The Optics of Spectroscopy the OPTICS of SPECTROSCOPY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 the Spectroscopic Toolbox
13 1 The Spectroscopic Toolbox 1.1 Introduction Present spectroscopic instruments use essentially bulk optics, that is, with sizes much greater than the wavelengths at which the instruments are used (0.3–2.4 μm in this book). Diffraction effects – due to the finite size of light wavelength – are then usually negligible and light propagation follows the simple precepts of geometrical optics. A special case is the disperser or interferometer that provides the spectral information: these are also large size optical devices (say 5 cm to 1 m across), but which exhibit periodic structures commensurate with the working wavelengths. The next subsection gives a short reminder of geometrical optics formulae that dictate how light beams propagate in bulk optical systems. It is followed by an introduction of a fundamental global invariant (the optical etendue) that governs the 4D geometrical extent of the light beams that any kind of optical system can accept: it is particularly useful to derive what an instrument can – and cannot – offer in terms of 3D coverage (2D of space and 1 of wavelength). 1.1.1 Geometrical Optics #101 As a short reminder of geometrical optics, that is, again the rules that apply to light propagation when all optical elements (lenses, mirrors, stops) have no fea- tures at scales comparable or smaller than light wavelength are listed: 1) Light beams propagate in straight lines in any homogeneous medium (spa- tially constant index of refraction n). 2) When a beam of light crosses from a dielectric medium of index of refraction n1 (e.g., air with n close to 1) to another dielectric of refractive index n2 (e.g., an optical glass with refractive index roughly in the 1.5–1.75 range), part of the beam is transmitted (refracted) and the remainder is reflected. -
Astronomical Instrumentation G
Astronomical Instrumentation G. H. Rieke Contents: 0. Preface 1. Introduction, radiometry, basic optics 2. The telescope 3. Detectors 4. Imagers, astrometry 5. Photometry, polarimetry 6. Spectroscopy 7. Adaptive optics, coronagraphy 8. Submillimeter and radio 9. Interferometry, aperture synthesis 10. X-ray instrumentation Introduction Preface Progress in astronomy is fueled by new technical opportunities (Harwit, 1984). For a long time, steady and overall spectacular advances were made in telescopes and, more recently, in detectors for the optical. In the last 60 years, continued progress has been fueled by opening new spectral windows: radio, X-ray, infrared, gamma ray. We haven't run out of possibilities: submillimeter, hard X-ray/gamma ray, cold IR telescopes, multi-conjugate adaptive optics, neutrinos, and gravitational waves are some of the remaining frontiers. To stay at the forefront requires that you be knowledgeable about new technical possibilities. You will also need to maintain a broad perspective, an increasingly difficult challenge with the ongoing explosion of information. Much of the future progress in astronomy will come from combining insights in different spectral regions. Astronomy has become panchromatic. This is behind much of the push for Virtual Observatories and the development of data archives of many kinds. To make optimum use of all this information requires you to understand the capabilities and limitations of a broad range of instruments so you know the strengths and limitations of the data you are working with. As Harwit (1984) shows, before ~ 1950, discoveries were driven by other factors as much as by technology, but since then technology has had a discovery shelf life of only about 5 years! Most of the physics we use is more than 50 years old, and a lot of it is more than 100 years old. -
Vacuum Ultra Violet Monochromator I Grating & OEM
Feature Article JY Division nformation Vacuum Ultra Violet Monochromator I Grating & OEM Erick Jourdain Abstract Taking the advantage of Jobin Yvon(JY) leading position in the design and realisation of diffraction grating JY has developed over the last past 30 years some of the most innovative Vacuum Ultra Violet (VUV) monochromators for synchrotron centre. These monochromators, which combine the ultimate advanced diffraction grating technologies and some ultra precise under vacuum mechanics, have been installed in several synchrotron centres and have demonstrated superior performances. Today the development of new compact VUV sources and applications require compact VUV monochromators. Based on diffraction grating capabilities and our large experience acquired in the difficult and demanding market of under vacuum synchrotron monochromators JY is currently developing new compact monochromators for application such as Extreme UV lithography or X-ray Photoemission Spectroscopy. Introduction In the middle of the seventies thank to the development of the aberration corrected holographic toroidal gratings at Jobin Yvon (JY) we introduced on the market a new VUV monochromator concept that drastically enhanced the spectroscopic performances in this field [1]. During the eighties the Toroidal Grating Monochromator (TGM) and its associated toroidal gratings had a large and world wide success. At that time most of the synchrotron VUV beamline got equipped with this monochromator type and even today some recent beamline are still been developed Fig. -
FT-IR Spectroscopy
ORIEL ORIEL PRODUCT TRAINING FT-IR Spectroscopy SECTION FOUR FEATURES • Glossary of Terms • Introduction to FT-IR Spectroscopy Stratford, CT • Toll Free 800.714.5393 Fax 203.378.2457 • www.newport.com/oriel • [email protected] GLOSSARY OF TERMS Before we start the technical discussion on FT-IR Spectrometers, we devote a couple of pages to a Glossary, to facilitate the discussion that follows. 100% Line: Calculated by ratioing two background spectra Collimation: The ideal input beam is a cylinder of light. No taken under identical conditions. Ideally, the result is a flat beam of finite dimensions can be perfectly collimated; at best line at 100% transmittance. there is a diffraction limit. In practice the input beam is a Absorbance: Units used to measure the amount of IR cone that is determined by the source size or aperture used. radiation absorbed by a sample. Absorbance is commonly The degree of collimation can affect the S/N and the used as the Y axis units in IR spectra. Absorbance is defined resolution. by Beer’s Law, and is linearly proportional to concentration. Constructive Interference: A phenomenon that occurs when Aliasing: If frequencies above the Nyquist Frequency are not two waves occupy the same space and are in phase with filtered out, energy in these will appear as spectral artefacts each other. Since the amplitudes of waves are additive, the below the Nyquist Frequency. Optical and electronic anti two waves will add together to give a resultant wave which is aliasing can be used to prevent this. Sometimes the higher more intense than either of the individual waves. -
Optics Microstructured Optics SMS Design Methods Plastic Optics
www.led-professional.com ISSN 1993-890X Review LpR The technology of tomorrow for general lighting applications. Sept/Oct 2008 | Issue 09 Optics Microstructured Optics SMS Design Methods Plastic Optics LED Driver Circuits Display Report Copyright © 2008 Luger Research & LED-professional. All rights reserved. There are over 20 billion light fixtures using incandescent, halogen, Design of LED or fluorescent lamps worldwide. Many of these fixtures are used for directional light applications but are based on lamps that put Optics out light in all directions. The United States Department of Energy (DOE) states that recessed downlights are the most common installed luminaire type in new residential construction. In addition, the DOE reports that downlights using non-reflector lamps are typically only 50% efficient, meaning half the light produced by the lamp is wasted inside the fixture. In contrast, lighting-class LEDs offer efficient, directional light that lasts at least 50,000 hours. Indoor luminaires designed to take advantage of all the benefits of lighting-class LEDs can exceed the efficacy of any incandescent and halogen luminaire. Furthermore, these LEDs match the performance of even the best CFL (compact fluorescent) recessed downlights, while providing a lifetime five to fifty times longer before requiring maintenance. Lastly, this class of LEDs reduces the environmental impact of light (i.e. no mercury, less power-plant pollution, and less landfill waste). Classical LED optics is composed of primary a optics for collimation and a secondary optics, which produces the required irradiance distribution. Efficient elements for primary optics are concentrators, either using total internal reflection or combined refractive/reflective versions. -
1. What Is the Difference Between Slit and Monochromator? a Slit Is A
1. What is the difference between slit and monochromator? A slit is a mechanical opening in a black painted metallic sheet, with a circular or triangular hole through which incident rays pass which lead to a monochromator. The slit permits passage of only a small fraction of incident radiation, which is selected for further processing such as wavelength selection and detection etc. Usually the output of the radiation is in the image of the slit. When the slit is wide relative to the wavelength, diffraction is difficult to observe. But when the wavelength and slit opening are of the same order of magnitude, diffraction is observed easily. Here the slit behaves as if it is a source of radiation. The output in this case occurs in a series of 1800 arcs. The plot of the frequency of the radiation as a function of peak transmittance is in the form of a Gaussian curve with maximum intensity being the midpoint of the frequency range. In contrast, monochromator may be defined as a device to select different wavelength of the original source radiation. Usually monochromators used in a UV-Visible/Fluorescence/AAS refer to the combination of slits, lenses, mirrors, windows, prisms and gratings. The output of monochromator is also a narrow band of continuous radiation. The band width is an inverse measure of the quality of the monochromator device. The band widths obtained from filters, prisms, gratings etc., become progressively narrower in each case. 2. Where is the monochromator being placed between source and sample or sample and detector in UV visible spectrophotometer? In a UV- Visible spectrophotometer, the monochromator is placed between the source of light and the sample. -
Optics Basics 08 N [Compatibility Mode]
Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell’s Law: n φ φ n i i Sin ( i ) = f φ Media Boundary Sin ( f ) ni n f φ f 90 Refractive Medium 80 internal 70 external 60 50 40 30 angle of exitance 20 10 0 0 10 20 30 40 50 60 70 80 90 angle of incidence 2 Refraction and TIR Exit light ray n f φ φ f f = 90° Light ray refracted along boundary φ φ n c i i φ Totally Internally Reflected ray i Incident light rays Critical angle for total internal reflection (TIR): φ c= Arcsin(1/n) = 42° (For index of refraction ni =1.5,n= 1 (Air)) „Total internal reflection is the only 100% efficient reflection in nature” 3 Fresnel and Reflection Losses Reflection: -TIR is the most efficient reflection: n An optically smooth interface has 100% reflectivity 1 Fresnel Reflection -Metallization: Al (typical): 85%, Ag (typical): 90% n2 Refraction: -There are light losses at every optical interface -For perpendicular incidence: 1 Internal 0.9 2 Reflection − 0.8 External n1 n2 R = 0.7 Reflection + 0.6 n1 n2 0.5 0.4 Reflectivity -For n 1 =1 (air) and n 2=1.5 (glass): R=(0.5/2.5)^2=4% 0.3 -Transmission: T=1-R. 0.2 0.1 -For multiple interfaces: T tot =T 1 *T 2*T 3… -For a flat window: T=0.96^2=0.92 0 -For higher angles the reflection losses are higher 0 10 20 30 40 50 60 70 80 90 Incidence Angle [deg] 4 Black body radiation & Visible Range 3 Visible Range 6000 K 2.5 2 5500 K 1.5 5000 K 1 4500 K Radiance per wavelength [a.u.] [a.u.] wavelength wavelength per per Radiance Radiance 0.5 4000 K 3500 K 0 2800 K 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 Wavelength [nm] • Every hot surface emits radiation • An ideal hot surface behaves like a “black body” • Filaments (incandescent) behave like this. -
UV-Vis Product Lineup
Spectrophotometer Series Measurement Bandwidth Wavelength Model Appearance Detector Monochromator Features (functions) wavelength range (nm) (nm) Accuracy Comprehensive Measurement Functions in a Compact Body Transfer Data vis USB Flash Drive to a PC UV-1280 UV-VIS Analyses Covered Using a Single Unit Graphic LCD • An easy-to-see LCD and buttons enables simplified measurement and instrument validation operations. 190 to 1100 5 Silicon photo diode • Equipped with a full range of programs for ultraviolet-visible spectroscopic analysis such as photometric mea- (Standalone or Optional surement, DNA/protein quantitation, and advanced multi-component quantitation. PC Control) • Accommodates a variety of applications utilizing a wealth of accessories compatible with other instruments in the Shimadzu UV series. Aberration-corrected • Save data directly from the unit to a USB flash drive. Data can be displayed using commercially available concave blazed holo- ±1 nm spreadsheet software. • Combined monitor double-beam system for the D WI lamps enables highly stable analyses in a compact unit. BioSpec-nano graphic grating 2 Spectrophotometer for quantitative analysis of nucleic acids and proteins that is especially easy to use For Quantitation of • Measures trace samples as small 1µL (0.2mm optical path length) or 2µL (0.7mm optical path length) Nucleic Acids and 220 to 800 3 Photo diode array • Analytical results can be obtained by simply placing a drop of sample on the measurement window with Proteins a pipette and pressing the measurement button in the software window. Setting the optical path length, (PC Control) measuring, and wiping off the sample is all performed automatically. This eliminates the trouble of raising or lowering the fiber and wiping liquid contact parts with a cloth. -
UV-Vis Spectrophotometry: Monochromators Vs Photodiode Arrays
Technical Note UV-Vis spectrophotometry: monochromators vs photodiode arrays Comparing absorbance measurements between the Quad4 Monochromators™-based Infinite® M200 PRO and a multimode reader using photodiode array technology Introduction Materials and methods The most widely established technology for UV-Vis Infinite M200 PRO multimode microplate reader absorbance measurement is a monochromator-based Multimode microplate reader with a PDA microplate reader. Spectrophotometers have undergone a Herring sperm DNA standard great deal of development since their introduction in the Tris-EDTA early 1950s (1) and, in recent years, multimode readers using Orange G (OG) linear photodiode array (PDA) technology for absorbance ddH2O measurements have become available. PDA-based readers 96-well, transparent UV-Star® plates incorporate an optical grating and a solid state array detector, enabling measurement of light intensity throughout the UV and Experiment 1 visible regions of the spectrum. Similar to a monochromator, Linearity in the visible spectrum using Orange G but much faster, they allow the entire UV-Vis spectrum of a In the first experiment, the OD (optical density) linearity of the sample to be captured within a few seconds per well. PDA spectrophotometer in the visible wavelength range was However, this technology suffers from a number of drawbacks, compared with the OD linearity of the monochromator-based mainly due to high levels of stray light. This results in a Infinite M200 PRO. An OG dilution series was prepared in dramatically limited dynamic measurement range (2). ddH20 (200, 150, 112.5, 84.4, 63.3, 47.5 and 35.6 mg/ml) and This technical note compares the results of basic absorbance 200 µl of each concentration was pipetted into a 96-well measurements performed on an Infinite M200 PRO multimode UV-Star plate in triplicate. -
A Double Beam Spectrometer
A Double Beam Spectrometer A QuickTime movie and a (soundless) GIF animation are both available that illustrate the workings of a double beam spectrophotometer. Introduction The following is a brief description of a double beam spectrophotometer. The purpose of this instrument is to determine the amount of light of a specific wavelength absorbed by an analyte in a sample. Although samples can be gases or liquids, an analyte dissolved in a solvent is discussed here. [In the infrared, solid pellets using an IR. transparent matrix (like a high purity salt such as Kr) can be used for solid analytes. Thin disks are made using a pellet press and the disk suspended in the sample cell through which the sample beam passes.] The starting point in our movie is the light source. Depending on the wavelength of interest, this can be an electrically powered ultraviolet, visible, or infrared lamp. Not shown in the animations that accompany this page is the spectrophotometer's monochromator which selects the analytical wavelength from the source lamp's broad spectrum containing many wavelengths of light. The analytical wavelength is chosen based on the absorbance characteristics of the analyte. Monochromators are instruments whose sole purpose is to allow polychromatic (that is many wavelength containing) light into the entrance slit of the monochromator and only allow a single (or at least very few) wavelength (monochromatic light) out via the exit slit. This exiting, well-shaped, narrowly-defined beam now contains a small region of the electromagnetic spectrum. The spread, or band-pass, of the wavelengths depends on the slit settings of the monochromators (usually adjustable) and the quality of the light dispersing element in the monochromator (usually a grating in most modern monochromators). -
What-Is -Ft-Ir.Pdf
What is FT‐IR? Infrared (IR) spectroscopy is a chemical analytical technique, which measures the infrared intensity versus wavelength (wavenumber) of light. Based upon the wavenumber, infrared light can be categorized as far infrared (4 ~ 400cm‐1), mid infrared (400 ~ 4,000cm‐1) and near infrared (4,000 ~ 14,000cm‐1). Infrared spectroscopy detects the vibration characteristics of chemical functional groups in a sample. When an infrared light interacts with the matter, chemical bonds will stretch, contract and bend. As a result, a chemical functional group tends to adsorb infrared radiation in a specific wavenumber range regardless of the structure of the rest of the molecule. For example, the C=O stretch of a carbonyl group appears at around 1700cm‐1 in a variety of molecules. Hence, the correlation of the band wavenumber position with the chemical structure is used to identify a functional group in a sample. The wavenember positions where functional groups adsorb are consistent, despite the effect of temperature, pressure, sampling, or change in the molecule structure in other parts of the molecules. Thus the presence of specific functional groups can be monitored by these types of infrared bands, which are called group wavenumbers. The early‐stage IR instrument is of the dispersive type, which uses a prism or a grating monochromator. The dispersive instrument is characteristic of a slow scanning. A Fourier Transform Infrared (FTIR) spectrometer obtains infrared spectra by first collecting an interferogram of a sample signal with an interferometer, which measures all of infrared frequencies simultaneously. An FTIR spectrometer acquires and digitizes the interferogram, performs the FT function, and outputs the spectrum. -
Model 272 High Throughput Monochromator
Model 272 High Throughput Monochromator GENERAL DESCRIPTION The Model 272 monochromator contains a large, 100mm diameter diffraction grating. This guar- antees a large solid angle of light collection. The gratings corrected design reduces optical aberra- tions. This improves the spectral resolution of this high throughput optical system. The Model 272 is a versatile research grade monochromator. It delivers high throughput and moderate spectral resolution. Usable in any attitude, standard features of much larger McPherson monochromators have found home in this high effi ciency f/2 system. The Model 272 opto-mechanical system is ruggedly constructed for use in any environment. The lapped wavelength drive screw will provide years of accu- rate wavelength positioning. The grating scans are controlled by the optional Model 789A-3 digital scan drive system. McPherson signal recovery and control Model 272 High Throughput f/2 Monochromator software can be used. Most McPherson accesso- Aberration Corrected Grating Design ries work with this instrument. It is best to inquire to make sure the f/2 beams work at full capacity. Fast f/2 Optical System Wavelength Range from 185nm to NIR ARRAY DETECTION Aberration Corrected Grating Use for Scanning or Array Detection The Model 272 uses a concave grating that focuses and disperses light. The grating has aberration Optional Fiber Accessories correction to minimize spherical aberration and Compact, Lightweight Construction astigmatism. When used with a focal plane array Operates in any attitude the detector must be brought to the instrument focal plane that forms along a modifi ed Rowland circle. There may be mechanical, width and mounting re- SPECIFICATIONS strictions so please contact us to discuss the options.