Dynamics of Complex Intracontinental Basins

Ralf Littke · Ulf Bayer · Dirk Gajewski · Susanne Nelskamp (Eds.)

Dynamics of Complex Intracontinental Basins

The Central European Basin System

With CD-ROM

123 Prof. Dr. Ralf Littke Prof. Dr. Ulf Bayer RWTH Aachen GeoForschungsZentrum Lehrst. Geologie, Geochemie u. Potsdam Lagerstatten¨ Erdo¨l u. Kohle Telegrafenberg Lochnerstr. 4-20 14473 Potsdam 52056 Aachen Germany [email protected] [email protected] Prof. Dr. Dirk Gajewski Susanne Nelskamp Universita¨t Hamburg RWTH Aachen Institut fu¨r Geophysik Lehrst. Geologie, Geochemie u. Bundesstr. 55 Lagersta¨tten Erdo¨l u. Kohle 20146 Hamburg Lochnerstr. 4-20 Germany 52056 Aachen [email protected] Germany [email protected]

ISBN: 978-3-540-85084-7 e-ISBN: 978-3-540-85085-4

Library of Congress Control Number: 2008932466

c 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin

Typesetting: Camera-ready by Eva Nelskamp and the Editors

Printed on acid-free paper

987654321 springer.com Preface

Although sedimentary basins are visually less impressive than mountain belts, they are mankind’s most important archives, not only regarding our understanding of the past but also in terms of economic and ecological aspects. Subsiding over millions of years, they accumulate sediments which allow us to reconstruct long term climatic and tectonic changes that have affected the history of the Earth. During subsidence and consequent burial the deposits are exposed to greater depth, pressure, and temperature. A chemical kitchen develops, reacting as a geo-reactor, generating fluids such as petroleum and natural gas. Beside the fact that basins provide more than 90% of our energy resources, they also provide large reservoirs of drinking water. Other typical resources are sand- stones, carbonates, gypsum and different types of salt. The latter not only includes con- ventional sodium chloride (kitchen salt, halite), but also potassium salts used as fertiliz- ers. Increasingly, sedimentary basins will also act as long term resources for geothermal energy which may partly fill the forthcoming gap in energy resources. Additionally, salt structures and other layers of low permeability in deep sedimentary basins are in the focus for waste disposal, especially radiogenic and toxic agents. Finally, porous and permeable layers overlain by less permeable cap rocks can be used to store liquids or gases, including carbon dioxide, in the attempt to store energy or to construct climate neutral power plants.

Usage of basins is becoming more and more competitive in terms of production of re- sources and long term storage of waste. In order to achieve compatibility, reliable manage- ment will be necessary. Reliable management, however, requires a profound knowledge of the structure to be managed and this knowledge must encompass not only its present state but also, as far as possible, its past and future evolution. For simple basins, straight forward analytic and modeling methods have been developed in various disciplines. There is, however, a class of basins that are either rather large and/or have suffered a complicated geodynamic history over a long time for which classical models fail or are at least insuf- ficient to predict details of the internal structure. We call these basins “complex”. One such is the Central European Basin System (CEBS) extending from Norway to Germany and from Great Britain to Poland. The CEBS has experienced various phases of subsidence and uplift during the past 270 million years. This area will be the central focus throughout this book, although other areas of the world will also be discussed.

In 1999, ten years after the fall of the Berlin Wall we took the opportunity to launch a project concerning sedimentary basins, focusing on the Central European Basin Sys- tem within a future orientated program of the German Research Foundation DFG and the Federal Ministry of Education and Research BMBF, (“GEOTECHNOLOGIEN: The System Earth – From Processes to Management”). At the same time, the German hydro- carbon industry announced that they would provide previously classified data for basic research. Finally, in 2002, it was possible to initiate a special research project SPP 1135: “Dynamics of sedimentary basins”, funded by the DFG for six years as a “Priority Pro- gramme” (Schwerpunktprogramm) and cosponsored by the DGMK (German Society for Petroleum and Coal Science and Technology) as representative of the German hydro- VI Preface

carbon industry (DGMK-project 577). For the following six years basic research was performed in about 30 projects and results were presented in a variety of publications, including three peer-reviewed special volumes (Marotta and Bayer, 2005, Littke et al. 2005, Bayer et al. 2008).

The special research project SPP1135 was built on scientific research into the area from the last twenty years. It was first of all the European Geo-Traverse (Blundell et al. 1992) crossing the area in the late 1980s. EUROPROBE served as an umbrella bring- ing together scientists from eastern and western Europe after the political boundaries became transparent in the 1990s. Sub-programmes like TESZ (Trans-European Suture Zone) and associated programmes like PACE (Paleozoic Amalgamation of Central Eu- rope), DEKORP Basin’96, MonaLisa, Polonaise and Celebration 2000, and Thor need to be mentioned here. All these projects, funded by different sources, provided a sound basis for understanding in particular the deeper crust below the Central European basin system by focussed research.

Having published many results of our research program in scientific journals, we felt the need to present our major findings in a book specifically designed to describe a basin system completely and to elucidate the major processes acting therein. This is the first objective of this book, and the sedimentary system selected is that of the Central Euro- pean Basin System, which is one of the largest and most complex continental basins on Earth. In order to develop a conclusive concept for the structure and evolution of this outstanding example of a complex basin, it was necessary to integrate the data and to organise the people specialised in dealing with certain data sets into a non-hierarchical scientific system, which was a considerable enterprise given that the databases came from geology, geophysics, geochemistry, hydrogeology and so on.

The contribution by authorities from different fields of geoscientific research also provided the rare opportunity to combine expert knowledge from different disciplines in one book. In the course of our research programme, we could learn a lot about the disciplines of “the others”, thereby obtaining a wider view of sedimentary basin dynam- ics. We want to share this experience with our readers and have encouraged the authors to describe basic processes from their view as a geophysicst, sedimentologist, structural geologist, petroleum geochemist, hydro-geochemist and so on. Thus, the second objec- tive of this book is to provide an advanced understanding of some of the most important interpretation concepts and parameters relevant for understanding processes acting in sedimentary basins. In this sense, this book should be regarded as an advanced teach- ing book bringing together expertise from different scientific disciplines. This expertise can be applied to sedimentary basins in general, not only the Central European Basin System.

The result we present here is a multi-authored book, whereby the authors of the differ- ent chapters are responsible for the content of their chapters.

Finally, we would like to remember with gratitude our colleagues Friedrich Theilen (Kiel) and Hartmut Jödicke (Münster).

Acknowledgement

This book would not have been possible without the support of the German Research Foundation (DFG) funding of SPP1135, and the German Society for Petroleum and Coal Science and Technology (DGMK) as the representative organisation of the German hy- drocarbon industry (DGMK-project 577). Many people from these two institutions and the German petroleum industry have greatly contributed to our project, including the DFG review committee and the industrial representatives of the petroleum companies Wintershall Holding AG, Kassel, RWE Dea AG, Hamburg, Gaz de France Production Preface VII

Exploration Deutschland GmbH, Lingen, and ExxonMobil Production Deutschland GmbH, Hannover. We would like to thank all of them, in particular Thilo Bechstaedt, Sören Dürr, Martin Jentsch, and Ingrid Winter for their great support. We also acknowl- edge the help of the following persons: Benjamin Bruns greatly helped to organize the reference list of this book, Martin Koppelberg and Gabor Lang helped with the key word and abbreviation index, Eva Nelskamp made the proofs, Hilary Horsfield read earlier drafts of the manuscripts and homogenized the usage of the English language as much as possible and Frederik Orth improved the readability of several of our figures.

Furthermore, the authors of the individual chapters wish to extend their thanks to the following people and organizations:

Chapter 3.2: Derek Blundell for discussion on Caledonian tectonics and EEG Erdöl Erdgas GmbH for providing the Rerik dataset and for permission to publish our results.

Chapter 3.3: Nederlandsche Aardolie Maatschappij (NAM; a Shell operated 50/50 joint venture between Shell and ExxonMobil) is thanked for use of the Groningen seismic volume. We thank RWE-DEA A.G. for 3D seismic and borehole data. We thank the Landesamt für Geologie und Bergwesen (LAGB) Sachsen-Anhalt for data and support.

Chapter 3.4: Ulrich Glasmacher, Heidelberg, for discussions on the fission track inter- pretation, Marek Narkiewicz, Warsaw, Andreas Beha, Copenhagen, and Petra David, Utrecht, for valuable information on the Polish, Danish, and Dutch part of the basin, respectively.

Chapter 4.1: Dr. G. Beutler, J. Barnasch, M. Franz, Halle, Dr. H. W. Kozur, Budapest, and Dr. F. Kockel, Hannover, for valuable information and discussions; J. Barnasch helped additionally with computer graphics. Dr. E. Brand, Kassel, provided useful un- published information on the late Bajocian unconformity.

Chapter 4.3: Dr. H. W. Kozur, Budapest is thanked for valuable information and dis- cussions.

Chapter 4.5: Our neotectonic studies in Schleswig Holstein were strongly supported by Dr. Sven Christensen, head of the Geological Division of the „Landesamt für Natur und Umwelt des Landes Schleswig Holstein“.

Chapter 5.3: We thank GDF Produktion Exploration Deutschland, EMPG and EWE Aktiengesellschaft for providing a high-quality data set. Mike Hudec, Martin Jackson and John Warren are thanked for their valuable contributions during this project. Christoph Krämer is thanked for his drafting support.

Chapter 6.4: GFZ-Potsdam, BGR, RWTH Aachen and StatoilHydro are thanked for sup- port and permission to publish.

Chapter 6.5: Anne Richter, FZ-Jülich, and Yves Gensterblum, RWTH Aachen, RWTH Aachen for valuable technical assistance in the pyrolysis experiments; Anke Jurisch for evaluating experimental data and assistance in preparing the figures.

Ralf Littke Ulf Bayer Dirk Gajewski Susanne Nelskamp

Contents

1 Characteristics of complex intracontinental sedimentary basins 1 (U. Bayer · H.-J. Brink · D. Gajewski · R. Littke) 1.1 Introduction 3 1.2 Classifications of basin complexity 3 1.3 Summary 12

2 The Central European Basin System – an Overview 15 (Y. Maystrenko · U. Bayer · H.-J. Brink · R. Littke) 2.1 Introduction 17 2.2 Crustal association 19 2.3 Permian Basin formation and subsequent subsidence 22 2.4 Subsequent formation of sub-basins 25 2.5 Sedimentary history 26 2.6 Fluids within the Central European Basin System 30 2.7 The Central European Basin System – prototype of a complex sedimentary basin 34

3 Strain and temperature in space and time 35 3.1 Driving mechanisms for basin formation and evolution 37 (M. Cacace · U. Bayer · A.M. Marotta · C. Lempp) 3.1.1 Driving mechanisms for basin evolution 37 3.1.2 Kinematic models for basin formation 37 3.1.3 Rheological models 50 3.1.4 Modelling complex basins 66 3.2 Crustal structures and properties in the Central European Basin System from geophysical evidence 67 (C.M. Krawczyk · W. Rabbel · S. Willert · F. Hese · H.-J. Götze · D. Gajewski & the SPP-Geophysics Group) 3.2.1 Introduction 67 3.2.2 Structural inventory and physical properties from seismic observations 68 3.2.3 Conductive layers and bodies from magnetotelluric observations 82 3.2.4 Rock properties and density structure from potential field investigations 85 3.2.5 Summary 94

3.3 Strain and Stress 97 (J. Kley · H.-J. Franzke · F. Jähne · C. Krawczyk · T. Lohr · K. Reicherter ·M. Scheck- Wenderoth · J. Sippel · D. Tanner · H. van Gent - the SPP Structural Geology Group) 3.3.1 Introduction 97 3.3.2 Structural framework of the Central European Basin System 102 3.3.3 Structural analysis and quantification of strain 105 3.3.4 Stress history 116 3.3.5 The Central European Basin Systems structural evolution 121 X Contents

3.4 Subsidence, inversion and evolution of the thermal field 125 (R. Littke · M. Scheck-Wenderoth · M.R. Brix · S. Nelskamp) 3.4.1 Introduction 125 3.4.2 The Central European Basin System as example of regional subsidence models 125 3.4.3 Temperature in sedimentary basins 133 3.4.4 Maturity and temperature parameters in sedimentary basins 137 3.4.5 Variability of palaeotemperature fields in the Central European Basin System 141

4 Basin fill 155 4.1 Depositional history and sedimentary cycles in the Central European Basin System 157 (G.H. Bachmann · T. Voigt · U. Bayer · H. von Eynatten · B. Legler · R. Littke) 4.1.1 Palaeoclimate, palaeogeography and palaeoenvironment 157 4.1.2 Sedimentary cycles 161 4.1.3 Provenance of sediments in the Central European Basin 169 4.2 Basin initiation: Volcanism and sedimentation 173 (Ch. Breitkreuz · M. Geißler · J. Schneider · H. Kiersnowski) 4.2.1. Late Palaeozoic basins in central Europe – distribution, volcanic activity and magmagenetic aspects 173 4.2.2. Data base, distribution and volumes of Late Palaeozoic volcanics in the Central European Basin System 173 4.2.3. Stratigraphy and geochronology of volcanic successions in the Southern Permian Basin 175 4.2.4. Volcanic facies in the Southern Permian Basin 176 4.2.5. Syn- to postvolcanic sedimentation during the Lower Rotliegend and Upper Rotliegend I 178 4.2.6. Landscape evolution during the initial phase of the Southern Permian Basin 179 4.3 Upper Rotliegend to Early Cretaceous basin development 181 (H. Stollhofen · G.H. Bachmann · J. Barnasch · U. Bayer · G. Beutler · M. Franz M. Kästner · B. Legler · J. Mutterlose · D. Radies) 4.3.1. Introduction 181 4.3.2. Upper Rotliegend II 182 4.3.3. Zechstein 185 4.3.4. Buntsandstein 188 4.3.5. Muschelkalk 191 4.3.6. Keuper 194 4.3.7. Jurassic 199 4.3.8. Early Cretaceous 207 4.4 Sedimentation during basin inversion 211 (T. Voigt · K. Reicherter · H. von Eynatten · R. Littke · S. Voigt · J. Kley) 4.4.1. Introduction 211 4.4.2. Basin formation 211 4.4.3. Effects of basin inversion on deposition 215 4.4.4. Sedimentation during inversion in the Central European Basin 220 4.4.5. The North German Basin during the Tertiary 228 4.5 Glaciation, salt and the present landscape 233 (F. Sirocko · K. Reicherter · R. Lehné · Ch. Hübscher · J. Winsemann · W. Stackebrandt) 4.5.1. Introduction 233 4.5.2. Modern topography and glacial isostasy 233 4.5.3. Crustal movements, seismicity and landscape formation 236 Contents XI

5 Salt dynamics 247 5.1 Salt as sediment in the Central European Basin System as seen from a deep time perspective 249 (J.K.Warren) 5.1.1. Introduction 249 5.1.2. Mother brines: isochemical systems? 251 5.1.3. Evaporite sediments and climate 255 5.1.4. Evaporite volumes in deep time 259 5.1.5. Evaporite volumes & tectonics? 262 5.1.6. Episodic halokinesis 267 5.2 Flow and transport properties of salt rocks 277 (J.L. Urai · Z. Schléder · C.J.Spiers · P.A. Kukla) 5.2.1. Introduction 277 5.2.2. Physical properties of evaporites 278 5.2.3. Deformation mechanisms and rheology of halite in experiments 278 5.2.4. Deformation mechanisms and rheology of carnallite and bischofite 284 5.2.5. Natural laboratories 284 5.2.6. Discussion and outlook 289 5.3 Dynamics of salt structures 291 (P.A. Kukla · J.L. Urai · M. Mohr) 5.3.1. Introduction 291 5.3.2. Concepts of salt tectonics 292 5.3.3. Salt geometries and kinematics – a case study 293 5.3.4. Salt sediment interaction 301 5.3.5. Multiphase salt dynamics in the Central European Basin System 304 5.4 Dynamics of salt basins 307 (M. Scheck-Wenderoth · Y. Maystrenko · C. Hübscher · M. Hansen · S. Mazur) 5.4.1. Introduction 307 5.4.2. Regional pattern of salt structures in the Central European Basin System 308 5.4.3. History of salt movements in the Central European Basin System 309 5.4.4. Case study Glückstadt Graben 315 5.4.5. Case study NE German Basin 318 5.4.6. Case study SW Baltic Sea 320 5.4.7. General findings for salt-containing intra-continental basins 321 5.5 Temperature fields, petroleum maturation and fluid flow in the vicinity of salt domes 323 (F. Magri · R. Littke · S. Rodon · U. Bayer · J.L. Urai) 5.5.1. Introduction 323 5.5.2. Impact of salt structures on temperature field and oil maturation 323 5.5.3. Fluid flow in salt 328 5.5.4. Impact of salt structures on groundwater transport processes within sedimentary basins 330

6 Fluid systems 345 6.1 Fluids in sedimentary basins: an overview 347 (R. Gaupp · P. Möller · V. Lüders · R. di Primio · R. Littke) 6.1.1. Relevance of geofluids 347 6.1.2. Definitions 347 6.1.3. Subsurface aquaeous fluids 348 6.1.4. Petroleum fluids 359 XII Contents

6.2 Transport processes 367 (J.L. Urai · G. Nover · C. Zwach · R. Ondrak · R. Schöner · B.M. Krooss) 6.2.1. Introduction 367 6.2.2. Physical mechanisms and concepts 367 6.2.3. Fault seals and top seals 372 6.2.4. Geological aspects of fluid transport 386 6.3 Fluid-rock interactions 389 (R. Schöner · V. Lüders · R. Ondrak · R. Gaupp · P. Möller) 6.3.1. Introduction 389 6.3.2. Evolution of deep brines 389 6.3.3. Palaeo-fluid reconstruction 391 6.3.4. Organic-inorganic interactions 401 6.3.5. Modelling fluid-rock interactions 404 6.3.6. Geological applications 408

6.4 Petroleum systems 411 (R. di Primio · B. Cramer · C. Zwach · B.M. Krooss · R. Littke) 6.4.1. Concepts of petroleum system modelling 411 6.4.2. Petroleum source rocks 413 6.4.3. Shallow and microbial gas 418 6.4.4. Sources of deep gas 422 6.4.5. Petroleum alteration – biodegradation 425 6.4.6. Overpressured reservoirs 428 6.4.7. Effects of glaciation on petroleum systems 430 6.5 Origin and distribution of non-hydrocarbon gases 433 (B.M. Krooss · B. Plessen · H.G. Machel · V. Lüders · R. Littke) 6.5.1. Introduction 433 6.5.2. Nitrogen 433 6.5.3. Carbon dioxide 443 6.5.4. Hydrogen sulfide 447 6.5.5. Evidence from vein mineralisation and fluid inclusions 457 References 459 Subject Index 507 Abbreviations

A1 = Werra-Anhydrites DB = Donezk Basin A2 = Stassfurt-Anhydrites DC = Depositional Cycle ABB = Altmark-Brandenburg Basin DCM = Dielectric Constant Measurement ABS = Avalonia-Baltica Suture DEKORP = Deutsches Kontinentales AFTA = Apatite Fission Track Analysis Reflexionsseismisches Programm AL = Lineament DÖ = Döhlen Basin Ap. = Apatite DSHFZ = Dowsing–South Hewett Fault Zone API = American Petroleum Institute EA=EAS = Eichsfeld-Altmark Swell AT = Allertal EB = Erzgebirge Basin AU = Autun Basin EBSD = Electron Backscatter Diffraction AVD = Athesian Volcanic District EBSP = East Brandenburg Sub-Province BCG = Boskovice Graben EEC = East European Craton BDF = Bornholm-Darlowo Fault Zone EEP = East European Platform BFB = Broad Fourteens Basin EFS = Elbe Fault System BGR = Federal Institute for Geosciences EFZ = Elbe Fault Zone and Natural Resources EGR = Enhanced Gas Recovery BGS = British Geological Survey EGT = European Geotraverse BIRPS = British Institutions Reflection EHT = Eastholstein Trough Profiling Syndicate EL = Ems Low BLG = Blanice Graben EL = Elbe Line (see EOL) Bo = Formation Volume Factor (of oil) EOL = Elbe-Odra Line BOE = Barrels of Oil Equivalent EOR = Enhanced Oil Recovery BP = Before Present EOS = Equation of State BRr = Solid Bitumen Reflectance ER = Erosion Rate BS = North-East Brandenburg Swell ESD = East Sudetic Depression BSR = Bacterial Sulfate Reduction ET = Emsland Trough BU = Bourbon l´Archambault Basin FASP = Flechtingen-Altmark Sub-Province BVM = Bohemian Vindelician Massif FE = Finite Element CA = Carpatian Basin FEFLOW = Finite Element Subsurface FLOW Ca1 = Zechstein Limestone System Ca2 = Zechstein 2 Carbonate (Stassfurt FI = Fluid Inclusions Carbonate) FL = Franconian Line CAI = Conodont Colour FL = Flechtingen-Roßlau Block CB = Collio Basin Fle = Flechtingen High CDF = Caledonian Deformation Front Fm = Formation CDT = Canyon Diablo Troilite (sulfur FR = Franconian Basin istotope standard) FS = Fennoscandian Shield CEBS = Central European Basin System FSD = Field Size Distribution CG = Central Graben FSM = Foresudetic Monocline CGG = Central Glückstadt Graben FT = Fjerritslev Trough CMP = Common Mid Point FT = Fission Track CNB = Central Netherlands Basin FTIR = Fourier Transform Infrared Corg = Organic Carbon Spectroscopy CPI = Carbon Preference Index FZI = Flow Zone Indicator CR = Carnic Alps GC/IRMS = Gas-Chromatography / Isotope CRS = Common Reflection Surface Ratio Mass Spectrometry Cryo-SEM = Cryo-Scanning Electron Microscopy GE = Gardelegen Escarpment Cz = Cenozoic GEUS = Geological Survey of Denmark and D = Detfurth Greenland DAC = Deep Aquifer Complex GG = Glückstadt Graben DB = Danish Basin GIA = Glacial Isostatic Adjustment XIV Abbreviations

GIS = Geographic Information System Mo = Bending Moment GL = Gravity Lineament MO = Upper Muschelkalk GMWL = Global Meteoric Water Line MO = Montceau les Mines Basin GOR = Gas to Oil Ratio MORB = Mid-Ocean Ridge Basalts GP = Guardia Pisano Basin MPI = Methylphenantrene Index GPS = Global Positioning System MPT = Mid-Polish Trough GR = Gamma Ray MSK = intensity=Medvedev-Sponheuer- Grt. = Garnet Karnik scale of seismic intensity GSH = Grand Sillon Houllier Fracture Zone MSR = Microbial Sulfate Reduction GSSP = Global Stratotype Section and Point MT = Magnetotelluric GWC = Gas-Water Contact MU = Lower Muschelkalk H = Hardegsen MVSP = Mecklenburg-Vorpommern Ha = Harz Sub-Province HAH = Hamburg High NASC = North American Shale Composite HC = Hydrocarbon NBL = Neiße-Bobr-Low HCM = Holy Cross Mountains ND = North Danish Basin HDLC = High Density Lower Crust NDA = Numerical Dynamic Analysis HF = Hydrofluoric Acid NDB = Norwegian-Danish Basin HG = Horn Graben NEGB = North East German Basin HI = Hydrogen Index NGB = North German Basin HL = Helgoland Low NHF = Northern Harz Boundary Fault HPHT = High Pressure High Temperature NKH = Norderstedt Kiel High HRF = Hunsrück Fracture Zone NL = Netherlands Low HT = Hamburg Trough NL = North Netherlands Low ID-TIMS = Isotope Dilution – Thermal NN = North Netherlands Swell Ionisation Mass Spectrometry NPI = Normalized Porosity Index IF = Ilfeld Basin NPB = Northern Permian Basin InSAR = Interferometric Synthetic Aperture NS = North Sudetic Basin Radar NS = Netherlands Swell IS = Iapetus Suture Ntot = Total Nitrogen IS = Intra Sudetic Basin OAE = Oceanic Anoxic Event J = Jurassic Od = Odra K1 = Upper Cretaceous OI = Oxygen Index K2 = Lower Cretaceous Os = Osning KFC = Koszalinseyre-Tornquist-Zone OWC = Oil-Water Contact KM 1 = Grabfeld-Formation PAAS = Post-Archean Australian Shale KM 2 = Middle Keuper 2 PAZ = Partial Annealing Zone KM 4 = Middle Keuper 4 PB = Polish Basin KP = Krkonoše Piedmont Basin PB = Pompecky Block KS = Kuiavian Segment PBF = Pays de Bray Fracture KU = Lower Keuper PD = Perdasdefogu Basin La = Lausitz Thrust PDB = PeeDee Belemnite LAB = Lithosphere-Astenosphere Boundary pdHg = Mercury-Air Displacement Pressure LB = Leer- Fault Zone Pf = Pfahl. Sub-Basins LBM = London-Brabant Massif Pf = Fluid-pressure LC = Lu Caparoni Basin PH = Pritzwalk High LE = Lausitz Escarpment PH = Pennine High LGM = Last Glacial Maximum PI = Production Index LH = Lusatian High PIG = Polish Geological Institute LN = Landshut-Neuötting PIXE = Proton Induced X-ray Emission LO = Lodève Basin ppm = Parts Per Million LSB = Basin PS = Polysulfides LU = Lysogory Unit PS = Pompeckj-Swell (Block) Ma = Million Years PS = Pomeranian Segment of Mid-Polish MAGT = Mean Annual Ground Temperature Trough MCR = Mid-German Crystalline Psat = Saturation Pressure Rise/Kyffhäuser PT = Polish Trough MDH = Magdeburg-Dessau High P-T = Pressure-Temperature MFB = Moary Firth Basin P-T-X = Pressure-Temperature-Composition MH = Moho PVT = Pressure-Volume-Temperature MIM = Multiple Inverse Method PVTt = PVT through Time ML = Mölln Low PT = Polish Trough MM = Middle Muschelkalk R = Röt MM = Malopolska Massif Ra = Rayleigh Number MNSH = Mid North Sea High RB = Rheder Moor-Blenhorst Abbreviations XV

REE = Rare Earth Elements TF = Thuringian Forest Basin REY = Rare Earth Elements and Yttrium THZ = Thrust Zone RFH = Ringkoebing-Fyn-High Ti = Titane

RG = Roer Graben Tmax = Temperature of Maximum Pyrolysis RGL = Rhein Graben Lineament Yield RL = Rheinsberg Lineament TNO = Netherlands Organisation for RM = Rhenish Massif Applied Scientific Research RQI = Reservoir Quality Index TOC = Total Organic Carbon RS = Rügen Swell TOR = Teleseismic Tomography across the RS = Rheic Suture Tornquist zone

RT = Rheinsberg Trough Tpeak = Maxiumum Paleotemperature RÜ = Rügen TP = Top Palaeozoic Reflector RVG = Roer Valley Graben TS = Thor Suture RWE AG = RWE AG=Rheinisch-Westfälisches TSR = Thermochemical Sulfate Reduction Elektrizitätswerk AG TTI = Time Temperature Index SACS = Saline Aquifer CO2 Storage TTZ = Tornquist-Teisseyre Zone SB = Silverpit Basin TW = Thüringer Wald SB = Saale Basin TW = Thuriningian-West Brandenburg SCB = Subhercynian Cretaceous Basin Depression Scf/STB = Standard Cubic Feet per Stock Tank TWT = Two Way Traveltime Barrel UCS = Unconfined Compressive Strength SD = Saale Depression UK = United Kingdom SH = Sylt High USA = United States of America SHB = Subhercynian Basin USGS = United States Geological Survey SM = Middle Bunter V = Volpriehausen Sm3 = Standard Cubic Meters VDF = Variscan Deformation Front SMOW = Standard Mean Ocean Water VF = Variscan Front SNB = Saar-Nahe Basin VH = Violet Horizons SNF = Sveconorwegian Front VM = Volatile Matter Yield SO = Upper Bunter Vo = Vertical Line Load SOM = Sedimentary Organic Matter VRr = Mean Vitrinite Reflectance SP = Sole Pit Basin WBH = West Brandenburg High SPB = Southern Permian Basin WBT = West Brandenburg Trough SPBV = Southern Permian Basin Volcanic WCB = Western and Central Bohemian Zone Basins SPI = Source Potential Index WD = Depression SR = Sedimentation Rate We = Weser Trough St = Steinhuder Meer WEI = Weissig Basin ST = St. Etienne Basin WHT = Westholstein Trough STZ = Sorgenfrei-Tornquist Zone WNB = West Netherlands Basin SU = Lower Bunter WSM = World Stress Map T1 = Buntsandstein WSMP = World Stress Map Project T2 = MiddleTriassic; Lower Triassic WSP = West Schleswig Platform T2-3 = Upper Triassic Wt.-% = Weight-% TAI = Spore Colour Z = Base Zechstein Reflector TB = Trier Embayment Z1 = Zechstein TC = Top Cretaceous Reflector ZÖ = Zöbingen TDS = Total Dissolved Solids ZPAZ = Zircon Partial Annealing Zone TEF = Transeuropean Fault

Authors

Gerhard H. Bachmann Filiz Bilgili Martin Luther Universität Halle-Wittenberg Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaften Institut für Geowissenschaften, Geophysik Von-Seckendorff-Platz 3 · 06120 Halle, Germany Otto-Hahn-Platz 1 · 24118 Kiel, Germany [email protected] [email protected]

Jens Barnasch Chistoph Breitkreuz Martin-Luther-Universität Halle-Wittenberg Technische Universität Bergakademie Freiberg Institut für Geowissenschaften Institut für Geologie und Paläontologie Von-Seckendorff-Platz 3 Bernhard-von-Cotta-Straße 2 06120 Halle, Germnay 09599 Freiberg, Germany [email protected] [email protected]

Ulf Bayer Heinz-Jürgen Brink GeoForschungsZentrum Potsdam Hindenburgstraße 39 · 30175 Hannover, Germany Sektion 4.3 [email protected] Telegrafenberg, C425 · 14473 Potsdam, Germany [email protected] Manfred R. Brix Ruhr-Universität Bochum Mikhail Baykulov Institut für Geologie, Mineralogie und Geophysik Universität Hamburg 44780 Bochum, Germany Institut für Geophysik [email protected] Bundesstraße 55 · 20146 Hamburg, Germany [email protected] Holger Busche Geozentrum Hannover Gerhard Beutler Bundesanstalt für Geowissenschaften und Martin-Luther-Universität Halle-Wittenberg Rohstoffe (BGR) Institut für Geowissenschaften Stilleweg 2 · 30655 Hannover Von-Seckendorff-Platz 3 · 06120 Halle, Germany [email protected] XVIII Authors

Mauro Cacace Martin Bak Hansen GeoForschungsZentrum Potsdam · Section 4.3 Hydro Oil & Energy Research Centre Bergen Telegrafenberg, C427 · 14473 Potsdam, Germany P.O. Box 7190 · N-5020 Bergen, Norway [email protected] [email protected]

Bernhard Cramer Laska Hengesbach Geozentrum Hannover Westfälische Wilhelms-Universität Münster Bundesanstalt für Geowissenschaften Institut für Geophysik und Rohstoffe (BGR) Corrensstraße 24 · 48149 Münster, Germany Stilleweg 2 · 30655 Hannover [email protected] Fabian Hese Christian-Albrechts-Universität zu Kiel Hilmar von Eynatten Institut für Geowissenschaften, Geophysik Geowissenschaftlichen Zentrum der Otto-Hahn-Platz 1 · 24118 Kiel, Germany Universität Göttingen [email protected] Abteilung Sedimentologie/Umweltgeologie Goldschmidtstraße 3 Norbert Hoffmann 37077 Göttingen, Germany Bundesanstalt für Geowissenschaften [email protected] und Rohstoffe Dienstbereich Berlin Matthias Franz Wilhelmstraße 25-30 · 13593 Berlin, Germany Martin-Luther-Universität Halle-Wittenberg [email protected] Institut für Geowissenschaften Von-Seckendorff-Platz 3 Christian Hübscher 06120 Halle, Germnay Universität Hamburg [email protected] Institut für Geophysik Bundesstraße 55 · 20146 Hamburg, Germany Hans-Joachim. Franzke [email protected] Technische Universität Clausthal Institut für Geologie und Paläontologie Fabian Jähne Leibnizstraße 10 Friedrich-Schiller-Universität Jena 38678 Clausthal-Zellerfeld, Germany Institut für Geowissenschaften [email protected] Wöllnitzer Str. 7 · 07749 Jena, Germany [email protected] Dirk Gajewski Universität Hamburg Hartmut Jödicke † Institut für Geophysik Westfälische Wilhelms-Universität Münster Bundesstraße 55 · 20146 Hamburg, Germany Institut für Geophysik [email protected] Corrensstraße 24 · 48149 Münster, Germany

Reinhard Gaupp Marleen Kästner Friedrich-Schiller-Universität Jena Universität Hannover Institut für Geowissenschaften Institut für Geologie Burgweg 11 · 07749 Jena, Germany Callinstraße 30 · 30167 Hannover, Germany [email protected] [email protected]

Marion Geißler Hubert Kiersnowski Technische Universität Bergakademie Freiberg Polish Geological Institute Institut für Geologie und Paläontologie Rakowiecka 4 Bernhard-von-Cotta-Straße 2 00-975 Warszawa, Poland 09596 Freiberg, Germany [email protected] [email protected] Jonas Kley Heijn van Gent Friedrich-Schiller-Universität Jena RWTH Aachen University Institut für Geowissenschaften Geologie-Endogene Dynamik Burgweg 11 · 07749 Jena, Germany Lochnerstraße 4-20 · 52056 Aachen, Germany [email protected] [email protected] Charlotte M. Krawczyk Hans-Jürgen Götze Geozentrum Hannover Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaftliche Institut für Geowissenschaften, Geophysik Gemeinschaftsaufgaben (GGA-Institut) Otto-Hahn-Platz 1 Stilleweg 2 24118 Kiel, Germany 30655 Hannover, Germany [email protected] [email protected] Authors XIX

Bernhard M. Krooß Anna Maria Marotta RWTH Aachen University University of Milan Lehrstuhl für Geologie, Geochemie Department of Earth Sciences, und Lagerstätten des Erdöls und der Kohle Section of Geophysics Lochnerstraße 4-20 · 52056 Aachen, Germany L. Cicognara 7 · 20129 Milan, Italy [email protected] [email protected]

Peter A. Kukla Yuriy Maystrenko RWTH Aachen University GeoForschungsZentrum Potsdam · Section 4.3 Lehrstuhl für Geologie und Paläontologie Telegrafenberg, C424 · 14473 Potsdam, Germany Wüllnerstraße 2 · 52056 Aachen, Germany [email protected] [email protected] Stanislaw Mazur Berit Legler GETECH, Kitson House RWE Dea AG Elmete Hall Wietze E & P Laboratory Elmete Lane, Leeds LS8 2LJ, UK Geosciences Industriestraße 2 · 29323 Wietze, Germany Markus Mohr [email protected] RWE Dea AG Überseering 40 · 22297 Hamburg, Germany Rouwen Lehné [email protected] Johannes Gutenberg-Universität Mainz Institut für Geowissenschaften Peter Möller Becherweg 21 GeoForschungsZentrum Potsdam 55099 Mainz, Germany Telegrafenberg · 14473 Potsdam, Germany [email protected] Rainer Müller Christof Lempp Technische Universität Clausthal Martin-Luther-Universität Halle-Wittenberg Institut für Geologie und Paläontologie Institut für Geowissenschaften, Ingenieurgeologie Leibnizstraße 10 Von-Seckendorff-Platz 3 38678 Clausthal-Zellerfeld, Germany 06120 Halle, Germany [email protected] [email protected] Jörg Mutterlose Ralf Littke Ruhr-Universität Bochum RWTH Aachen University Institut für Geologie, Mineralogie und Geophysik Lehrstuhl für Geologie, Geochemie Universitätsstraße 150 · 44801 Bochum und Lagerstätten des Erdöls und der Kohle [email protected] Lochnerstraße 4-20 · 52056 Aachen, Germany [email protected] Susanne Nelskamp RWTH Aachen University Tina Lohr Lehrstuhl für Geologie, Geochemie GeoForschungsZentrum Potsdam und Lagerstätten des Erdöls und der Kohle Sektion 3.1 Lochnerstraße 4-20 · 52056 Aachen, Germany Telegrafenberg, D 225 · 14473 Potsdam, Germany [email protected] [email protected] Georg Nover Volker Lüders Rheinische Friedrich-Wilhelms-Universität Bonn GeoForschungsZentrum Potsdam Steinmann Institut für Geologie, Mineralogie, Sektion 4.3 Paläontologie Telegrafenberg B226 · 14473 Potsdam, Germany Poppelsdorfer Schloß [email protected] 53115 Bonn, Germany [email protected] Hans Machel University of Alberta Robert Ondrak Department of Earth & Atmospheric Sciences GeoForschungsZentrum Potsdam 1-26 Earth Sciences Building Sektion 4.3 Edmonton, Alberta, Canada · T6G 2E3 Telegrafenberg, B422 · 14473 Potsdam, Germany [email protected] [email protected]

Fabien Magri Birgit Plessen GeoForschungsZentrum Potsdam GeoForschungsZentrum Potsdam Section 4.3 Sektion 3.3 Telegrafenberg, C426 · 14473 Potsdam, Germany Telegrafenberg, C327 · 14473 Potsdam, Germany [email protected] [email protected] XX Authors

Rolando di Primio Judith Sippel GeoForschungsZentrum Potsdam GeoForschungsZentrum Potsdam Section 4.3 Sektion 4.3 Telegrafenberg, B428 · 14473 Potsdam, Germany Telegrafenberg, C427 [email protected] 14473 Potsdam, Germany [email protected] Wolfgang Rabbel Christian-Albrechts-Universität zu Kiel Frank Sirocko Institut für Geowissenschaften, Geophysik Johannes Gutenberg-Universität Mainz Otto-Hahn-Platz 1 · 24118 Kiel, Germany Institut für Geowissenschaften [email protected] Becherweg 21 · 55099 Mainz, Germany [email protected] Dirk Radies OMV (Norge) AS Christopher J. Spiers Jåttåvågveien 7B Utrecht University 4020 Stavanger, Norway Department of Earth Sciences [email protected] Budapestlaan 4 · 3584 CD Utrecht, The Netherlands Klaus Reicherter [email protected] RWTH Aachen University Lehr- und Forschungsgebiet Neotektonik Werner Stackebrandt und Georisiken Landesamt für Bergbau Geologie und Rohstoffe Lochnerstraße 4-20 · 52056 Aachen, Germany Stahnsdorfer Damm 77 [email protected] 14532 Kleinmachnow, Germany [email protected] Sabine Rodon RWE Dea AG Harald Stollhofen Überseering 40 · 22297 Hamburg, Germany RWTH Aachen University [email protected] Lehrstuhl für Geologie und Paläontologie Wüllnerstraße 2 Magdalena Scheck-Wenderoth 52056 Aachen, Germany GeoForschungsZentrum Potsdam · Sektion 4.3 [email protected] Telegrafenberg, C423 · 14473 Potsdam [email protected] David Tanner Geowissenschaftlichen Zentrum Peter Schikowsky der Universität Göttingen Universität Leipzig Abteilung Strukturgeologie und Geodynamik Institut für Geophysik und Geologie Goldschmidtstraße 3 Talstraße 35 · 04103 Leipzig, Germany 37077 Göttingen, Germany [email protected] [email protected]

Zsolt Schléder Friedrich Theilen † Midland Valley Exploration Ltd Christian-Albrechts-Universität zu Kiel 144 West George Street Institut für Geowissenschaften, Geophysik Glasgow G2 2HG, United Kingdom Otto-Hahn-Platz 1 [email protected] 24118 Kiel, Germany

Sabine Schmidt Janos L. Urai Christian-Albrechts-Universität zu Kiel RWTH Aachen University Institut für Geowissenschaften, Geophysik Geologie-Endogene Dynamik Otto-Hahn-Platz 1 · 24118 Kiel, Germany Lochnerstraße 4-20 · 52056 Aachen, Germany [email protected] [email protected]

Jörg Schneider Silke Voigt Technische Universität Bergakademie Freiberg Universität zu Köln Institut für Geologie und Paläontologie Institut für Geologie und Mineralogie Bernhard-von-Cotta-Straße 2 Zülpicher Straße 49a 09596 Freiberg, Germany 50674 Köln, Germany [email protected] e-mail: [email protected]

Robert Schöner Thomas Voigt Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena Institut für Geowissenschaften Institut für Geowissenschaften Burgweg 11 · 07749 Jena, Germany Burgweg 11 · 07749 Jena, Germany [email protected] [email protected] Authors XXI

John K.Warren Tamara Yegorova Shell Chair in Carbonate Studies National Academy of Sciences of Ukraine (Subsurface Reservoir Characterisation) Institute of Geophysics Sultan Qaboos University Palladin av. 32 · 03680 Kiev, Ukraine PO Box 17 · Al-Khodh-123 [email protected] Muscat, Sultanate of Oman [email protected] Mi-Kyung Yoon Universität Hamburg Sven Willert Institut für Geophysik Christian-Albrechts-Universität zu Kiel Bundesstraße 55 · 20146 Hamburg, Germany Institut für Geowissenschaften, Geophysik [email protected] Otto-Hahn-Platz 1 · 24118 Kiel, Germany Henning Zöllner [email protected] Universität Leipzig Institut für Geophysik und Geologie Jutta Winsemann Talstraße 35 · 04103 Leipzig, Germany Universität Hannover [email protected] Institut für Geologie und Paläontologie Callinstraße 30 Christian Zwach 30167 Hannover, Germany StatoilHydro [email protected] Global Exploration Technology Drammensveien 264 · 0240 Oslo, Norway [email protected]

Editors

Ralf Littke Ulf Bayer RWTH Aachen University GeoForschungsZentrum Potsdam Prof. Dr. Ralf Littke Telegrafenberg C · 14473 Potsdam, Germany Institute of Geology and Geochemistry Phone: +49 (0)331 2881340 of Petroleum and Coal Fax: +49 (0)331 2881349 Lochnerstr. 4-20 · D-52056 Aachen, Germany E-Mail [email protected] Phone: +49 241 8095748 Fax: +49 241 80 92152 Freie Universität Berlin E-Mail: [email protected] Institute for Geological Sciences Malteserstr. 74-100 · 12249 Berlin, Germany

Ralf Littke received his Diploma degree (M.Sc.) Ulf Bayer received his Diploma degree in Geo- in Geology in 1981 and his Dr. rer. nat. doctoral logy in 1975 at the Technical University Stuttgart degree (Ph.D.) in 1985, both from the Ruhr-Uni- and his Dr. rer. nat. in 1977 at the University of versity Bochum. Afterwards, he worked in the Tübingen. After a time as research assistant he Institute of Petroleum and Organic Geochemistry received his Habilitation degree and lectureship at the Research Centre Juelich, a major federal re- there in 1983. In 1981 the Hermann-Credner-Price search centre in Germany. of the DGG was awarded to him. He taught at the Ruhr-University, Bochum, From 1984 to 1988 he was Heisenberg Fellow where he received his Habilitation degree, becom- of the DFG (German Science Foundation) with ing an Adjunct Professor of Geology in 1993. In terms as guest scientist at the University Leicester 1997, he accepted a Professorship in Geology and and Birmingham (UK), New Brunswick, Prince- Geochemistry of Petroleum and Coal at RWTH ton and the Research Centre of Schlumberger-Doll Aachen University. at Richfield (USA). His research is focussed on petroleum and gas From 1988 to 1992 he worked in the Institute of geology and geochemistry, basin modelling, coal Petroleum and Organic Geochemistry at the Research geology and environmental geochemistry. Centre Jülich and since then at the GeoForschungs- He is coordinator of the German priority re- Zentrum Potsdam. In addition he holds a professor- search programme ”Dynamics of Sedimentary ship at the Freie Universität Berlin since 1994. Basins under varying Stress Regimes (DFG SPP His research focuses on basin analysis and mo- 1135)” and member of the Academy of Science of delling with focus at the integration of geological North Rhine-Westphalia. and geophysical concepts as well as coupled fluid, heat and mass transfer. From 1998-2001 he was a member of the German EUROPROBE steering committee, coordinator of a bundle of DFG-projects related to DEKORP Ba- sin’96 from 1996 to 2001, and is co-coordinator of the German priority research programme ”Dyna- mics of Sedimentary Basins under varying Stress Regimes (DFG SPP 1135)”. XXIV Editors

Dirk Gajewski Susanne Nelskamp University of Hamburg RWTH Aachen University Prof. Dr. Dirk Gajewski Dipl. Geow. Susanne Nelskamp Institute of Geophysics Institute of Geology and Geochemistry Bundesstr. 55 of Petroleum and Coal D-20146 Hamburg, Germany Lochnerstr. 4-20 · D-52056 Aachen, Germany Phone: +49 40 42838 2975 Phone: +49 241 80 95779 Fax: +49 40 42838 5441 Fax: +49 241 80 92152 E-Mail: [email protected] E-Mail: [email protected]

Dirk Gajewski holds the chair of Applied Seismics Susanne Nelskamp has studied geosciences at the at the University of Hamburg, Germany where he University of Hannover with an emphasis on Ge- is employed since 1993. Prior to that he was an ology. She received her diploma degree (M.Sc.) in assistant professor at the University of Clausthal, 2004 on the topic of benthic foraminifera living in Germany and a post doctoral researcher at Stanford colony with methane reducing bacteria. Up to now University, California, USA and at the Center for she is working on her Dr. rer. nat. (Ph.D) thesis on Computational Seismology, Lawrence Berkeley basin modelling in the Netherlands at the RWTH Lab, Berkeley, California, USA. He received Aachen University and doing coordination work his Diploma degree (M.Sc.) from the Technical for the DFG Special Priority Programme 1135. University of Clausthal in 1981 and the Dr. rer. nat. doctoral degree (PhD) from the University of Karlsruhe, Germany in 1987. His research interests are in reflection seismic processing and imaging, seismic anisotropy, and ray methods. He served as associate editor for Geophysical Prospecting, is co-coordinator of the German priority research programme ”Dy- namics of Sedimentary Basins under varying Stress Regimes (DFG SPP 1135)” and is a mem- ber of the steering committee for the Geophysi- cal Instrument Pool Potsdam (GIPP). Since 2007 he is director of the Wave Inversion Technology (WIT) consortium.