Valid Candidate

Total Page:16

File Type:pdf, Size:1020Kb

Valid Candidate ARM Observation Campaign Paul Chodas, NEO Program Office, JPL/Caltech KISS Workshop on Applications of Asteroid Redirection Technology April 7-9, 2014 1 Numbers of Near-Earth Asteroids (NEAs) • 99% of Near-Earth Objects are asteroids (NEAs). • Current number of known NEAs: ~10,777, discovered at a rate of ~1000 per year. • Since 1998, NASA’s NEO Observation Program has led the international NEO discovery and characterization effort; this responsibility should continue in the search for smaller asteroids. • 95% of 1-km and larger NEAs have been found; the completion percentage drops for smaller asteroids because the population increases exponentially as size decreases. ~60% • Numbers for 10-m-class NEAs: ~20% Estimated population: ~30,000,000 <1% Number currently known: ~380 Estimated number that meet <<1% Ref. Concept orbital criteria: ~10,000 ~95% Number currently known: ~17 2 NEA Population vs. Absolute Magnitude & Size Diameter (km), assuming Albedo = 0.14 7 m ) H (powers of 10) (powers of 140 m Numbers Ref Alt Size Size Number (< Range Range Diagram courtesy of Al Harris 3 NASA’s NEO Search Programs: Current Systems Catalina Sky Pan-STARRS Spacewatch Survey U of AZ U of HI U of AZ Arizona & Australia Haleakala, Maui Arizona • Currently, most Near-Earth Asteroid discoveries are made by: Catalina Sky Survey (60%), Pan-STARRS-1 (30%), and Spacewatch (2%). • Enhancements to current surveys and entirely new surveys are coming online now and over the next 2 years. • These enhancements will increase capabilities to find hazardous asteroids in general, as well as ARM candidate targets. 4 Sky Coverage, Feb.-Mar. 2014 Courtesy of Tim Spahr, Minor Planet Center The Asteroid Search Process & An Interesting Find • Each region of sky is imaged 3-4 times over ~80 minutes. • The images are compared to look for moving objects. • On October 7, 2008, the Catalina Sky Survey found a very interesting object: 2008 TC3, headed for impact. • Discovered at 1.3 lunar distances, 19 hr before impact. • Impact location was predicted 11 hours before impact. • The object was clearly very small and would likely break up on entry. Discovery images of 2008 TC3 from Catalina Sky Survey Primary Enhancements for ARRM Candidate Discovery • NEO Time on DARPA Space Surveillance Telescope • Large 3.6m telescope, first light: Feb 2011, now in testing. • Developed for DoD Space Situational Awareness. • Testing of NEO detection capability: Winter 2013-14 • Routine NEO observing is planned to start in April 2014. • Enhancing Pan-STARRS 1, Completing Pan-STARRS 2 • Increase NEO search time to 50% on PS1: March 2014. • Complete PS2 (improved copy of PS1): Late 2014. • Accelerated Completion of ATLAS • Set of small telescopes with extremely wide fields of view covering the entire night sky every night, but not as deeply. • Final design completed. 1st system completion: Late 2015. • Prototype being set up at Mauna Loa NOAA site. 7 Observation Campaign Enhancements for Discovery In Work or Potential Ops Facility V FOV lim (deg2) Improvements Date Catalina Sky Retune observation cadence Late 2014 Survey: Mt. Bigelow 19.5 8 Increase FOV to 19.4 deg2 Late 2014 Mt. Lemmon 21.5 1.2 Increase FOV to 5.0 deg2 Mid 2014 Increase NEO time to 50% Mar 2014 Pan-STARRS 1 21.5 7 Current Surveys Increase NEO time to 100% Apr. 2014 DARPA SST 22+ 6 Begin bulk data delivery - MPC Apr. 2014 Palomar Transient Improve software to detect 21 7 Mid 2014 Facility (PTF) streaked objects Pan-STARRS 2 22 7 Complete telescope system Late 2014 ATLAS 20 40 Entire night sky every night x2 Late 2015 Future Surveys Vlim = limiting magnitude , FOV = Field of View 8 Radar Observations of ARRM Candidates Bennu (OSIRIS-ReX Target) Goldstone 70 m Arecibo 305 m 2012 XB112, size ~ 2 m Rot period: 2.6 min • For the Reference Concept, a candidate must ! pass < ~6 lunar distances to be detected; ~75% of current candidates could have been detected. • For the Alternate Concept, a candidate must Range pass < ~8 lunar distances to have a high enough ß SNR to detect boulders. • Radar observations can provide: • Size and shape to within ~2 meters. • High precision range/Doppler orbit data. Doppler frequency à • Spin rate, surface density and roughness. 9 9 Infrared Characterization of NEOs NASA InfraRed Telescope Facility (IRTF) • Dedicated Planetary Science Observatory • Spectroscopy and Thermal Signatures • On-call for Rapid Response on Discoveries Spitzer Infrared Space Telescope • Orbit about Sun, ~180 million km from Earth • In extended Warm-phase mission • Thermal Signatures, Albedo/Sizes of NEOs • Longer time needed for scheduling NEOWISE Reactivated NEOWISE • ~3 year warm phase dedicated to JPL NEO Search/Characterization data Sun-synch LEO collection. 10 NEA Characterization Process Rotation, Light curves Shape Initial detection, astrometry, Rough Additional Precise Radar photometry orbit astrometry orbit Precise Rough Approximation of Apparent Absolute Size magnitude magnitude Thermal infrared Approximate Phase curves Albedo Colors, Spectral Spectroscopy type Density Mass Observations Astrometry over Area/Mass Intermediate parameters months or years Ratio Objectives NEA Albedo Distribution Albedo distribution of NEAs at a constant Diameter Albedo distribution of NEAs at a constant H magnitude 0.3 0.4 Median Albedo 0.14 0.3 D H t 0.2 t n Median n a a t t Albedo s s n n 0.24 o o c c t t 0.2 a a n n o i o i t t c c a 0.1 a r r F F 0.1 0 0 0.01 0.1 1 0.01 0.1 1 Albedo Albedo Albedo distribution at a given diameter vs. Albedo distribution at a given H mag. Data from NEOWISE (Mainzer et al.), diagram courtesy of Al Harris ARM Candidate Nomenclature Guide • “Potential Candidate”: – An NEA whose orbit parameters satisfy rough constraints on launch date, return date and total mission ΔV. – Absolute magnitude indicates size lies roughly in the right range: < 10 m for the Reference Concept and ~50-500 m for the Alternate Concept. • “Characterizable”: – Approaches the Earth (or Spitzer) close enough, and with suitable enough observing geometry, that its physical properties can be adequately characterized; or a robotic precursor mission is available. • “Valid Candidate”: – For the Reference Concept, a Potential Candidate whose physical properties have been adequately characterized (size, mass, rotation rate) and lie within acceptable ranges to achieve mission goals. – For the Alternate Concept, a Potential Candidate whose surface has been characterized so that the existence of boulders of the size which can be returned can at least be inferred. – Detailed mission design has been performed using feasible launch and return dates, and the upper bound on the mass (entire NEA or boulder) is less than the maximum return mass from the mission design. • “Selectable Target”: – Meets programmatic constraints (e.g., achievable schedule and acceptable return size), and has identified but manageable risks. 13 Characteristics of Reference Concept Candidates Characteristic Reference Value < 2 km/s desired; upper bound ~2.6 km/s Vinfinity relative to Earth (roughly, 0.85 < a < 1.25, e < ~0.17, i < ~6 deg, à synodic period > ~3.75 years) Natural return to Earth in 2020-2026 timeframe Natural return to Earth (“Return” means close approach within ~0.3 au) <1,000 metric tons Mass (Upper bound varies according to Vinfinity) Spin rate < 2 rpm, < 0.5 rpm desired Rotation State Non-Principal-Axis rotation: OK 7 m < mean diameter < 10 m (roughly, 27 < H < 31) Size and Aspect Ratio Maximum dimension <~13 m, aspect ratio < 2:1 Known Type preferred, but not required Spectral Class (C-type with hydrated minerals desired) 14 Candidates for the Reference Concept • Simulations suggest there are thousands of potential candidate targets suitable for the Reference Concept; the challenge is to find and characterize them. • Current discovery rate of potential candidates: 2-3 per year. • When the discovery enhancements come online, this rate is expected to increase to ~5 per year. • Rapid response after discovery is critical for physical characterization of potential candidates. The process has already been successfully exercised for a difficult- to-characterize candidate (2013 EC20). – Large aperture optical telescopes: Rotation rate, colors, photometry, area-to-mass. – Goldstone and/or Arecibo radar: Size, albedo and rotation state. – Ground-based or space-based IR: Size, albedo and spectral type. – Candidates must approach within ~6 lunar distances to be adequately characterized. • Number of Valid Candidates expected to increase at a rate of 1-2 per year. 15 Physical Characterization of Small ARM Candidates • Radar is essential for obtaining an accurate estimate of size and shape to within ~2 m, as well as rotation state. • Ground-based and space-based IR measurements are important for estimating albedo and spectral class, and from these an approximate density can be inferred. • Light curves are important to estimate shape and rotation state. • Long-arc high-precision astrometry is important for determining the area-to-mass ratio. Assumed albedo p = 0.04 • Mass is estimated from size and shape using an inferred or v assumed density, and it can be constrained by the estimate of the area-to-mass ratio. Even so, mass may only be known to within a factor of 3 or 4. • Final ARM target selection may depend largely on how the Assumed albedo estimated upper bound on the mass of each candidate pv = 0.34 compares with the return mass capability for that candidate. 16 Reference Concept Candidate 2009 BD [1] • Reference Concept candidate 2009 BD, discovered in January 2009, is one of the most well observed small asteroids in the catalog. • Its orbit and optical brightness are extremely accurately known, from hundreds of observations made at 2 dozen observatories. • 2009 BD’s area-to-mass ratio (AMR) and Yarkovsky effect are well measured.
Recommended publications
  • Spacewalch Discovery of Near-Earth Asteroids Tom Gehrele Lunar End
    N9 Spacewalch Discovery of Near-Earth Asteroids Tom Gehrele Lunar end Planetary Laboratory The University of Arizona Our overall scientific goal is to survey the solar system to completion -- that is, to find the various populations and to study their statistics, interrelations, and origins. The practical benefit to SERC is that we are finding Earth-approaching asteroids that are accessible for mining. Our system can detect Earth-approachers In the 1-km size range even when they are far away, and can detect smaller objects when they are moving rapidly past Earth. Until Spacewatch, the size range of 6 - 300 meters in diameter for the near-Earth asteroids was unexplored. This important region represents the transition between the meteorites and the larger observed near-Earth asteroids (Rabinowitz 1992). One of our Spacewatch discoveries, 1991 VG, may be representative of a new orbital class of object. If it is really a natural object, and not man-made, its orbital parameters are closer to those of the Earth than we have seen before; its delta V is the lowest of all objects known thus far (J. S. Lewis, personal communication 1992). We may expect new discoveries as we continue our surveying, with fine-tuning of the techniques. III-12 Introduction The data accumulated in the following tables are the result of continuing observation conducted as a part of the Spacewatch program. T. Gehrels is the Principal Investigator and also one of the three observers, with J.V. Scotti and D.L Rabinowitz, each observing six nights per month. R.S. McMillan has been Co-Principal Investigator of our CCD-scanning since its inception; he coordinates optical, mechanical, and electronic upgrades.
    [Show full text]
  • The Catalina Sky Survey
    The Catalina Sky Survey Current Operaons and Future CapabiliKes Eric J. Christensen A. Boani, A. R. Gibbs, A. D. Grauer, R. E. Hill, J. A. Johnson, R. A. Kowalski, S. M. Larson, F. C. Shelly IAWN Steering CommiJee MeeKng. MPC, Boston, MA. Jan. 13-14 2014 Catalina Sky Survey • Supported by NASA NEOO Program • Based at the University of Arizona’s Lunar and Planetary Laboratory in Tucson, Arizona • Leader of the NEO discovery effort since 2004, responsible for ~65% of new discoveries (~46% of all NEO discoveries). Currently discovering NEOs at a rate of ~600/year. • 2 survey telescopes run by a staff of 8 (observers, socware developers, engineering support, PI) Current FaciliKes Mt. Bigelow, AZ Mt. Lemmon, AZ 0.7-m Schmidt 1.5-m reflector 8.2 sq. deg. FOV 1.2 sq. deg. FOV Vlim ~ 19.5 Vlim ~ 21.3 ~250 NEOs/year ~350 NEOs/year ReKred FaciliKes Siding Spring Observatory, Australia 0.5-m Uppsala Schmidt 4.2 sq. deg. FOV Vlim ~ 19.0 2004 – 2013 ~50 NEOs/year Was the only full-Kme NEO survey located in the Southern Hemisphere Notable discoveries include Great Comet McNaught (C/2006 P1), rediscovery of Apophis Upcoming FaciliKes Mt. Lemmon, AZ 1.0-m reflector 0.3 sq. deg. FOV 1.0 arcsec/pixel Operaonal 2014 – currently in commissioning Will be primarily used for confirmaon and follow-up of newly- discovered NEOs Will remove follow-up burden from CSS survey telescopes, increasing available survey Kme by 10-20% Increased FOV for both CSS survey telescopes 5.0 deg2 1.2 ~1,100/ G96 deg2 night 19.4 deg2 2 703 8.2 deg 2 ~4,300 deg per night New 10k x 10k cameras will increase the FOV of both survey telescopes by factors of 4x and 2.4x.
    [Show full text]
  • An Early Warning System for Asteroid Impact
    An Early Warning System for Asteroid Impact John L. Tonry(1) ABSTRACT Earth is bombarded by meteors, occasionally by one large enough to cause a significant explosion and possible loss of life. It is not possible to detect all hazardous asteroids, and the efforts to detect them years before they strike are only advancing slowly. Similarly, ideas for mitigation of the danger from an impact by moving the asteroid are in their infancy. Although the odds of a deadly asteroid strike in the next century are low, the most likely impact is by a relatively small asteroid, and we suggest that the best mitigation strategy in the near term is simply to move people out of the way. With enough warning, a small asteroid impact should not cause loss of life, and even portable property might be preserved. We describe an \early warning" system that could provide a week's notice of most sizeable asteroids or comets on track to hit the Earth. This may be all the mitigation needed or desired for small asteroids, and it can be implemented immediately for relatively low cost. This system, dubbed \Asteroid Terrestrial-impact Last Alert System" (AT- LAS), comprises two observatories separated by about 100 km that simulta- neously scan the visible sky twice a night. Software automatically registers a comparison with the unchanging sky and identifies everything which has moved or changed. Communications between the observatories lock down the orbits of anything approaching the Earth, within one night if its arrival is less than a week. The sensitivity of the system permits detection of 140 m asteroids (100 Mton impact energy) three weeks before impact, and 50 m asteroids a week be- fore arrival.
    [Show full text]
  • Arxiv:1406.5253V1 [Astro-Ph.EP] 20 Jun 2014
    Physical Properties of Near-Earth Asteroid 2011 MD M. Mommert Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA D. Farnocchia Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA J. L. Hora Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA S. R. Chesley Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA D. E. Trilling Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA P. W. Chodas Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA arXiv:1406.5253v1 [astro-ph.EP] 20 Jun 2014 M. Mueller SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV, Groningen, The Netherlands A. W. Harris DLR Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany H. A. Smith –2– Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA and G. G. Fazio Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA Received ; accepted accepted by ApJL –3– ABSTRACT We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 µm) of the Infrared Array Camera and detected the target within the 2σ positional uncertainty ellipse. Using an asteroid thermophysical model and a model of non- gravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data.
    [Show full text]
  • Neofixer a Broker for Near Earth Asteroid Follow-Up Rob Seaman & Eric Christensen Catalina Sky Survey
    NEOFIXER A BROKER FOR NEAR EARTH ASTEROID FOLLOW-UP ROB SEAMAN & ERIC CHRISTENSEN CATALINA SKY SURVEY Building the Infrastructure for Time-Domain Alert Science in the LSST Era • May 22-25, 2017 • Tucson CATALINA SKY SURVEY • LPL runs 2 NEO projects, CSS and SpacewatcH • Talk to Eric or me about CSS, Bob McMillan for SW • CSS demo at 3:30 pm CONGRESSIONAL MANDATE • Spaceguard goal: 1 km Near EartH Objects ✔ • George E Brown Act to find > 140m (H < 22) NEOs • 90% complete by 2020 ✘ (2017: ~ 30%) • ROSES 2017 language is > 100m • Chelyabinsk was ~20m (H ~ 25.8) or ~400 kiloton (few per century likeliHood) SUMMARY • Near EartH Asteroid inventory is “retail Big Data” • NEOfixer will be NEO-optimized targeting broker • No one broker will address all use cases • Will benefit LSST as well as current surveys • LSST not tasked to study NEOs, but ratHer tHe Solar System (slower objects and fartHer away) • What is tHe most valuable NEO observation a particular telescope can make at a particular time? CHESLEY & VERES (1705.06209) • 55 ± 5.0% for LSST baseline operating alone • But 42% of NEOs witH H < 22 will be discovered before 2022 • And witHout LSST, current surveys would discover 61% of the catalog by 2032 • Completion CH<22 will be 77% combined LSST will add 16% to CH<22 Can targeted follow-up increase this? CHESLEY & VERES (CAVEATS) • Lots of details worth reading • CH<22 degrades by ~1.8% for every 0.1 mag loss in sensitivity • Issues of linking efficiency including: • Efficiency down to H < 25 is lower • 4% false MBA-MBA links ASTROMETRIC
    [Show full text]
  • Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
    Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments.
    [Show full text]
  • AAS/DPS Poster (PDF)
    Spacewatch Observations of Asteroids and Comets with Emphasis on Discoveries by WISE AAS/DPS Poster 13.22 Thurs. 2010 Oct 7: 15:30-18:00 Robert S. McMillan1, T. H. Bressi1, J. A. Larsen2, C. K. Maleszewski1,J. L. Montani1, and J. V. Scotti1 URL: http://spacewatch.lpl.arizona.edu 1University of Arizona; 2U.S. Naval Academy Abstract • Targeted recoveries of objects discovered by WISE as well as those on impact risk pages, NEO Confirmation Page, PHAs, comets, etc. • ~1900 tracklets of NEOs from Spacewatch each year. • Recoveries of WISE discoveries preserve objects w/ long Psyn from loss. • Photometry to determine albedo @ wavelength of peak of incident solar flux. • Specialize in fainter objects to V=23. • Examination for cometary features of objects w/ comet-like orbits & objects that WISE IR imagery showed as comets. Why Targeted Followup is Needed • Discovery arcs too short to define orbits. • Objects can escape redetection by surveys: – Surveys busy covering other sky (revisits too infrequent). – Objects tend to get fainter after discovery. • Followup observations need to outnumber discoveries 10-100. • Sky density of detectable NEOs too sparse to rely on incidental redetections alone. Why Followup is Needed (cont’d) • 40% of PHAs observed on only 1 opposition. • 18% of PHAs’ arcs <30d; 7 PHAs obs. < 3d. • 20% of potential close approaches will be by objects observed on only 1 opposition. • 1/3rd of H≤22 VI’s on JPL risk page are lost and half of those were discovered within last 3 years. How “lost” can they get? • (719) Albert discovered visually in 1911. • “Big” Amor asteroid, diameter ~2 km.
    [Show full text]
  • Project Pan-STARRS and the Outer Solar System
    Project Pan-STARRS and the Outer Solar System David Jewitt Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 ABSTRACT Pan-STARRS, a funded project to repeatedly survey the entire visible sky to faint limiting magnitudes (mR ∼ 24), will have a substantial impact on the study of the Kuiper Belt and outer solar system. We briefly review the Pan- STARRS design philosophy and sketch some of the planetary science areas in which we expect this facility to make its mark. Pan-STARRS will find ∼20,000 Kuiper Belt Objects within the first year of operation and will obtain accurate astrometry for all of them on a weekly or faster cycle. We expect that it will revolutionise our knowledge of the contents and dynamical structure of the outer solar system. Subject headings: Surveys, Kuiper Belt, comets 1. Introduction to Pan-STARRS Project Pan-STARRS (short for Panoramic Survey Telescope and Rapid Response Sys- tem) is a collaboration between the University of Hawaii's Institute for Astronomy, the MIT Lincoln Laboratory, the Maui High Performance Computer Center, and Science Ap- plications International Corporation. The Principal Investigator for the project, for which funding started in the fall of 2002, is Nick Kaiser of the Institute for Astronomy. Operations should begin by 2007. The science objectives of Pan-STARRS span the full range from planetary to cosmolog- ical. The instrument will conduct a survey of the solar system that is staggering in power compared to anything yet attempted. A useful measure of the raw survey power, SP , of a telescope is given by AΩ SP = (1) θ2 where A [m2] is the collecting area of the telescope primary, Ω [deg2] is the solid angle that is imaged and θ [arcsec] is the full-width at half maximum (FWHM) of the images { 2 { produced by the telescope.
    [Show full text]
  • Equity Partners Overview
    The Minor Planet Center Data Processing System Matthew J. Holman Harvard-Smithsonian Center for Astrophysics Of Minor Planets OUTLINE Brief Minor Planet Center History Motivation Minor Planet Center Roles and Responsibilities Minor Planet Center Operations Current Focus Areas 1 Brief Minor Planet Center History After WWII, the IAU established the Minor Planet Center at the Cincinnati Observatory in 1947. Initial task: Recovering all the lost minor planets Of 1564 numbered objects (i.e. with good orbits), 30% were lost. The MPC moved to the Smithsonian Astrophysical Observatory (SAO) in 1978. The last two lost numbered asteroids (878) Mildred, discovered in 1916 and rediscovered in 1991; and (719) Albert, discovered in 1911 and rediscovered in 2000, were identified by Gareth Williams (MPC). Ancient MPC Data Processing System 4 ITF Obs 5 Galache et al (2015) 6 MOTIVATION Congressional Mandates Regarding Potentially Hazardous Asteroids (PHAs) 1998: Find 90% of PHAs with D > 1km. (Achieved in 2010.) 2006: Find 90% of PHAs with D > 140m by the end of 2020. Budget to support NEO surveys is growing $4 M in 2010 PHA Criteria: $20 M in 2012 • q < 1.3 au $40 M in 2014 • MOID < 0.05 au $50 M in 2016 • H < 22 ( D > 140m for 0.14 albedo) Chelyabinsk, 15 February 2013 By Alex Alishevskikh - Flickr: Meteor trace, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=24726667 Catalina Sky Survey NEOWISE ATLAS Pan-STARRS ZTF 2012 TC4 Spacewatch 10 2014 AA Discovered 1 Jan 2014 by Catalina Sky Survey 2012 TC4 NASA/JPL-Caltech/CSS-Univ.
    [Show full text]
  • Actafutura Fax: +31 71 565 8018
    Acta Futura Issue 8 GTOC5: results and methods Advanced Concepts Team http://www.esa.int/act Publication: Acta Futura, Issue 8 (2014) Editor-in-chief: Duncan James Barker Associate editors: Dario Izzo Jose M. Llorens Montolio Pacôme Delva Francesco Biscani Camilla Pandolfi Guido de Croon Luís F. Simões Daniel Hennes Editorial assistant: Zivile Dalikaite Published and distributed by: Advanced Concepts Team ESTEC, European Space Research and Technology Centre 2201 AZ, Noordwijk The Netherlands www.esa.int/actafutura Fax: +31 71 565 8018 Cover image: solution submitted by The University of Texas at Austin team ISSN: 2309-1940 D.O.I.:10.2420/ACT-BOK-AF Copyright ©2014- ESA Advanced Concepts Team Typeset with X TE EX Contents Foreword to the special issue on the GTOC5 competition 7 Dario Izzo and Luís F. Simões GTOC5: Problem statement and notes on solution verification 9 Ilia S. Grigoriev and Maxim P. Zapletin GTOC5: Results from the Jet Propulsion Laboratory 21 Anastassios E. Petropoulos, Eugene P. Bonfiglio, Daniel J. Grebow, Try Lam, Jeffrey S. Parker, Juan Arrieta, Damon F. Landau, Rodney L. Anderson, Eric D. Gustafson, Gregory J. Whiffen, Paul A. Finlayson, Jon A. Sims GTOC5: Results from the Politecnico di Torino and Università di Roma Sapienza 29 Lorenzo Casalino, Dario Pastrone, Francesco Simeoni, Guido Colasurdo and Alessandro Zavoli GTOC5: Results from the Tsinghua University 37 Fanghua Jiang, Yang Chen, Yuechong Liu, Hexi Baoyin and Junfeng Li GTOC5: Results from the European Space Agency and University of Florence 45 Dario Izzo, Luís F. Simões, Chit Hong Yam, Francesco Biscani, David Di Lorenzo, Bernardetta Addis and Andrea Cassioli GTOC5: Results from the National University of Defense Technology 57 Xiao-yong Jiang, Zong-fu Luo, Yi-jun Lian and G.Tang 5 6 Acta Futura 8 (2014) 7-8 Acta DOI: 10.2420/AF08.2014.7 Futura Foreword to the special issue on the GTOC5 competition Dario Izzo ,* Luís F.
    [Show full text]
  • Why Atens Enjoy Enhanced Accessibility for Human Space Flight
    (Preprint) AAS 11-449 WHY ATENS ENJOY ENHANCED ACCESSIBILITY FOR HUMAN SPACE FLIGHT Daniel R. Adamo* and Brent W. Barbee† Near-Earth objects can be grouped into multiple orbit classifications, among them being the Aten group, whose members have orbits crossing Earth's with semi-major axes less than 1 astronomical unit. Atens comprise well under 10% of known near-Earth objects. This is in dramatic contrast to results from recent human space flight near-Earth object accessibility studies, where the most favorable known destinations are typically almost 50% Atens. Geocentric dynamics explain this enhanced Aten accessibility and lead to an understanding of where the most accessible near-Earth objects reside. Without a com- prehensive space-based survey, however, highly accessible Atens will remain largely un- known. INTRODUCTION In the context of human space flight (HSF), the concept of near-Earth object (NEO) accessibility is highly subjective (Reference 1). Whether or not a particular NEO is accessible critically depends on mass, performance, and reliability of interplanetary HSF systems yet to be designed. Such systems would cer- tainly include propulsion and crew life support with adequate shielding from both solar flares and galactic cosmic radiation. Equally critical architecture options are relevant to NEO accessibility. These options are also far from being determined and include the number of launches supporting an HSF mission, together with whether consumables are to be pre-emplaced at the destination. Until the unknowns of HSF to NEOs come into clearer focus, the notion of relative accessibility is of great utility. Imagine a group of NEOs, each with nearly equal HSF merit determined from their individual characteristics relating to crew safety, scientific return, resource utilization, and planetary defense.
    [Show full text]
  • Meteoroid Impacts Onto Asteroids: a Competitor for Yarkovsky and YORP
    Meteoroid impacts onto asteroids: a competitor for Yarkovsky and YORP Paul A. Wiegert Dept. of Physics and Astronomy, The University of Western Ontario, London Ontario CANADA Submitted to Icarus July 14 2014 Abstract The impact of a meteoroid onto an asteroid transfers linear and angular mo- mentum to the larger body, which may affect its orbit and its rotational state. Here we show that the meteoroid environment of our Solar System can have an effect on small asteroids that is comparable to the Yarkovsky and Yarkovsky- O’Keefe-Radzievskii-Paddack (YORP) effects under certain conditions. The momentum content of the meteoroids themselves is expected to generate an effect much smaller than that of the Yarkovsky effect. However, momentum transport by ejecta may increase the net effective force by two orders of magni- tude for impacts into bare rock surfaces. This result is sensitive to the extrapola- tion of laboratory microcratering experiment results to real meteoroid-asteroid collisions and needs further study. If this extrapolation holds, then meteoroid impacts are more important to the dynamics of small asteroids than had previ- ously been considered. Asteroids orbiting on prograde orbits near the Earth encounter an anisotropic arXiv:1407.3714v1 [astro-ph.EP] 14 Jul 2014 meteoroid environment, including a population of particles on retrograde orbits generally accepted to be material from long-period comets spiralling inwards under Poynting-Robertson drag. High relative speed (60 km/s) impacts by me- teoroids provide a small effective drag force that decreases asteroid semimajor axes and which is independent of their rotation pole. This effect may exceed the instantaneous Yarkovsky drift at sizes near and below one meter.
    [Show full text]