From the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated. -
(Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China
Zootaxa 2403: 1–9 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China XING XU1, JONAH N. CHOINIERE2, MICHAEL PITTMAN3, QINGWEI TAN4, DONG XIAO5, ZHIQUAN LI5, LIN TAN4, JAMES M. CLARK2, MARK A. NORELL6, DAVID W. E. HONE1 & CORWIN SULLIVAN1 1Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 142 Xiwai Street, Beijing 100044. E-mail: [email protected] 2Department of Biological Sciences, George Washington University, 2023 G Street NW, Washington, DC 20052, USA 3Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK 4Long Hao Institute of Geology and Paleontology, Hohhot, Nei Mongol 010010, China 5Department of Land and Resources, Linhe, Nei Mongol 015000, China 6Division of Paleontology, American Museum of Natural History, Central Park West at 79th St., New York, 10024, USA Abstract We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra. -
A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1). -
Students Discover New Species of Raptor Dinosaur (W/ Video) 19 March 2010
Students discover new species of raptor dinosaur (w/ Video) 19 March 2010 the dinosaur sticking out of a cliff face during a field project in Inner Mongolia, China. Their research is published online today in the journal Zootaxa. "Jonah saw a claw protruding from the cliff face. He carefully removed it and handed it to me. We went through its features silently but he wanted my identification first. I told him it was from a carnivorous dinosaur and when he agreed I'm surprised nobody in London heard us shouting," said Michael Pittman, a PhD student in the UCL Department of Earth Sciences who was the co- discoverer of the dinosaur. "I've always wanted to discover a dinosaur since I was a kid, and I've never given up on the idea. It was amazing that my first discovery was from a Linheraptor skeleton. Credit: David Hone. Velociraptor relative. My thesis is on the evolution and biomechanics of dinosaur tails but the carnivorous dinosaurs are my favourite and my specialty," he added. (PhysOrg.com) -- A new species of dinosaur, a relative of the famous Velociraptor, has been At approximately 2.5 metres long and 25 kilograms, discovered in Inner Mongolia by two PhD students. the researchers believe Linheraptor would have been a fast, agile predator that preyed on small horned dinosaurs related to Triceratops. Like other The exceptionally well preserved dinosaur, named dromaeosaurids, it possessed a large "killing claw" Linheraptor exquisitus, is the first near complete on the foot, which may have been used to capture skeleton of its kind to be found in the Gobi desert prey. -
A Dinosaur Community Composition Dataset for the Late Cretaceous Nemegt Basin of Mongolia
Data in Brief 16 (2018) 660–666 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data Article A dinosaur community composition dataset for the Late Cretaceous Nemegt Basin of Mongolia G.F. Funston a,⁎, S.E. Mendonca b, P.J. Currie a, R. Barsbold c a Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2E9 b Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, AB, Canada T6G 2E3 c Institute of Paleontology and Geology, Mongolian Academy of Sciences, Box-46/650, Ulaanbaatar 15160, Mongolia article info abstract Article history: Dinosaur community composition data for eleven fossil localities Received 1 November 2017 in the Late Cretaceous Nemegt Basin of Mongolia are compiled Received in revised form from field observations and records in the literature. Counts were 28 November 2017 generated from skeletons and represent numbers of individuals Accepted 29 November 2017 preserved in each locality. These data were used in the analyses of Available online 6 December 2017 Funston et al. [1] “Oviraptorosaur anatomy, diversity, and ecology in the Nemegt Basin” in the Nemegt Ecosystems Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology, where the results are discussed. & 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Specifications Table Subject area Evolutionary Biology More specific subject area Palaeontology and Palaeoecology Type of data Tables, Interactive map How data was acquired Field observations and literature survey Data format Raw tables and .kmz files for Google Earth DOI of original article: https://doi.org/10.1016/j.palaeo.2017.10.023 ⁎ Corresponding author. -
Paleontological Contributions
Paleontological Contributions Number 14 The first giant raptor (Theropoda: Dromaeosauridae) from the Hell Creek Formation Robert A. DePalma, David A. Burnham, Larry D. Martin, Peter L. Larson, and Robert T. Bakker October 30, 2015 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Life restoration by Emily Willoughby of Dakotaraptor steini running with the sparrow-sized birds, Cimolopteryx petra while the mammal, Purgatorius, can be seen in the foreground. Paleontological Contributions October 30, 2015 Number 14 THE FIRST GIANT RAPTOR (THEROPODA: DROMAEOSAURIDAE) FROM THE HELL CREEK FORMATION Robert A. DePalma1,2, David A. Burnham2,*, Larry D. Martin2,†, Peter L. Larson3 and Robert T. Bakker4 1 Department of Vertebrate Paleontology, The Palm Beach Museum of Natural History, Fort Lauderdale, Florida; 2 University of Kansas Bio- diversity Institute, Lawrence, Kansas; 3Black Hills Institute of Geological Research, Hill City, South Dakota; 4Houston Museum of Nature and Science, Houston, Texas; e-mail: [email protected] ABSTRACT Most dromaeosaurids were small- to medium-sized cursorial, scansorial, and arboreal, sometimes volant predators, but a comparatively small percentage grew to gigantic proportions. Only two such giant “raptors” have been described from North America. Here, we describe a new giant dromaeosaurid, Dakotaraptor steini gen. et sp. nov., from the Hell Creek Formation of South Dakota. The discovery represents the first giant dromaeosaur from the Hell Creek Formation, and the most recent in the fossil record worldwide. A row of prominent ulnar papilli or “quill knobs” on the ulna is our first clear evidence for feather quills on a large dromaeosaurid forearm and impacts evolutionary reconstructions and functional morphology of such derived, typically flight-related features. -
Redalyc.Unenlagiinae Revisited: Dromaeosaurid Theropods From
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil GIANECHINI, FEDERICO A.; APESTEGUÍA, SEBASTIÁN Unenlagiinae revisited: dromaeosaurid theropods from South America Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 163-195 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 14:11 — page 163 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 163-195 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiinae revisited: dromaeosaurid theropods from South America FEDERICO A. GIANECHINI and SEBASTIÁN APESTEGUÍA CONICET – Área de Paleontología, Fundación de Historia Natural ‘Félix de Azara’ Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Hidalgo 775 (1405BDB), Ciudad Autónoma de Buenos Aires, Argentina Manuscript received on October 30, 2009; accepted for publication on June 21, 2010 ABSTRACT Over the past two decades, the record of South American unenlagiine dromaeosaurids was substantially increased both in quantity as well as in quality of specimens. Here is presented a summary review of the South American record for these theropods. Unenlagia comahuensis, Unenlagia paynemili, and Neuquenraptor argentinus come from the Portezuelo Formation, the former genus being the most complete and with putative avian features. -
An Aberrant Island-Dwelling Theropod Dinosaur from the Late Cretaceous of Romania
An aberrant island-dwelling theropod dinosaur from the Late Cretaceous of Romania Zoltán Csikia,1, Mátyás Vremirb, Stephen L. Brusattec,d, and Mark A. Norellc,d aLaboratory of Paleontology, Department of Geology and Geophysics, University of Bucharest, 1 N. Bălcescu Boulevard, Bucharest 010041, Romania; bDepartment of Natural Sciences, Transylvanian Museum Society (EME), 2-4 Napoca Street, Cluj-Napoca 400009, Romania; cDivision of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; and dDepartment of Earth and Environmental Sciences, Columbia University, New York, NY 10025 Edited* by Paul E. Olsen, Columbia University, Palisades, NY, and approved July 8, 2010 (received for review May 19, 2010) Islands are noted for the occurrence of aberrant, endemic, and large carnivores on the European paleoislands. It exhibits a suite dwarfed taxa (the “island effect”). Late Cretaceous vertebrate of peculiar features, most notably an enlarged pedal digit I, which assemblages of Romania and elsewhere in Europe are classic exam- along with digit II is modified for hyperextension. Nearly 20 ad- ples of island faunas in the fossil record, and are characterized by ditional autapomorphies also characterize this taxon, many of dwarfed herbivorous dinosaurs and other endemic taxa that are which relate to extensive fusion of elements in the hand and distal noticeably primitive relative to their mainland contemporaries. hindlimb and enlarged pelvic musculature. This unique dromaeo- Fossils of the predators -
Late Cretaceous Stratigraphy and Vertebrate Faunas of the Markagunt, Paunsaugunt, and Kaiparowits Plateaus, Southern Utah
GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 3 2016 LATE CRETACEOUS STRATIGRAPHY AND VERTEBRATE FAUNAS OF THE MARKAGUNT, PAUNSAUGUNT, AND KAIPAROWITS PLATEAUS, SOUTHERN UTAH Alan L. Titus, Jeffrey G. Eaton, and Joseph Sertich A Field Guide Prepared For SOCIETY OF VERTEBRATE PALEONTOLOGY Annual Meeting, October 26 – 29, 2016 Grand America Hotel Salt Lake City, Utah, USA Post-Meeting Field Trip October 30–November 1, 2016 © 2016 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected]. GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 3 2016 Editors UGA Board Douglas A. Sprinkel Thomas C. Chidsey, Jr. 2016 President Bill Loughlin [email protected] 435.649.4005 Utah Geological Survey Utah Geological Survey 2016 President-Elect Paul Inkenbrandt [email protected] 801.537.3361 801.391.1977 801.537.3364 2016 Program Chair Andrew Rupke [email protected] 801.537.3366 [email protected] [email protected] 2016 Treasurer Robert Ressetar [email protected] 801.949.3312 2016 Secretary Tom Nicolaysen [email protected] 801.538.5360 Bart J. Kowallis Steven Schamel 2016 Past-President Jason Blake [email protected] 435.658.3423 Brigham Young University GeoX Consulting, Inc. 801.422.2467 801.583-1146 UGA Committees [email protected] [email protected] Education/Scholarship -
Diversity of Raptor Dinosaurs in Southeastern North America Revealed by the First Definite Record from North Carolina
Diversity of raptor dinosaurs in southeastern North America revealed by the first definite record from North Carolina Chase Brownstein, Research Associate, Department of Collections & Exhibitions Stamford Museum & Nature Center. [email protected] Abstract. During the Cretaceous period, North America was divided into two landmasses, the eastern Appalachia and western Laramidia. Recent research on several sites scattered across the eastern margin of North America has allowed for the analysis of vertebrate faunas from the once obscured terrestrial fossil record of Appalachia, revealing the landmass harbored a distinctive fauna composed of mostly relict forms. One geological unit that has produced a comparatively extensive record of terrestrial vertebrates, including non-avian dinosaurs, is the Tar Heel Formation of North Carolina. Here, I report the first definitive occurrence of a dromaeosaurid from the Tar Heel Formation in the form of a tooth from a fairly large member of that group. This tooth, like others previously discovered from the southeastern portion of North America, compares favorably with those of saurornitholestine dromaeosaurids from the western United States and Canada. The North Carolina tooth differs in morphology and size from previously reported southeastern North American dromaeosaurid teeth, but is still assignable to a saurornitholestine dromaeosaurid, evincing that the diversity of carnivorous bird-like dinosaurs in the southeastern part of North America during the Late Cretaceous may have been rather low. The tooth, which is intermediate in size between those of smaller dromaeosaurids like !1 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26829v1 | CC BY 4.0 Open Access | rec: 5 Apr 2018, publ: 5 Apr 2018 Saurornitholestes and gigantic forms like Dakotaraptor, helps fill the gap between larger- and smaller-bodied dromaeosaurids from the Late Cretaceous. -
The Inner Mongolia Research Project Dinosaur Palaeontology in the Gobi Desert Presented by Dr
The Inner Mongolia Research Project Dinosaur Palaeontology in the Gobi Desert Presented by Dr. Michael Pittman Date: Wednesday 7th August 2013 Time: 6.30 pm – 7:30 pm Venue: Conference Room 2 at Atkins China Ltd., 13/F Wharf T & T Centre, Harbour City, TST Seminar Fee: Free of charge Registration: Prior registration is required, please email Ms. Kitty CHAN at [email protected] to reserve a seat. Seating capacity is limited to 30 and the applications will be accepted on a first-come, first- served basis. Attendance CPD certificates will be provided. Synopsis: The Cretaceous-aged rocks of the Gobi desert are legendary amongst palaeontologists for their spectacular, three- dimensionally preserved fossils. If you have ever heard of the dinosaur Velociraptor then these are the rocks it originates from. This talk focuses on the Campanian-aged (~70-80ma) dinosaurs of Bayan Mandahu, Inner Mongolia, China. Preserved in alluvial red beds these dinosaurs are found in a wide range of lithologies that appear to have formed under arid conditions. Numerous dinosaur species have been identified from Bayan Mandahu over nearly 100 years of exploration. These species represent an ecosystem that is similar to those reconstructed at contemporaneous red bed deposits in Mongolia. The talk briefly outlines the geology and history of exploration at dinosaur-bearing localities and introduces The Inner Mongolia Research Project. Important Project discoveries are discussed including their impact on our knowledge of dinosaurian evolution and of evolutionary processes more generally. Amongst the Project’s discoveries are the World’s only single-fingered dinosaur, Linhenykus, as well as the near-complete Velociraptor relative, Linheraptor, both of which appeared on the cover of Geoscientist magazine (the 2008 expedition was partly funded by the Society). -
Haplocheirus Sollers Choiniere Et Al., 2010 (Theropoda: Alvarezsauroidea)
AMERICAN MUSEUM NOVITATES Number 3816, 44 pp. October 22, 2014 Cranial osteology of Haplocheirus sollers Choiniere et al., 2010 (Theropoda: Alvarezsauroidea) JONAH N. CHOINIERE,1,2,3 JAMES M. CLARK,2 MARK A. NORELL,3 AND XING XU4 ABSTRacT The basalmost alvarezsauroid Haplocheirus sollers is known from a single specimen col- lected in Upper Jurassic (Oxfordian) beds of the Shishugou Formation in northwestern China. Haplocheirus provides important data about the plesiomorphic morphology of the theropod group Alvarezsauroidea, whose derived members possess numerous skeletal autapomorphies. We present here a detailed description of the cranial anatomy of Haplocheirus. These data are important for understanding cranial evolution in Alvarezsauroidea because other basal mem- bers of the clade lack cranial material entirely and because derived parvicursorine alvarezsau- roids have cranial features shared exclusively with members of Avialae that have been interpreted as synapomorphies in some analyses. We discuss the implications of this anatomy for cranial evolution within Alvarezsauroidea and at the base of Maniraptora. INTRODUCTION Alvarezsauroidea is a clade of theropod dinosaurs whose derived members possess remarkably birdlike features, including a lightly built, kinetic skull, several vertebral modi- fications, a keeled sternum, a fused carpometacarpus, a fully retroverted pubis and ischium 1 Evolutionary Studies Institute, University of the Witwatersrand; DST/NRF Centre of Excellence in Palaeo- sciences, University of the Witwatersrand. 2 Department of Biological Sciences, George Washington University. 3 Division of Paleontology, American Museum of Natural History. 4 Key Laboratory of Vertebrate Evolution and Human Origins, Institute for Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. Copyright © American Museum of Natural History 2014 ISSN 0003-0082 2 AMERICAN MUSEUM NOVITATES NO.