRESSURE-TEMPERATURE EVOLUTION OF METAPELITES WITHIN THE ANACONDA METAMORPHIC CORE COMPLEX, SOUTHWESTERN MONTANA" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 1262. https://scholarworks.umt.edu/etd/1262 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PRESSURE-TEMPERATURE EVOLUTION OF METAPELITES WITHIN THE ANACONDA METAMORPHIC CORE COMPLEX, SOUTHWESTERN MONTANA By Erin Marie Haney B.S. Geology, Sonoma State University, Rohnert Park, CA, 2005 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Geosciences The University of Montana Missoula, MT Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Julie Baldwin, Chair Department of Geosciences Dr. James Sears Department of Geosciences Dr. Paul Wilson Department of Geography Haney, Erin, M.S., May 2008 Geosciences Pressure-temperature evolution of metapelites within the Anaconda metamorphic core complex, southwestern Montana Chairperson: Dr. Julie Baldwin This study shows the complete metamorphic evolution of metapelitic footwall rocks in the Anaconda metamorphic core complex, located in southwestern Montana.
    [Show full text]
  • Exhumation of a Collisional Orogen: a Perspective from the North American Grenville Province
    Geological Society of America Memoir 197 2004 Exhumation of a collisional orogen: A perspective from the North American Grenville Province Margaret M. Streepey* Department of Geological Sciences, Florida State University, Tallahassee, Florida 32306-4100, USA Carolina Lithgow-Bertelloni Ben A. van der Pluijm Eric J. Essene Department of Geological Science, University of Michigan, Ann Arbor, Michigan 48109-1063, USA Jerry F. Magloughlin Department of Earth Resources, Colorado State University, Fort Collins, Colorado 80523-1482, USA ABSTRACT Combined structural and geochronologic research in the southernmost portion of the contiguous Grenville Province of North America (Ontario and New York State) show protracted periods of extension after the last episode of contraction. The Grenville Province in this area is characterized by synorogenic extension at ca. 1040 Ma, supported by U-Pb data on titanites and 40Ar-39Ar data on hornblendes, followed by regional extension occurring along crustal-scale shear zones between 945 and 780 Ma, as recorded by 40Ar-39Ar analysis of hornblende, biotite, and K-feldspar. By ca. 780 Ma the southern portion of the Grenville Province, from Ontario to the Adiron- dack Highlands, underwent uplift as a uniform block. Tectonic hypotheses have invoked various driving mechanisms to explain the transition from compression to extension; however, such explanations are thus far geodynamically unconstrained. Numerical models indicate that mechanisms such as gravitational collapse and man- tle delamination act over timescales that cannot explain a protracted 300 m.y. exten- sional history that is contemporaneous with ongoing uplift of the Grenville Province. Rather, the presence of a plume upwelling underneath the Laurentian margin, com- bined with changes in regional stress directions, permitted the observed uplift and extension in the Grenville Province during this time.
    [Show full text]
  • Large-Magnitude Extensional Deformation in the South Mountains Metamorphic Core Complex, Arizona: Evaluation with Paleomagnetism
    Large-magnitude extensional deformation in the South Mountains metamorphic core complex, Arizona: Evaluation with paleomagnetism Richard F. Livaccari Department of Earth and Planetary Sciences, University of New Mexico, John W. Geissman } Albuquerque, New Mexico 87131 Stephen J. Reynolds Department of Geology, Arizona State University, Tempe, Arizona 85287 ABSTRACT data from these two sides suggests that the INTRODUCTION back-dipping mylonitic front was synkine- Paleomagnetic data are used to test con- matically tilted about 10 down-to-the- Cordilleran metamorphic core complexes troversial aspects of Cordilleran metamor- southwest. The data support a folded shear (MCCs) and their associated structures (de- phic core complexes, including the original zone hypothesis for origin of the mylonitic tachment faults and mylonites) are the in- dip of extensional structures, origin of the front and the interpretation that footwall ferred products of large-magnitude Cenozo- mylonitic front, and applicability of rolling- rocks possess primary, Miocene-age TRMs ic extension (tens of kilometers of normal hinge models. We obtained paleomagnetic or TCRMs. A second regional fold test in- slip; e.g., Crittenden et al., 1980; Reynolds data (115 sites, 82 accepted for analysis) volved data from sites on both flanks of and Spencer, 1985; Howard and John, 1987; from the weakly deformed interior of a syn- the topographically prominent northeast- Coney, 1987). Aspects of metamorphic core kinematic, footwall intrusive suite and Prot- trending mountain range–scale antiform. complex evolution not fully understood in- erozoic footwall rocks of the South Moun- The negative result from this fold test dem- clude the origin of the mountain range–scale tains metamorphic core complex, central onstrates that this structure formed early in antiforms that strike parallel with the exten- Arizona.
    [Show full text]
  • Exhumation Processes
    Exhumation processes UWE RING1, MARK T. BRANDON2, SEAN D. WILLETT3 & GORDON S. LISTER4 1Institut fur Geowissenschaften,Johannes Gutenberg-Universitiit,55099 Mainz, Germany 2Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 3Department of Geosciences, Pennsylvania State University, University Park, PA I 6802, USA Present address: Department of Geological Sciences, University of Washington, Seattle, WA 98125, USA 4Department of Earth Sciences, Monash University, Clayton, Victoria VIC 3168,Australia Abstract: Deep-seated metamorphic rocks are commonly found in the interior of many divergent and convergent orogens. Plate tectonics can account for high-pressure meta­ morphism by subduction and crustal thickening, but the return of these metamorphosed crustal rocks back to the surface is a more complicated problem. In particular, we seek to know how various processes, such as normal faulting, ductile thinning, and erosion, con­ tribute to the exhumation of metamorphic rocks, and what evidence can be used to distin­ guish between these different exhumation processes. In this paper, we provide a selective overview of the issues associated with the exhuma­ tion problem. We start with a discussion of the terms exhumation, denudation and erosion, and follow with a summary of relevant tectonic parameters. Then, we review the charac­ teristics of exhumation in differenttectonic settings. For instance, continental rifts, such as the severely extended Basin-and-Range province, appear to exhume only middle and upper crustal rocks, whereas continental collision zones expose rocks from 125 km and greater. Mantle rocks are locally exhumed in oceanic rifts and transform zones, probably due to the relatively thin crust associated with oceanic lithosphere.
    [Show full text]
  • Metamorphic Core Complexes
    Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_104-4 # Springer Science+Business Media Dordrecht 2014 Metamorphic Core Complexes Uwe Ring* Department of Geological Sciences, Stockholm University, Stockholm, Sweden Definition Metamorphic core complexes result from horizontal lithospheric extension and form in low-viscosity lower crust when extension occurs at high rates and deformation within the upper crust becomes localized in detachment faults. They are oval shaped usually updomed structures in which mid-crustal basement rocks of higher metamorphic grade have been tectonically juxtaposed against low-grade upper crustal rocks. Introduction Extension of Earth’s lithosphere is one of the most fundamental processes that shape the face of our planet. Extension and breakup of continental lithosphere is key to understand the evolution of continents, the origin of sedimentary basins, and their hydrocarbon potential, as well as the thermohaline circulation in the oceans and thus global climate. The most spectacular form of extension tectonics is the formation of metamorphic core com- plexes. Metamorphic core complexes mainly develop in continental crust, especially where it has been previously thickened by collisional processes. These processes heated up the thickened crust mainly by radioactive decay thereby weakening it and ultimately causing its failure. In oceans, metamorphic core complexes may form as well near mid-ocean ridges when magma supply is not efficient enough to accommodate extension (e.g., North Atlantic; Tucholke et al., 1998). This entry covers continental core complexes only. What Is a Core Complex? Metamorphic core complexes are usually oval-shaped bodies in map view their long axis is typically some 20–50 km long.
    [Show full text]
  • Late-Stage Tectonic Evolution of the Al-Hajar Mountains
    Geological Magazine Late-stage tectonic evolution of the www.cambridge.org/geo Al-Hajar Mountains, Oman: new constraints from Palaeogene sedimentary units and low-temperature thermochronometry Original Article 1,2 3 4 3 4 5 Cite this article: Corradetti A, Spina V, A Corradetti , V Spina , S Tavani , JC Ringenbach , M Sabbatino , P Razin , Tavani S, Ringenbach JC, Sabbatino M, Razin P, O Laurent6, S Brichau7 and S Mazzoli1 Laurent O, Brichau S, and Mazzoli S (2020) Late-stage tectonic evolution of the Al-Hajar 1 Mountains, Oman: new constraints from School of Science and Technology, Geology Division, University of Camerino. Via Gentile III da Varano, 62032 2 Palaeogene sedimentary units and low- Camerino (MC), Italy; Department of Petroleum Engineering, Texas A&M University at Qatar, Doha, Qatar; temperature thermochronometry. Geological 3Total E&P, CSTJF, Avenue Larribau, 64000 Pau, France; 4DiSTAR, Università di Napoli Federico II, 21 Via vicinale Magazine 157: 1031–1044. https://doi.org/ cupa Cintia, 80126 Napoli, Italy; 5ENSEGID, Institut Polytechnique de Bordeaux, 1 allée Daguin, 33607 Pessac, 10.1017/S0016756819001250 France; 6Total E&P, Paris, France and 7Géosciences Environnement Toulouse (GET), Université de Toulouse, UPS, CNRS, IRD, CNES, 14 avenue E. Belin, 31400, Toulouse, France Received: 8 July 2019 Revised: 5 September 2019 Accepted: 15 September 2019 Abstract First published online: 12 December 2019 Mountain building in the Al-Hajar Mountains (NE Oman) occurred during two major short- – Keywords: ening stages, related to the convergence between Africa Arabia and Eurasia, separated by nearly Oman FTB; Cenozoic deformation; remote 30 Ma of tectonic quiescence. Most of the shortening was accommodated during the Late sensing; thermochronology Cretaceous, when northward subduction of the Neo-Tethys Ocean was followed by the ophio- lites obduction on top of the former Mesozoic margin.
    [Show full text]
  • 1 ZEYNEP ONER BARAN Assistant Professor of Geology
    SD School of Mines and Technology Department of Geology and Geol. Eng. 501 East Saint Joseph Street 57701 Rapid City, SD (605) 394 5286 [email protected] ZEYNEP ONER BARAN Assistant Professor of Geology EDUCATION Ph.D. Geology: Miami University, Oxford OH (2005 – 2012) B.Sc. Geological Engineering: Istanbul University, Istanbul, Turkey (2000-2004) INTERNSHIP AND FIELD EXPERIENCE Internship: (June 2005-August 2005) MTA (Mineral Research and Exploration Institute, Ankara, Turkey) Field studies: - (May, 2015) Research field trip to Keystone Gold mine district, visiting Mineral Mountain Mine Company for research collaboration - (March, 2015) Research field trip between Keystone, Deadwood, and Sturgis areas: Sampling Tertiary intrusions for structural and petrographic analysis - (November, 2014) Research meeting and geology field trip in Marigold Mine District, Silver Standard Mining Co. - (September, 2013) Structural Geology Field Trip: Understanding extensional structures in Reva Gap, SD - (October 6, 2010) Mid-Congress Field Trip (GSA Tectonic crossroads, Ankara-Turkey): Gerede section of the North Anatolian fault zone - (March 30-April 3, 2009) Field Trip (Global Tectonics course): Tectonics & geomorphology of the Owen Valley, Eastern California shear zone - (June 2008 to August 2008) PhD research project: Systematic sampling of footwall rocks along the Alasehir detachment fault, Alasehir Basin (Western Turkey) - (November, 2008) Field Trip (Structural Geology course): Compressional and extensional structures in the southern Appalachian
    [Show full text]
  • Kinematic Interpretation of the 3D Shapes of Metamorphic Core Complexes Laetitia Le Pourhiet, Benjamin Huet, Dave May, Loic Labrousse, Laurent Jolivet
    Kinematic interpretation of the 3D shapes of metamorphic core complexes Laetitia Le Pourhiet, Benjamin Huet, Dave May, Loic Labrousse, Laurent Jolivet To cite this version: Laetitia Le Pourhiet, Benjamin Huet, Dave May, Loic Labrousse, Laurent Jolivet. Kinematic inter- pretation of the 3D shapes of metamorphic core complexes. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2012, 13 (9), pp.1-17. 10.1029/2012GC004271. hal-00730919 HAL Id: hal-00730919 https://hal.archives-ouvertes.fr/hal-00730919 Submitted on 17 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 1 Kinematic interpretation of the 3D shapes of metamorphic core 2 complexes 3 Submitted to G-cubed 4 Authors: 1,2 5 Laetitia Le Pourhiet 3 6 Benjamin Huet 4 7 Dave A. May 1,2 8 Loic Labrousse 5 9 Laurent Jolivet 10 Affiliations: 11 1 UPMC Univ Paris 06, UMR 7193, ISTEP, F-75005, Paris, France. 12 2 CNRS, UMR 7193, ISTEP, F-75005, Paris, France 13 3 Department for Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14 A- 14 1090 Vienna 15 4 Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Switzerland 16 5 ISTO, Université d’Orléans-CNRS, UMR 6113, F-45071 Orléans, France 17 2 18 19 Abstract 20 Metamorphic Core Complexes form dome shaped structures in which the ductile 21 crust is exhumed beneath a detachment fault.
    [Show full text]
  • Exhumation Processes in Oceanic and Continental Subduction Contexts: a Review
    Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review Stéphane Guillot, Keiko Hattori, Philippe Agard, Stéphane Schwartz and Olivier Vidal Abstract Although the exhumation of high pressure (HP) and ultrahigh pressure (UHP) rocks is an integral process in subduction, it is a transient process, likely taking place during the perturbation in subduction zones. Exhumation of HP to UHP rocks requires the weakening of a subduction channel and the decoupling of the exhumed slice from the rest of the slab. Considering more than 60 occurrences of HP to UHP units of Phanerozic ages, we propose three major types of subduction zones: Accretionary-type subduction zones exhume HP metasedimentary rocks by under- plating. The exhumation is slow and can be long-lasting. The serpentinite-type subduction zones exhume HP to UHP in a 1 to 10 km thick serpentinite subduction channel. The serpentinite matrix originates from both subducted abyssal peridotites and hydated mantle wedge. Exhumation velocity is low to intermediate and the exhumation is driven by the buoyancy and the low-viscosity of the serpentinite. The continental-type subductions exhume UHP rocks of continental origin. The UHP rocks together with garnet-bearing peridotites form units from km-scale unit. The exhumation is fast, short-lived and occurs at the transition from oceanic subduc- tion to continental subduction. It is driven by buoyancy forces and asthenospheric return fl ow. Keywords Oceanic subduction · Continental subduction · Exhumation · HP to UHP rocks · Subduction channel 1 Introduction occurrences of pelitic rocks metamorphosed under eclogite facies conditions suggest that these rocks were subducted to great depths before exhumed (Compagnoni Eclogites, HP-LT metamorphic rocks, have been and Maeffo, 1973; Carswell, 1990).
    [Show full text]
  • Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9532–9537, September 1997 Geology Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust W. G. ERNST*, S. MARUYAMA†, AND S. WALLIS‡ *Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115; †Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan; and ‡Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan Contributed by W. G. Ernst, June 24, 1997 ABSTRACT Preservation of ultrahigh-pressure (UHP) coupled to the descending lithosphere, continental indentation minerals formed at depths of 90–125 km require unusual would occur instead (7). conditions. Our subduction model involves underflow of a For the UHP case discussed here involving well-bonded salient (250 6 150 km wide, 90–125 km long) of continental crust plus mantle, entrance of increasing amounts of sialic crust embedded in cold, largely oceanic crust-capped litho- material into the subduction zone enhances the braking effect sphere; loss of leading portions of the high-density oceanic of buoyancy; this in turn results in loss of the high-density lithosphere by slab break-off, as increasing volumes of mi- lithospheric anchor leading the downgoing plate at interme- crocontinental material enter the subduction zone; buoyancy- diate upper mantle depths where the sinking lithosphere is in driven return toward midcrustal levels of a thin (2–15 km extension (8). Slab break-off (9, 10) enhances buoyancy fur- thick), low-density slice; finally, uplift, backfolding, normal ther, and causes the sialic prong—or at least a slice thereof—to faulting, and exposure of the UHP terrane.
    [Show full text]
  • Cordilleran Metamorphic Core Complexes: an Overview
    Chapter I CORDILLERAN METAMORPHIC CORE COMPLEXES: AN OVERVIEW by Peter J. Coney INTRODUCTION Cordilleran metamorphic core complexes are a group of usually domal or arch-like, isolated uplifts of anomously deformed, meta-· morphic and plutonic rocks,overlain by a tectonically detached and distended unmetamorphosed cover. The features (see Figure 1-1) are scattered in a sinuous string along the axis of the eastern two-thirds of the North American Cordillera from southern Canada to northwestern Mexico. To date, over 25 of them are known and it is significant that over half of them have been recognized only since 1970. They are, without question, the newest and most con­ troversial addition to the recognized architecture of the eastern two-thirds of the Cordillera since the discovery, in the early 1960~, of the Tertiary calderas and their associated vast ignim­ brite sheets. During the past 10 years, considerable debate has centered on them, and they have been termed metamorphic core com­ plexes (Coney, 1973a, 1976, 1978, 1979; Davis and Coney, 1979; Crittenden et al., 1978). The first hint of the exis tence and potential significance of these complexes was from the early efforts of Peter Misch and his students who began work in the Great Basin in the 1950s. Misch (1960) discovered and emphasized scattered occurrences of a major sub-horizontal dislocation plane or "decollement, as it was called, separating an unmetamorphosed Paleozoic miogeoclinal cover from a usually metamorphosed substratum. He found this repeatedly 25 in many ranges along and west of the Utah-Nevada, border about 200 kms west of the already known low- angle, east-verging Mesozoic thrust faults in central Utah.
    [Show full text]
  • RESEARCH Testing Modes of Exhumation in Collisional Orogens: Synconvergent Channel Flow in the Southeastern Canadian Cordillera
    RESEARCH Testing modes of exhumation in collisional orogens: Synconvergent channel fl ow in the southeastern Canadian Cordillera Félix Gervais* and Richard L. Brown DEPARTMENT OF EARTH SCIENCES, CARLETON UNIVERSITY, 2125 HERZBERG BUILDING, 1125 COLONEL BY DRIVE, OTTAWA, ONTARIO K1S 5B6, CANADA ABSTRACT This study investigates exhumation processes in collisional orogens. A critical test between three modes of exhumation is presented based on a review of quantitative numerical and analogue modeling studies. The test is applied to the large tract of migmatites surrounding the Monashee Complex in the southeastern Canadian Cordillera. It reveals that the extensive and multidisciplinary database of this region is entirely compatible with the synconvergent channel-fl ow mode but not with critical wedge and gravitational collapse modes. We propose that a partially molten channel decoupled from its lid and base and started to fl ow in the middle crust toward the foreland at 100–90 Ma. A steady-state channel-fl ow system was established for the following ~30 m.y., during which rocks at the front of the channel were exhumed to upper-crustal levels as they fl owed above an underthrusting basement ramp. Flow was accommodated by oppositely verging shear zones bounding the channel, by internal ductile deformation, and by shortening in the foreland belt. The locus of fl ow migrated downward to exhume rocks of the Monashee Complex between 60 and 50 Ma by a similar process. The southeastern Canadian Cordillera thus constitutes an excellent natural analogue for the channel-fl ow model. In contrast to the commonly held view of large-magnitude extension and core complex formation, the role of extension was limited to the fi nal ~10–15 km of exhumation after 50 Ma.
    [Show full text]