The Science of Jet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stellarators. Present Status and Future Planning
STELLARATORS Present Status and Future Planning H. Wobig, Garching IMax-Planck-Institut für Plasmaphysikl magnetic axis Fig. 1 — Period of toroidally dosed magnetic surfaces. The stellarator is a closed toroidal device open-ended configurations like mirror ma designed to confine a hot plasma In a ma chines (see EN, 12 8/9) there are always gnetic field. It is one of the oldest concepts plasma particles which escape the confine magnetic surfaces is investigated by field to have been investigated in the search for ment volume along the magnetic field and line integration. The topology of the field controlled thermonuclear fusion. an isotropic distribution function cannot be lines is determined by the rotational trans The basic idea of the stellarator was maintained. If this anisotropy is too strong form or twist number 1/27t (or+), which is developed by Lyman Spitzer, Professor of it gives rise to instabilities and enhanced the number of revolutions of a field line Astronomy at Princeton in 19511). Experi plasma losses. It is mainly to avoid these around the magnetic axis during one toroi mental studies began in 1952 and after the disadvantages that toroidal confinement dal revolution. declassification of fusion research in 1958 has been preferred. The need for a helical field can be under the idea was picked up by other research In toroidal configurations, the currents stood from a look at the particle orbits. groups. In Europe, the first stellarators which generate the confining magnetic Charged particles tend to follow the field were built in the Max-Planck Institute for fields can be classified under three lines and unless these are helical, because Physics and Astrophysics in Munich and categories : of inhomogeneities, the particles will drift later at Culham, Moscow and Karkhov. -
Plasma Stability in a Dipole Magnetic Field Andrei N. Simakov MS Physics, Moscow Institute of Physics and Technology, Russia
Plasma Stability in a Dipole Magnetic Field by Andrei N. Simakov M.S. Physics, Moscow Institute of Physics and Technology, Russia, 1997 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2001 @ Massachusetts Institute of Technology 2001. All ri0h FTECNOOG 8cience JUN 2 2 2001 LIBRARIES Author................................................. "-partment of Physics April 26, 2001 C ertified by ..... ................... Peter J. Catto Senior Research Scientist, Plasma Science and Fusion Center Thesis Supervisor Certified by Miklos Porkolab Professor, Department of Physics Thesis Supervisor Accepted by ........ .......... Thomas J. Greytak Professor, Associate Depart nt Head for Education Ii 2 Plasma Stability in a Dipole Magnetic Field by Andrei N. Simakov M.S. Physics, Moscow Institute of Physics and Technology, Russia, 1997 Submitted to the Department of Physics on April 26, 2001, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Abstract The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field compression counteract the unfavorable field line curvature and can stabilize pressure gradient driven magnetohydrodynamic modes provided the pressure gradient is not too steep. Isotropic pressure, ideal MHD stability is studied first and a general interchange stability condition and an integro-differential eigenmode equation for ballooning modes are derived, using the MHD energy principle. The existence of plasma equilibria which are both interchange and ballooning stable for arbitrarily large beta = plasma pressure / magnetic pressure, is demonstrated. -
Highlights in Early Stellarator Research at Princeton
J. Plasma Fusion Res. SERIES, Vol.1 (1998) 3-8 Highlights in Early Stellarator Research at Princeton STIX Thomas H. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA (Received: 30 September 1997/Accepted: 22 October 1997) Abstract This paper presents an overview of the work on Stellarators in Princeton during the first fifteen years. Particular emphasis is given to the pioneering contributions of the late Lyman Spitzer, Jr. The concepts discussed will include equilibrium, stability, ohmic and radiofrequency plasma heating, plasma purity, and the problems associated with creating a full-scale fusion power plant. Brief descriptions are given of the early Princeton Stellarators: Model A, Model B, Model B-2, Model B-3, Models 8-64 and 8-65, and Model C, and also of the postulated fusion power plant, Model D. Keywords: Spitzer, Kruskal, stellarator, rotational transform, Bohm diffusion, ohmic heating, magnetic pumping, ion cyclotron resonance heating (ICRH), magnetic island, tokamak On March 31 of this year, at the age of 82, Lyman stellarator was brought to the headquarters of the U.S. Spitzer, Jr., a true pioneer in the fields of astrophysics Atomic Energy Commission in Washington where it re- and plasma physics, died. I wish to dedicate this presen- ceived a favorable reception. Spitzer chose the name tation to his memory. "Project Matterhorn" for the project which was to be Forty-six years ago, in early 1951, Spitzer, then sited in the Princeton area, on the newly acquired For- chair of the Department of Astronomy at Princeton restal tract, and funding began on July 1 of that year University, together with Princeton physicist John 121- Wheeler, had been thinking about the physics of ther- Spitzer's earliest stellarator papers comprise a truly monoclear processes. -
NONDIMENSIONAL TRANSPORT SCALING in Dlll-D: BOHM VERSUS GYRO-BOHM RESOLVED
GA-A21904 NONDIMENSIONAL TRANSPORT SCALING IN Dlll-D: BOHM VERSUS GYRO-BOHM RESOLVED by C.C. PETTY, T.C. LUCE, K.H. BURRELL, S.C. CHIU, J.S. deGRASSIE, C.B. FOREST, P. GOHIL, CM. GREENFIELD, R.J. GROEBNER, R.W. HARVEY, R.I. PINSKER, R. PRATER, R.E. WALTZ, R.A. JAMES,* and D. WROBLEWSKI* This is a preprint of an invited paper presented at the 1994 American Physical Society Division of Plasma Physics Meeting, November 7-11,1994, Minneapolis, Minnesota, and to be printed in the Proceedings. Work supported by U.S. Department of Energy under Contracts DE-AC03-89ER51114 and W-7405-ENG-48 *Lawrence Livermore National Laboratory GENERAL ATOMICS PROJECT 3466 FEBRUARY 1995 ASTER DISTRIBUTION QE IHIS DACUlvlENT IS UNIJ^O Ul ' ' *|* GENERAL ATOMICS DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. -
Physics and Computational Simulations of Plasma Burn-Through for Tokamak Start-Up
Imperial College London Department of Physics Physics and Computational Simulations of Plasma Burn-through for Tokamak Start-up Hyun-Tae Kim Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London, July 2013 Abstract This thesis will discuss the fundamental process of high temperature plasma formation, con- sisting of the Townsend avalanche phase and the subsequent plasma burn-through phase. By means of the applied electric field, the gas is partially ionized by the avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from inter- action with the plasma facing components. The parallel transport to the surrounding walls is determined by the so called connection length in the plasma. Previously, plasma burn-through was simulated with the assumptions of constant particle con- finement time and impurity fraction. In the new plasma burn-through simulator, called the DYON code, the treatment of particle confinement time is improved with a transonic ambipo- lar model for parallel transport, by using the effective connection length determined by the magnetic field lines, and Bohm diffusion model for perpendicular transport. In addition, the dynamic evolution of impurity content is calculated in a self-consistent way, using plasma wall interaction models. The recycling of the particles at the walls is also modelled. For a specific application, the recent installation of a beryllium wall at Joint European Torus (JET) enabled to investigate the effects of plasma facing components on plasma formation and build-up of plasma current in the device. -
50 Years of Fusion Research
IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004 50 years of fusion research Dale Meade Fusion Innovation Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: [email protected] Received 6 August 2009, accepted for publication 16 November 2009 Published 30 December 2009 Online at stacks.iop.org/NF/50/014004 Abstract Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million ◦C in the laboratory was appreciated. Fusion research has followed two main paths— inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.−s, 52.57.−z, 28.52.−s, 89.30.Jj (Some figures in this article are in colour only in the electronic version) 1. Introduction—fusion energy prior to 1958 2. Two main approaches to fusion energy The 1950s were a period of rapid progress and high It was understood very early on that fusion fuel temperatures of several hundred million ◦C would be needed to initiate expectations in science and technology. -
The Rayleigh-Taylor and Flute Instabilities
Chapter 19 The Rayleigh-Taylor and flute instabilities In Chapter 9, we learned that magnetohydrodynamic plasma equilibria must be determined self-consistently, i.e. the presence of currents flowing in the plasma modifies the magnetic configuration in which the plasma rests. A static magnetohydrodynamic equilibrium (plasma fluid velocity U = 0, hence electric field E = 0) occurs when the plasma pressure gradients are balanced by magnetic (j x B) forces. However, even if a magnetohydrodynamic equilibrium exists in some particular case, the lack of plasma stability can lead to the spontaneous generation of E fields and associated plasma velocities U. For if the plasma is disturbed slightly, its motion can deform the magnetic field in such a way as to produce magnetic forces that tend to amplify the original disturbance. This type of phenomenon is called a ‘magnetohydrodynamic(MHD) instability’. Because of the complexity of the magnetohydrodynamic equations, we are generally only able to treat analytically the case of linear stability, i.e. stability against injinitesimally small disturbances, in relatively simple geometries. For spatially uniform plasmas, infinitesimal perturbations will generally have a wave- like spatial structure. In such cases, as was discussed in Chapter 15, a plane wave with a single wave-vector k will generally have a single frequency w. Thus, for a uniform plasma, this plane wave will be a ‘normal mode’. For non-uniform plasmas, such as those considered in the present Chapter, it will be necessary to find the ‘eigenfunctions’, describing the spatial structure in the direction of non-uniformity, of the normal modes of perturbations, i.e. -
Princeton University Plasma Physics Laboratoi - Princeton, New Jersey 0L343
Annual Report Covering the Period October 1. 1985 to September 30, 1386 Princeton University Plasma Physics Laboratoi - Princeton, New Jersey 0L343 PPPL-Q-44 PPPL-Q—44 DE88 007501 Edited by Carol A. Phillips DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United Stales Government. Neither the United Slates Governmeni nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that iti use would not infringe privately owned rights. Rrfsr ence herein to any specific commercial pruduct, process, or scmce by trade name, trademark, manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom mendation, or Favoring by the United Stales Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the United Slates Government or any agency thereof. Unless otherwise designated, the work in this report is funded by the United States Depart ment of Energy under Contract DE-AC02-76- CHO-3073. Printed in the United States of America ^ Or Tiny pntfjm^T 1J: -^ Contents Preface 1 Principal Parameters Achieved in Experimental Devices 3 Tokamak Fusion Test Reactor 5 Princeton Large Torus 38 Princeton Beta Experiment 48 S-1 Spheromak 58 Current-Drive Experiment 64 X-Ray Laser Studies 67 Theoretical Division 74 Tokamak -
50 Years of Fusion Research
IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004 50 years of fusion research Dale Meade Fusion Innovation Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: [email protected] Received 6 August 2009, accepted for publication 16 November 2009 Published 30 December 2009 Online at stacks.iop.org/NF/50/014004 Abstract Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million ◦C in the laboratory was appreciated. Fusion research has followed two main paths— inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.−s, 52.57.−z, 28.52.−s, 89.30.Jj (Some figures in this article are in colour only in the electronic version) 1. Introduction—fusion energy prior to 1958 2. Two main approaches to fusion energy The 1950s were a period of rapid progress and high It was understood very early on that fusion fuel temperatures of several hundred million ◦C would be needed to initiate expectations in science and technology. -
Increasingly Parallel Pressure Anisotropic Ballooning Instability: a New Mechanism for Magnetospheric Substorm Onset
Increasingly Parallel Pressure Anisotropic Ballooning Instability: A New Mechanism for Magnetospheric Substorm Onset by Luke Oberhagemann A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Physics University of Alberta © Luke Oberhagemann, 2019 Abstract Geomagnetic substorms are a process through which energy stored in Earth’s magnetosphere is suddenly and violently released. On the ground, this process is largely observed as a vibrant and dancing display in the aurorae and is well documented, while the sequence of events that occurs in the magnetosphere is less understood and is the subject of ongoing debate. The work presented here offers a novel perspective on this sequence of events, focusing on ballooning instabilities, a type of plasma instability in which a weak portion of a magnetic flux tube bulges outward. Ballooning instabilities have been linked to ground-based auroral observations at the time the main phase of a substorm begins, known as onset, through observations of auroral beads, a periodic brightness feature that exists on the most equatorward auroral arc immediately prior to onset for the vast majority of substorms. First, a numerical model of ballooning instabilities in magnetospheric conditions is applied to determine under what circumstances these instabilities may form. The main parameters that impact the formation of ballooning instabilities in this model are the plasma 훽, which is a ratio of the thermal pressure to the magnetic pressure, the pressure gradient, and the pressure anisotropy. The pressure anisotropy is a measure of how different the pressure in the direction parallel to a magnetic field line is from the pressure perpendicular to that field line, with the term parallel anisotropy denoting larger parallel than perpendicular pressure. -
Tokamak Transport • Transport Coefficients (∆X)2 Γ = −D∇N : Fick’S Law D = : Diffusion Coefficient (M2/S) 2Τ Q = −Κ∇T : Fourier’S Law
Introduction to Nuclear Fusion Prof. Dr. Yong-Su Na Force balance in a tokamak 2 Tokamak Equilibrium • The Grad-Shafranov Equation dp dF ∆*ψ = −µ R2 − F 0 dψ dψ JΦxBp: ▽p: JpxBΦ: strength plasma load strength of Bp on a magnetic of BΦ flux surface What kind of forces does a plasma have regarding equilibrium? 3 Tokamak Equilibrium • Basic Forces Acting on Tokamak Plasmas - Radial force balance Bp Jt x Bp X Jt Magnetic pressure, Tension force - Toroidal force balance: Tire tube force FNET ~ −eR ( pAI − pAII ) 4 J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note Tokamak Equilibrium • Basic Forces Acting on Tokamak Plasmas - Toroidal force balance: Hoop force φI = φII BI > BII , AI < AII 2 2 BI AI > BII AII 2 2 FNET ~ eR (BI AI − BII AII ) / 2µ0 - Toroidal force balance: 1/R force φI = φII BI > BII , AI < AII 2 2 BI AI > BII AII net pressure B2 F = 2π 2a2 NET 2µ 0 5 J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note Tokamak Equilibrium • Basic Forces Acting on Tokamak Plasmas - External coils required to provide the force balance I p × Bv Fv = BIL = 2πR0 I p Bv How about vertical movement? Bφ > Bθ > Bv 6 Plasma transport in a Tokamak 7 Energy Confinement Time Temperature Time 8 Energy Confinement Time Temperature 1/e Time τE • τE is a measure of how fast the plasma loses its energy. • The loss rate is smallest, τE largest if the fusion plasma is big and well insulated. 9 Tokamak Transport • Transport Coefficients (∆x)2 Γ = −D∇n : Fick’s law D = : diffusion coefficient (m2/s) 2τ q = −κ∇T : Fourier’s law Thermal diffusivity κ (∆x)2 a2 a2 χ ≡ ≈ D ≈ ≈ → τ E ≈ n τ τ E χ - Particle transport in fully ionised plasmas η⊥n∑ kT D⊥ = with magnetic field B2 10 Tokamak Transport • Classical Transport - Classical thermal conductivity (expectation): χi ~ 40χe - Typical numbers expected: ~10-4 m2/s 2 - Experimentally found: ~1 m /s, χi ~ χe 1 kTe Bohm diffusion (1946): D⊥ = 16 eB David Bohm (1917-1992) 11 Tokamak Transport • Classical Transport 1 kTe Bohm diffusion: D⊥ = 16 eB τE in various types of discharges in the Model C Stellarator F. -
Heating a Plasma to 100 Million Kelvin Gunnar Froberg¨ and Thomas Nygren
C3. TOKAMAK HEATING Heating a Plasma to 100 Million Kelvin Gunnar Froberg¨ and Thomas Nygren Abstract—In this work techniques for heating the fusion way such that the high temperatures involved does not destroy reactor ITER to thermonuclear temperatures, over 100 million the walls. The plasma is heated in several ways: injection kelvin, is investigated. The temperature is numerically computed of high energy deuterium, resistive heating, radio waves and for different heating configurations. The heat leakage is modeled to occur only via diffusion. The diffusion is assumed to be a finally, when the temperature is high enough: thermonuclear combination of Bohm and gyro-Bohm diffusion. Basic conditions fusion. for a fusion reactor has been studied. The power needed for the different heat sources for the plasma to ignite is computed. Plots of the temperature profiles are included in the results together II. IMPLEMENTATION with plots showing the Q-value dependency on the power and A tokamak is a type of fusion reactor where the vessel the major radius. is shaped like a toroid. In order to confine the plasma and minimize the contact with the wall strong magnetic fields are I. INTRODUCTION applied. Note that the plasma temperature must be maintained HE International Energy Outlook 2013 predicts that the and the walls must be kept cool to prevent meltdown of the T world energy consumption will grow by 56 percent be- reactor walls. The fuel is assumed to consist of an equal tween 2010 and 2040[1]. The increase in the electric consump- mix of completely ionized deuterium and tritium with the ion tion will have to be produced somehow and as coal and oil temperature being similar to the electron temperature.