Non-Amenable Finitely Presented Torsion-By-Cyclic Groups

Total Page:16

File Type:pdf, Size:1020Kb

Non-Amenable Finitely Presented Torsion-By-Cyclic Groups NON-AMENABLE FINITELY PRESENTED TORSION-BY-CYCLIC GROUPS by ALEXANDER YU. OL’SHANSKII and MARK V. S A P I R ABSTRACT We construct a finitely presented non-amenable group without free non-cyclic subgroups thus providing a fi- nitely presented counterexample to von Neumann’s problem. Our group is an extension of a group of finite exponent n 1 by a cyclic group, so it satisfies the identity [x, y]n = 1. CONTENTS 1 Introduction..................................................................................... 44 1.1 Shorthistoryoftheproblem.................................................................. 44 1.2 CongruenceextensionembeddingsofthefreeBurnsidegroups.................................... 46 1.3 TheschemeoftheproofofTheorem1.3andtheplanofthepaper................................ 50 2 Mapsanddiagrams.............................................................................. 53 2.1 Graphsandmaps........................................................................... 53 2.2 Bands..................................................................................... 54 2.3 Bondsandcontiguitysubmaps................................................................ 56 2.4 ConditionA................................................................................ 59 3 Burnsidequotients ............................................................................... 64 3.1 Axioms.................................................................................... 64 3.2 Corollariesof(Z1),(Z2),(Z3) ................................................................. 67 3.3 Theconstructionofagradedpresentation...................................................... 74 4 SubgroupsofthefreeBurnsidegroups.............................................................. 93 4.1 Setsofwordswithsmallcancellation........................................................... 93 4.2 Subgroups of B(m, n) satisfyingthecongruenceextensionproperty................................. 95 4.3 Burnsidegroupsandfreeproducts.............................................................104 5 Thepresentationofthegroup .....................................................................107 5.1 S-machinesandtheirinterpretation............................................................107 5.2 The S-machine M ..........................................................................111 5.3 Thepresentation............................................................................114 5.4 The subgroup A of H is a torsion group of exponent n ........................................115 6PropertiesoftheS-machine M .....................................................................116 6.1 The inverse semigroup P(M) .................................................................116 6.2 Stabilizers in P(M) ofsubwordsofthehub.....................................................123 6.3 Stabilizersofarbitraryadmissiblewords........................................................126 7 Bands,annuli,andtrapezia........................................................................142 7.1 Definitionsandbasicfacts....................................................................142 7.2 Forbiddenannuli............................................................................143 7.3 Trapezia...................................................................................144 8ThegroupHra ...................................................................................147 9ThegroupHkra ..................................................................................151 9.1 Getting rid of Burnside ra-cells................................................................151 9.2 Conditions(Z1),(Z2),(Z3)....................................................................159 10ProofofTheorem1.3.............................................................................165 References.........................................................................................166 Subjectindex.......................................................................................167 Both authors were supported in part by the NSF grant DMS 0072307. In addition, the research of the first author was supported in part by the Russian Fund for Basic Research 99-01-00894 and by the INTAS grant, the research of the second author was supported in part by the NSF grant DMS 9978802. 44 ALEXANDER YU. OL’SHANSKII, MARK V. SAPIR 1. Introduction 1.1. Short history of the problem Hausdorff [16] proved in 1914 that one can subdivide the 2-sphere minus a countable set of points into 3 parts A, B, C, such that each of these three parts can be obtained from each of the other two parts by a rotation, and the union of two of these parts can be obtained by rotating the third part. This implied that one cannot define a finitely additive measure on the 2-sphere which is invariant under the group SO(3). In 1924 Banach and Tarski [4] generalized Hausdorff ’s result by proving, in particular, that in the Euclidean 3-space, every two bounded sets A, B with non-empty = n = n interiors can be decomposed A i=1 Ai, B i=1 Bi such that Ai can be rotated to Bi, i = 1,...,n (the so called Banach-Tarski paradox). Von Neumann [25] was first who noticed that the cause of the Banach-Tarski paradox is not the geometry of Eu- clidean 3-space but an algebraic property of the group SO(3). He introduced the con- cept of an amenable group (he called such groups “measurable”) as a group G which has a left invariant finitely additive measure1 µ, µ(G) = 1, noticed that if a group is amenable then any set it acts upon freely also has an invariant measure and proved that a group is not amenable provided it contains a free non-abelian subgroup. He also showed that groups like PSL(2, Z), SL(2, Z) contain free non-abelian subgroups. So analogs of Banach-Tarski paradox can be found in the Euclidean 2-space and even on the real line. Von Neumann showed that the class of amenable groups contains abelian groups, finite groups and is closed under taking subgroups, extensions, and in- finite unions of increasing sequences of groups. Day and Specht showed that this class is closed under homomorphic images. The class of groups without free non-abelian subgroups is also closed under these operations and contains abelian and finite groups. The problem of existence of non-amenable groups without non-abelian free sub- groups probably goes back to von Neumann and became known as the “von Neu- mann problem” in the fifties. As far as we know, the first paper where this problem was formulated was the paper by Day [10]. It is also mentioned in the monograph by Greenleaf [13] based on his lectures given in Berkeley in 1967. Tits [38] proved that every non-amenable matrix group over a field of characteristic 0 contains a non- abelian free subgroup. In particular every semisimple Lie group over a field of char- acteristic 0 contains such a subgroup (see also Vershik [39]). First counterexamples to the von Neumann problem were constructed by Ol’shanskii [29]. He proved that the groups with all proper subgroups cyclic con- structed by him, both torsion-free [27] and torsion [28] (the so called “Tarski mon- sters”), are not amenable. Later Adian [1] showed that the free Burnside group of odd 1 Later amenable groups were characterized in many different ways. There exist a geometric characterization by Følner [11], a characterization by Kesten [19] in terms of random walks, and a combinatorial characterization by Grigorchuk [14] among others. NON-AMENABLE FINITELY PRESENTED TORSION-BY-CYCLIC GROUPS 45 exponent n ≥ 665 with at least two generators (that is the group B(m, n) given by m generators and all relations of the form vn = 1 where v is a word in generators) is not amenable. It is interesting that the possibility of using torsion groups and, in particu- lar, free Burnside groups as potential counterexamples to von Neumann’s problem was mentioned by Day [10], conjectured by Kesten [20], and by B.H. Neumann’s in his review of Specht’s paper [37] in Zentralblatt. Both Ol’shanskii’s and Adian’s examples are not finitely presented: in the mod- ern terminology these groups are inductive limits of word hyperbolic groups, but they are not hyperbolic themselves. Since many mathematicians (especially topologists) are mostly interested in groups acting “nicely” on manifolds, it is natural to ask if there ex- ists a finitely presented non-amenable group without non-abelian free subgroups. This question was explicitly formulated, for example, by Grigorchuk in [22] and by Co- hen in [9]. This question is one of a series of similar questions about finding finitely presented “monsters”, i.e. groups with unusual properties. Probably the most famous problem in that series is the problem about finding a finitely presented infinite tor- sion group. Other similar problems ask for finitely presented divisible group (group where every element has roots of every degree), finitely presented Tarski monster, etc. In each case a finitely generated example can be constructed as a limit of hyperbolic groups (see [30]), and there is no hope to construct finitely presented examples as such limits. One difficulty in constructing a finitely presented non-amenable group with- out free non-abelian subgroups is that there are “very few” known finitely presented groups without free non-abelian subgroups. Most non-trivial examples are solvable or “almost” solvable (see [21]), and so they are amenable. The only known examples of finitely presented groups without free non-abelian subgroups for which the prob- lem of amenability
Recommended publications
  • On Abelian Subgroups of Finitely Generated Metabelian
    J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/.
    [Show full text]
  • Infinite Groups with Large Balls of Torsion Elements and Small Entropy
    INFINITE GROUPS WITH LARGE BALLS OF TORSION ELEMENTS AND SMALL ENTROPY LAURENT BARTHOLDI, YVES DE CORNULIER Abstract. We exhibit infinite, solvable, abelian-by-finite groups, with a fixed number of generators, with arbitrarily large balls consisting of torsion elements. We also provide a sequence of 3-generator non-nilpotent-by-finite polycyclic groups of algebraic entropy tending to zero. All these examples are obtained by taking ap- propriate quotients of finitely presented groups mapping onto the first Grigorchuk group. The Burnside Problem asks whether a finitely generated group all of whose ele- ments have finite order must be finite. We are interested in the following related question: fix n sufficiently large; given a group Γ, with a finite symmetric generating subset S such that every element in the n-ball is torsion, is Γ finite? Since the Burn- side problem has a negative answer, a fortiori the answer to our question is negative in general. However, it is natural to ask for it in some classes of finitely generated groups for which the Burnside Problem has a positive answer, such as linear groups or solvable groups. This motivates the following proposition, which in particularly answers a question of Breuillard to the authors. Proposition 1. For every n, there exists a group G, generated by a 3-element subset S consisting of elements of order 2, in which the n-ball consists of torsion elements, and satisfying one of the additional assumptions: (1) G is solvable, virtually abelian, and infinite (more precisely, it has a free abelian normal subgroup of finite 2-power index); in particular it is linear.
    [Show full text]
  • 17 Torsion Subgroup Tg
    17 Torsion subgroup tG All groups in this chapter will be additive. Thus extensions of A by C can be written as short exact sequences: f g 0 ! A ¡! B ¡! C ! 0 which are sequences of homomorphisms between additive groups so that im f = ker g, ker f = 0 (f is a monomorphism) and coker g = 0 (g is an epimorphism). Definition 17.1. The torsion subgroup tG of an additive group G is defined to be the group of all elements of G of finite order. [Note that if x; y 2 G have order n; m then nm(x + y) = nmx + nmy = 0 so tG · G.] G is called a torsion group if tG = G. It is called torsion-free if tG = 0. Lemma 17.2. G=tG is torsion-free for any additive group G. Proof. This is obvious. If this were not true there would be an element of G=tG of finite order, say x + tG with order n. Then nx + tG = tG implies that nx 2 tG so there is an m > 0 so that m(nx) = 0. But then x has finite order and x + tG is zero in G=tG. Lemma 17.3. Any homomorphism f : G ! H sends tG into tH, i.e., t is a functor. Proof. If x 2 tG then nx = 0 for some n > 0 so nf(x) = f(nx) = 0 which implies that f(x) 2 tH. Lemma 17.4. The functor t commutes with direct sum, i.e., M M t G® = tG®: This is obvious.
    [Show full text]
  • Torsion in Profinite Completions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 88 (1993) 143-154 143 North-Holland Torsion in profinite completions Peter H. Kropholler School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road. London El 4NS, United Kingdom John S. Wilson Christ’s College, Cambridge CB2 3BCJ, United Kingdom Communicated by A. Camina Received 15 December 1992 For Karl Gruenberg on his 65th birthday 1. Introduction In [l] the question was raised whether the profinite completion of a torsion-free residually finite group is necessarily torsion-free. Subsequently, counter-examples were discovered by Evans [2], and more recently, Lubotsky [4] has shown that there is a finitely generated torsion-free residually finite group whose profinite completion contains a copy of every finite group. In this paper we study the situation more closely for soluble groups. The major result of the paper is the construction of finitely generated centre by metabelian counter-examples in Section 3. We begin in Section 2 by establishing some positive results showing that there are no counter-examples amongst abelian groups, finitely generated abelian by nilpotent groups or soluble minimax groups. In Section 3 we first establish counter-examples which are nilpotent of class 2: these are necessarily infinitely generated. Then we give the promised centre by metabelian examples. It is interesting to note that the dichotomy arising here between abelian by nilpotent groups and centre by metabelian groups is the one which arises in the work of Hall [3].
    [Show full text]
  • Group Theory
    Algebra Math Notes • Study Guide Group Theory Table of Contents Groups..................................................................................................................................................................... 3 Binary Operations ............................................................................................................................................................. 3 Groups .............................................................................................................................................................................. 3 Examples of Groups ......................................................................................................................................................... 4 Cyclic Groups ................................................................................................................................................................... 5 Homomorphisms and Normal Subgroups ......................................................................................................................... 5 Cosets and Quotient Groups ............................................................................................................................................ 6 Isomorphism Theorems .................................................................................................................................................... 7 Product Groups ...............................................................................................................................................................
    [Show full text]
  • The CI Problem for Infinite Groups
    The CI problem for infinite groups Joy Morris∗ Department of Mathematics and Computer Science University of Lethbridge Lethbridge, AB. T1K 3M4. Canada [email protected] Submitted: Feb 24, 2015; Accepted: Nov 21, 2016; Published: Dec 9, 2016 Mathematics Subject Classifications: 05C25, 20B27 Abstract A finite group G is a DCI-group if, whenever S and S0 are subsets of G with the Cayley graphs Cay(G; S) and Cay(G; S0) isomorphic, there exists an automorphism ' of G with '(S) = S0. It is a CI-group if this condition holds under the restricted assumption that S = S−1. We extend these definitions to infinite groups, and make two closely-related definitions: an infinite group is a strongly (D)CIf -group if the same condition holds under the restricted assumption that S is finite; and an infinite group is a (D)CIf -group if the same condition holds whenever S is both finite and generates G. We prove that an infinite (D)CI-group must be a torsion group that is not locally- finite. We find infinite families of groups that are (D)CIf -groups but not strongly (D)CIf -groups, and that are strongly (D)CIf -groups but not (D)CI-groups. We discuss which of these properties are inherited by subgroups. Finally, we completely n characterise the locally-finite DCI-graphs on Z . We suggest several open problems related to these ideas, including the question of whether or not any infinite (D)CI- group exists. 1 Introduction Although there has been considerable work done on the Cayley Isomorphism problem for finite groups and graphs, little attention has been paid to its extension to the infinite case.
    [Show full text]
  • High Subgroups of Abelian Torsion Groups
    Pacific Journal of Mathematics HIGH SUBGROUPS OF ABELIAN TORSION GROUPS JOHN MCCORMICK IRWIN Vol. 11, No. 4 1961 HIGH SUBGROUPS OF ABELIAN TORSION GROUPS JOHN M. IRWIN The results in this paper were part of a doctor's thesis completed in February 1960 under Professor W. R. Scott at the University of Kansas. The author wishes to express his gratitude to Professor Scott for his advice and for checking the results. In what follows, all groups considered are Abelian. Let G1 be the subgroup of elements of infinite height in an Abelian group G (see [2]). A subgroup H of G maximal with respect to disjointness from G1 will be called a high subgroup of G. If N is a subgroup of G, H will be called N-high if and only if H is a subgroup of G maximal with respect to disjointness from N. Zorn's lemma guarantees the existence of N- high subgroups for any subgroup N of G. A group E minimal divisible among those groups containing G will be called a divisible hull of G. Unless otherwise specified, the notation and terminology will be essentially that of L. Fuchs in [1]. The main theorem says that high subgroups of Abelian torsion groups are pure. After proving some preparatory lemmas, we will prove the main theorem. Then we will discuss Fuchs' Problem 4 and list some of the more important properties of high subgroups. Finally we will state some generalizations. A lemma describing iV-high subgroups is LEMMA 1. Let G be a primary group with H an N-high subgroup of G, Da divisible hull of G, A any divisible hull of H in D (this means that A c D), and B any divisible hull of N in D.
    [Show full text]
  • The Torsion Group of a Field Defined by Radicals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF NUMBER THEORY 19, 283-294 (1984) The Torsion Group of a Field Defined by Radicals MARIA ACOSTA DE OROZCO AND WILLIAM YSLAS VELEZ* Department of Mathematics, University of Arizona, Tucson, Arizona 85721 Communicated by 0. Taussky Todd Received February 24, 1983 Let L/F be a finite separable extension, L* =L\(O}. and T&*/F*) the torsion subgroup of L*/F*. When L/F is an abelian extension T(L*/F*) is explicitly determined. This information is used to study the structure of T(L*/F*). In particular, T(F(a)*/F*) when om = a E F is explicitly determined. c 1984 Academic Press. Inc. 1. INTRODUCTION Let L/F be a finite separable extension and let L* denote the multiplicative group of non-zero elements. We shall denote by T = T(L */F*) the torsion subgroup of L*/F*, that is, T= {/?F* : ,L?E L and /3k E F for some integer k}. The group T has been studied for various extensions L/F. Kummer theory yields that if L/F is normal, Gal(L/F) is abelian of exponent m (that is, every element in Gal(L/F) has order a divisor of m) and F contains m distinct mth roots of unity, then {aF*: CI E L and am E F) is isomorphic to Gal(L/F). More generally, Kneser (51 has proved the following: THEOREM (Kneser). Let L/F be a jkite separable extension, N a subgroup of L* containing F* and IN/F* 1< CD.
    [Show full text]
  • On Torsion and Finite Extension of Fc and Τnk Groups in Certain Classes of Finitely Generated Groups
    Open J. Math. Sci., Vol. 2(2018), No. 1, pp. 351 - 360 Website: https://pisrt.org/psr-press/journals/oms/ ISSN: 2523-0212 (Online) 2616-4906 (Print) http://dx.doi.org/10.30538/oms2018.0040 ON TORSION AND FINITE EXTENSION OF FC AND τNK GROUPS IN CERTAIN CLASSES OF FINITELY GENERATED GROUPS MOURAD CHELGHAM, MOHAMED KERADA1 (2) Abstract. Let k > 0 an integer. F , τ, N, Nk, Nk and A denote the classes of finite, torsion, nilpotent, nilpotent of class at most k, group which every two generator subgroup is Nk and abelian groups respectively. The main results of this paper is, firstly, we prove that, in the class of finitely generated τN-group (respectively FN-group) a (FC)τ-group (respectively (FC)F -group) is a τA-group (respectively is FA-group). Secondly, we prove that a finitely generated τN-group (respectively FN-group) in the (2) class ((τNk)τ; 1) (respectively ((FNk)F; 1)) is a τNk -group (respec- (2) tively FNk -group). Thirdly we prove that a finitely generated τN-group ∗ (respectively FN-group) in the class ((τNk)τ; 1) ( respectively ((FNk)F; ∗ 1) ) is a τNc-group (respectively FNc-group) for certain integer c and we extend this results to the class of NF -groups. Mathematics Subject Classification: 20F22, 20F99. Key words and phrases: (FC)τ-group; (FC)F -group; ((τNk)τ; 1)-group; ∗ ∗ ((FNk)F; 1)-group; ((τNk)τ; 1) -group; ((FNk)F; 1) -group. 1. Introduction and Preliminaries Definition 1.1. A group G is said to be with finite conjugacy classes (or shortly FC-group) if and only if every element of G has a finite conjugacy class in G.
    [Show full text]
  • Selected Exercises from Abstract Algebra by Dummit and Foote (3Rd Edition)
    Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Bryan F´elix Abril 12, 2017 Section 2.1 Exercise (6). Let G be an abelian group. Prove that T = fg 2 Gjjgj < 1g is a subgroup of G. Give an explicit example where this set is not a subgroup when G is non-abelian. Proof. i. T is non-empty. The identity i of G is an element of T . ii. T is closed under inverses. If x 2 T then there exist n < 1 such that xn = i. Then i = xn x−1 = xnx−1 (x−1)n = (xnx−1)n = ix−n since x commutes with itself = xnx−n since xn = i = i This shows that jx−1j ≤ n and therefore x−1 2 T . iii. T is closed under products. Take arbitrary x and y in T and let jxj = n and jyj = m. Then (xy)mn = xmnymn since G is an abelian group = (xn)m(ym)n = imin = i Therefore jxyj ≤ mn and xy 2 T We conclude thhat T is a subgroup. Now we exhibit an example where T fails to be a subgroup when G is non-abelian. Let G = h x; yjx2 = y2 = i i. Observe that the product xy has infinite order since the product (xy)(xy) is no longer reducible because we lack the commutativity of x with y. Hence, x; y 2 T but (xy) 2= T . Exercise (7). Fix some n 2 Z with n > 1. Find the torsion subgroup of Z×(Z=nZ). Show that the set of elements of infinite order together with the identity is not a subgroup of this direct product.
    [Show full text]
  • Arxiv:1802.01098V1 [Math.AG] 4 Feb 2018 Iet Ihm Ece Ute Raiescesi Ler Ntenex [ the Plotkin in B
    GEOMETRIC EQUIVALENCE of π-TORSION-FREE NILPOTENT GROUPS. R. Lipyanski This article is dedicated to my teacher Prof. B. Plotkin on his 90th anniversary. Abstract. In this paper we study the property of geometric equivalence of groups introduced by B. Plotkin [P1, P2]. Sufficient and necessary conditions are presented for π-torsion-free nilpotent group to be geometrically equiva- lent to its π-completion. We prove that a relatively free nilpotent π-torsion- free group and its π-completion define the same quasi-variety. Examples of π-torsion-free nilpotent groups that are geometrically equivalent to their π- completions are given. 1. Introduction I attended Professor Plotkin’s lectures about 45 years ago as a student at the University of Latvia. Over the years, I participated in Plotkin’s seminars on group theory in Latvia and Israel. I am grateful to Boris Isaakovich Plotkin for revealing to me the world of group theory in all its diversity. The problems posed by Plotkin at seminars and in his numerous papers have always been interesting to me. I would like to wish my teacher further creative success in Algebra in the next 30 years. The foundation of universal algebraic geometry for different algebraic systems were laid by B. Plotkin [P1, P2, P3]. Within the framework of universal algebraic geometry (UAG), the important notion of geometric equivalence of universal alge- arXiv:1802.01098v1 [math.AG] 4 Feb 2018 bras was introduced in [P1, P2]. Geometric equivalence of two algebras means, in some sense, equal possibilities for solving systems of equations in these algebras.
    [Show full text]
  • Centralizers in Residually Finite Torsion Groups
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 12, December 1998, Pages 3495{3499 S 0002-9939(98)04471-2 CENTRALIZERS IN RESIDUALLY FINITE TORSION GROUPS ANER SHALEV (Communicated by Lance W. Small) In memory of Brian Hartley Abstract. Let G be a residually finite torsion group. We show that, if G has a finite 2-subgroup whose centralizer is finite, then G is locally finite. We also show that, if G has no 2-torsion, and Q is a finite 2-group acting on G in such a way that the centralizer CG(Q) is soluble, or of finite exponent, then G is locally finite. 1. Introduction The study of centralizers in torsion groups and in locally finite groups in partic- ular has been a major research project in the past few decades; see Shunkov [S], Hartley [H1], [H2], [H3, Section 3] and the references therein. The purpose of this note is to apply some powerful Lie-theoretic tools (see Zelmanov [Z2] and Bahturin and Zaicev [BZ]) in the study of centralizers in residually finite torsion groups. Well known constructions by Golod [G], Grigorchuk [Gr], Gupta and Sidki [GS], and others, show that a residually finite torsion group G need not be locally finite. However, the local finiteness of G can be deduced under some extra assumptions on G. For example, if we assume further that G is soluble, or of finite exponent, then G is locally finite; note that the fact residually finite groups of finite exponent are locally finite is one of the equivalent formulations of Zelmanov's celebrated solution to the Restricted Burnside Problem.
    [Show full text]