A Hilbert Bundle Characterization of Hilbert C*-Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality). -
Frames in 2-Inner Product Spaces
Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 2 (2013), pp 123-130 Frames in 2-inner Product Spaces Ali Akbar Arefijamaal∗ and Ghadir Sadeghi Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran E-mail: [email protected] E-mail: [email protected] Abstract. In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames. Keywords: 2-inner product space, 2-norm space, Frame, Frame operator. 2010 Mathematics subject classification: Primary 46C50; Secondary 42C15. 1. Introduction and preliminaries The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [12] in 1952 to study some deep problems in nonharmonic Fourier se- ries. Various generalizations of frames have been proposed; frame of subspaces [2, 6], pseudo-frames [18], oblique frames [10], continuous frames [1, 4, 14] and so on. The concept of frames in Banach spaces have been introduced by Grochenig [16], Casazza, Han and Larson [5] and Christensen and Stoeva [11]. The concept of linear 2-normed spaces has been investigated by S. Gahler in 1965 [15] and has been developed extensively in different subjects by many authors [3, 7, 8, 13, 14, 17]. A concept which is related to a 2-normed space is 2-inner product space which have been intensively studied by many math- ematicians in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive ∗ Corresponding author Received 16 November 2011; Accepted 29 April 2012 c 2013 Academic Center for Education, Culture and Research TMU 123 124 Arefijamaal, Sadeghi list of the related references can be found in the book [7]. -
A Completely Positive Maps
A Completely Positive Maps A.1. A linear map θ: A → B between C∗-algebrasiscalledcompletely positive if θ ⊗ id: A ⊗ Matn(C) → B ⊗ Matn(C) is positive for any n ∈ N. Such a map is automatically bounded since any ∗ positive linear functional on a C -algebra is bounded. ⊗ ∈ ⊗ C An operator T = i,j bij eij B Matn( ), where the eij’s are the usual C ∗ ≥ matrix units in Matn( ), is positive if and only if i,j bi bijbj 0 for any ∈ ⊗ C b1,...,bn B. Since every positive element in A Matn( )isthesumofn ∗ ⊗ → elements of the form i,j ai aj eij,weconcludethatθ: A B is completely positive if and only if n ∗ ∗ ≥ bi θ(ai aj)bj 0 i,j=1 for any n ∈ N, a1,...,an ∈ A and b1,...,bn ∈ B. A.2. If θ: A → B is completely positive and B ⊂ B(H), then there exist a Hilbert space K, a representation π: A → B(K) and a bounded operator V : H → K such that θ(a)=V ∗π(a)V and π(A)VH = K. The construction is as follows. Consider the algebraic tensor product AH, and define a sesquilinear form on it by (a ξ,c ζ)=(θ(c∗a)ξ,ζ). Complete positivity of θ means exactly that this form is positive definite. Thus taking the quotient by the space N = {x ∈ A H | (x, x)=0} we get a pre-Hilbert space. Denote its completion by K. Then define a representation π: A → B(K)by π(a)[c ζ]=[ac ζ], where [x] denotes the image of x in (A H)/N . -
Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity
Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity Josse van Dobben de Bruyn 24 September 2020 Abstract The tensor product of two ordered vector spaces can be ordered in more than one way, just as the tensor product of normed spaces can be normed in multiple ways. Two natural orderings have received considerable attention in the past, namely the ones given by the projective and injective (or biprojective) cones. This paper aims to show that these two cones behave similarly to their normed counterparts, and furthermore extends the study of these two cones from the algebraic tensor product to completed locally convex tensor products. The main results in this paper are the following: (i) drawing parallels with the normed theory, we show that the projective/injective cone has mapping properties analogous to those of the projective/injective norm; (ii) we establish direct formulas for the lineality space of the projective/injective cone, in particular providing necessary and sufficient conditions for the cone to be proper; (iii) we show how to construct faces of the projective/injective cone from faces of the base cones, in particular providing a complete characterization of the extremal rays of the projective cone; (iv) we prove that the projective/injective tensor product of two closed proper cones is contained in a closed proper cone (at least in the algebraic tensor product). 1 Introduction 1.1 Outline Tensor products of ordered (topological) vector spaces have been receiving attention for more than 50 years ([Mer64], [HF68], [Pop68], [PS69], [Pop69], [DS70], [vGK10], [Wor19]), but the focus has mostly been on Riesz spaces ([Sch72], [Fre72], [Fre74], [Wit74], [Sch74, §IV.7], [Bir76], [FT79], [Nie82], [GL88], [Nie88], [Bla16]) or on finite-dimensional spaces ([BL75], [Bar76], [Bar78a], [Bar78b], [Bar81], [BLP87], [ST90], [Tam92], [Mul97], [Hil08], [HN18], [ALPP19]). -
Absorbing Representations with Respect to Closed Operator Convex
ABSORBING REPRESENTATIONS WITH RESPECT TO CLOSED OPERATOR CONVEX CONES JAMES GABE AND EFREN RUIZ Abstract. We initiate the study of absorbing representations of C∗-algebras with re- spect to closed operator convex cones. We completely determine when such absorbing representations exist, which leads to the question of characterising when a representation is absorbing, as in the classical Weyl–von Neumann type theorem of Voiculescu. In the classical case, this was solved by Elliott and Kucerovsky who proved that a representation is nuclearly absorbing if and only if it induces a purely large extension. By considering a related problem for extensions of C∗-algebras, which we call the purely large problem, we ask when a purely largeness condition similar to the one defined by Elliott and Kucerovsky, implies absorption with respect to some given closed operator convex cone. We solve this question for a special type of closed operator convex cone induced by actions of finite topological spaces on C∗-algebras. As an application of this result, we give K-theoretic classification for certain C∗-algebras containing a purely infinite, two- sided, closed ideal for which the quotient is an AF algebra. This generalises a similar result by the second author, S. Eilers and G. Restorff in which all extensions had to be full. 1. Introduction The study of absorbing representations dates back, in retrospect, more than a century to Weyl [Wey09] who proved that any bounded self-adjoint operator on a separable Hilbert space is a compact perturbation of a diagonal operator. This implies that the only points in the spectrum of a self-adjoint operator which are affected by compact perturbation, are the isolated points of finite multiplicity. -
Using Functional Analysis and Sobolev Spaces to Solve Poisson’S Equation
USING FUNCTIONAL ANALYSIS AND SOBOLEV SPACES TO SOLVE POISSON'S EQUATION YI WANG Abstract. We study Banach and Hilbert spaces with an eye to- wards defining weak solutions to elliptic PDE. Using Lax-Milgram we prove that weak solutions to Poisson's equation exist under certain conditions. Contents 1. Introduction 1 2. Banach spaces 2 3. Weak topology, weak star topology and reflexivity 6 4. Lower semicontinuity 11 5. Hilbert spaces 13 6. Sobolev spaces 19 References 21 1. Introduction We will discuss the following problem in this paper: let Ω be an open and connected subset in R and f be an L2 function on Ω, is there a solution to Poisson's equation (1) −∆u = f? From elementary partial differential equations class, we know if Ω = R, we can solve Poisson's equation using the fundamental solution to Laplace's equation. However, if we just take Ω to be an open and connected set, the above method is no longer useful. In addition, for arbitrary Ω and f, a C2 solution does not always exist. Therefore, instead of finding a strong solution, i.e., a C2 function which satisfies (1), we integrate (1) against a test function φ (a test function is a Date: September 28, 2016. 1 2 YI WANG smooth function compactly supported in Ω), integrate by parts, and arrive at the equation Z Z 1 (2) rurφ = fφ, 8φ 2 Cc (Ω): Ω Ω So intuitively we want to find a function which satisfies (2) for all test functions and this is the place where Hilbert spaces come into play. -
Chapter 2 C -Algebras
Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e. -
Stinespring's Theorem for Maps on Hilbert C
STINESPRING’S THEOREM FOR MAPS ON HILBERT C∗−MODULES Shefali Gupta Supervisor - Dr. G. Ramesh A Thesis Submitted to Indian Institute of Technology Hyderabad In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mathematics Department of Mathematics April 2016 2 3 4 Acknowledgement The success of this work is accredited to many. Firstly, thanking the god and my par- ents for everything, my next acknowledgement goes to my supervisor-cum-guide, Dr. G. Ramesh, because of whom, I got to learn, understand thoroughly and moreover appreci- ate, a whole new branch of mathematics, Operator Algebras. Not just this but under his expert guidance and motivation, we could successfully come up with results we aimed to acquire since the beginning of this project. I am highly grateful to him for his strong support and understanding. I am also thankful to my friends in IIT Hyderabad, who stood by me through all the thicks and thins throughout the course of my M.Sc. and for being there whenever I needed them. Last but not the least, I would like to thank my classmates who have always supported me in every matter. 5 6 Abstract Stinespring’s representation theorem is a fundamental theorem in the theory of com- pletely positive maps. It is a structure theorem for completely positive maps from a C∗−algebra into the C∗−algebra of bounded operators on a Hilbert space. This theo- rem provides a representation for completely positive maps, showing that they are simple modifications of ∗−homomorphisms. One may consider it as a natural generalization of the well-known Gelfand-Naimark-Segal thoerem for states on C∗−algebras. -
Hilbert Space Methods for Partial Differential Equations
Hilbert Space Methods for Partial Differential Equations R. E. Showalter Electronic Journal of Differential Equations Monograph 01, 1994. i Preface This book is an outgrowth of a course which we have given almost pe- riodically over the last eight years. It is addressed to beginning graduate students of mathematics, engineering, and the physical sciences. Thus, we have attempted to present it while presupposing a minimal background: the reader is assumed to have some prior acquaintance with the concepts of “lin- ear” and “continuous” and also to believe L2 is complete. An undergraduate mathematics training through Lebesgue integration is an ideal background but we dare not assume it without turning away many of our best students. The formal prerequisite consists of a good advanced calculus course and a motivation to study partial differential equations. A problem is called well-posed if for each set of data there exists exactly one solution and this dependence of the solution on the data is continuous. To make this precise we must indicate the space from which the solution is obtained, the space from which the data may come, and the correspond- ing notion of continuity. Our goal in this book is to show that various types of problems are well-posed. These include boundary value problems for (stationary) elliptic partial differential equations and initial-boundary value problems for (time-dependent) equations of parabolic, hyperbolic, and pseudo-parabolic types. Also, we consider some nonlinear elliptic boundary value problems, variational or uni-lateral problems, and some methods of numerical approximation of solutions. We briefly describe the contents of the various chapters. -
3. Hilbert Spaces
3. Hilbert spaces In this section we examine a special type of Banach spaces. We start with some algebraic preliminaries. Definition. Let K be either R or C, and let Let X and Y be vector spaces over K. A map φ : X × Y → K is said to be K-sesquilinear, if • for every x ∈ X, then map φx : Y 3 y 7−→ φ(x, y) ∈ K is linear; • for every y ∈ Y, then map φy : X 3 y 7−→ φ(x, y) ∈ K is conjugate linear, i.e. the map X 3 x 7−→ φy(x) ∈ K is linear. In the case K = R the above properties are equivalent to the fact that φ is bilinear. Remark 3.1. Let X be a vector space over C, and let φ : X × X → C be a C-sesquilinear map. Then φ is completely determined by the map Qφ : X 3 x 7−→ φ(x, x) ∈ C. This can be see by computing, for k ∈ {0, 1, 2, 3} the quantity k k k k k k k Qφ(x + i y) = φ(x + i y, x + i y) = φ(x, x) + φ(x, i y) + φ(i y, x) + φ(i y, i y) = = φ(x, x) + ikφ(x, y) + i−kφ(y, x) + φ(y, y), which then gives 3 1 X (1) φ(x, y) = i−kQ (x + iky), ∀ x, y ∈ X. 4 φ k=0 The map Qφ : X → C is called the quadratic form determined by φ. The identity (1) is referred to as the Polarization Identity. -
Chapter XI: Applications of Spectral Theory
CHAPTER XI APPLICATIONS OF SPECTRAL THEORY Let H be a separable, infinite-dimensional, complex Hilbert space. We exploit properties of the Spectral Theorem to investigate and classify operators on H. As usual, all Hilbert spaces considered will be assumed to be complex and separable, even if it is not explicitly stated. If T is an element of the C∗-algebra B(H), recall that the resolvent of T is the set res(T ) of all complex numbers λ for which λI − T has a two-sided inverse in B(H). The spectrum sp(T ) of T is the complement of the resolvent of T. That is, λ belongs to sp(T ) if λI −T does not have a bounded two-sided inverse. THEOREM 11.1. (Existence of Positive Square Roots of Positive Operators) Let H be a Hilbert space, and let T be a positive operator in B(H); i.e., (T (x), x) ≥ 0 for all x ∈ H. Then: (1) There exists an element R in B(H) such that T = R∗R. (2) There exists a unique positive square root of T, i.e., a unique positive operator S such that T = S2. Moreover, S belongs to the smallest sub-C∗-algebra of B(H) that contains T and I. (3) If T is invertible, then its positive square root S is also invertible. PROOF. We know that a positive operator T is necessarily selfad- R joint. Hence, writing T = λ dp(λ), let us show that p(−∞,0) = 0. That R is, the spectrum of T is contained in the set of nonnegative real numbers. -
L/Rspaces for Von Neumann Algebra with Reference to a Faithful Normal Semifinite Weight
Publ. RIMS, Kyoto Univ. 19 (1983), 673-727 L/rSpaces for von Neumann Algebra with Reference to a Faithful Normal Semifinite Weight By Tetsuya MASUDA Abstract The Lp-space LP(M, 0o) for a von Neumann algebra M and its faithful normal semifinite weight 0o is constructed as a linear space of closed linear operators acting on the standard representation Hilbert space H$Q. Any Lp-element has the polar and the Jordan decompositions relative to a positive th part Z/JCM, ^o). Any positive element in I/p-space has an interpretation as the (l/p) 1/p I/p power $ of a 0eMJ with its Lp-norm given by 0(1) . The product of an Lp-element and an L5-element is explicitly denned as an 1/,-ele- ment with r~1=p~1 + q~1 provided l^r and the Holder inequality is proved. Also LP(M, 0o) are shown to be isomorphic for the same p and different 0o. There exists a vector subspace D™0 of the Tomita algebra associated with 00 and a ^-dependent injection TP:D^0-^LP(M, 00) with dense range. The sesquilinear form on 1 1 = LP(M, $o) xZ/p' (M, ^o),^>~ + (p')~ 1 is a natural extension of the inner product of H^0 through the mapping Tp X TV. The present work is an extension of our joint work with Araki to weights, and our Lp-spaces are isomorphic to those defined by Haagerup, Hilsum, Kosaki, and Terp. § 1. Introduction The Lp-space Lp (M, r) of a semifinite von Neumann algebra M with respect to a faithful normal semifinite trace r is defined as the linear space p 1/p of all r-measurable operators T satisfying \\T\\p=r (|T| ) <oo (see [22, 26]).