Positive and Negative Regulation of TGF-Β Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Positive and Negative Regulation of TGF-Β Signaling Journal of Cell Science 113, 1101-1109 (2000) 1101 Printed in Great Britain © The Company of Biologists Limited 2000 JCS1056 COMMENTARY Positive and negative regulation of TGF-β signaling Kohei Miyazono Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), and Research for the Future Program, the Japan Society for the Promotion of Science, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan *Author for correspondence (e-mail: [email protected]) Published on WWW 7 March 2000 SUMMARY Cytokines of the transforming growth factor β (TGF-β) which limit the magnitude of signals and terminate superfamily, including TGF-βs, activins and bone signaling. Negative regulation is also important for morphogenetic proteins (BMPs), bind to specific formation of gradients of morphogens, which is crucial in serine/threonine kinase receptors and transmit developmental processes. In addition, other signaling intracellular signals through Smad proteins. Upon ligand pathways regulate TGF-β and BMP signaling through stimulation, Smads move into the nucleus and function as cross-talk. Nearly 20 BMP isoforms have been identified, components of transcription complexes. TGF-β and BMP and their activities are regulated by various extracellular signaling is regulated positively and negatively through antagonists. Regulation of TGF-β signaling might be tightly various mechanisms. Positive regulation amplifies signals linked to tumor progression, since TGF-β is a potent to a level sufficient for biological activity. Negative growth inhibitor in most cell types. regulation occurs at the extracellular, membrane, cytoplasmic and nuclear levels. TGF-β and BMP signaling is often regulated through negative feedback mechanisms, Key words: TGF-β, BMP, activin, antagonist, Smad INTRODUCTION to two different types of serine/threonine kinase receptor: type I and type II (Fig. 1; Heldin et al., 1997; Massague, Transforming growth factor (TGF)-β and related factors are 1998; Zhang and Derynck, 1999). The type II receptor multifunctional cytokines that regulate growth, kinases are constitutively active; upon ligand binding, the differentiation, adhesion and apoptosis of various cell types type II receptors activate the type I receptor kinases through (Roberts and Sporn, 1990). More than 30 proteins have been phosphorylation of the juxtamembrane domain (mainly the identified as members of the TGF-β superfamily, which glycine-serine-rich domain or GS domain) of type I receptors. includes TGF-βs, activins and bone morphogenetic proteins The type I receptor kinases then activate intracellular (BMPs). Activins and BMPs play important roles in early substrates, the central signal messengers being Smad proteins embryogenesis (Kingsley, 1994; Hogan, 1996; Harland and (Miyazono et al., 2000). Smads include three subclasses: Gerhart, 1997); activins induce dorsal mesoderm in Xenopus receptor-regulated Smads (R-Smads), common-partner embryos, whereas BMPs induce ventral mesoderm. BMPs Smads (Co-Smads) and inhibitory Smads (I-Smads). R- also play critical roles in morphogenesis of various tissues. Smads are anchored to the cell membrane through TGF-β plays an important role in early embryonic membrane-bound proteins, including Smad-anchor for development (Goumans et al., 1999), but might play more receptor activation (SARA; Tsukazaki et al., 1998). R-Smads crucial roles at relatively late stages of development and in directly interact with and become phosphorylated by type I adult tissues. TGF-β acts as a potent growth inhibitor for most receptors. R-Smads then form complexes with Co-Smads and types of cells, including epithelial cells, endothelial cells, migrate into the nucleus, where they regulate transcription of hematopoietic cells and lymphocytes (Roberts and Sporn, target genes (Fig. 1). In mammals, Smad2 and Smad3 are 1990; Miyazono et al., 1994). In addition, TGF-β functions TGF-β/activin-specific R-Smads, whereas Smad1, Smad5 as a fibrogenic factor and is responsible for tissue sclerosis and, presumably, Smad8 are BMP-specific R-Smads. Smad4 of liver, kidney, lung, skin and other tissues. is the only Co-Smad in mammals, but two Co-Smads, TGF-β and related factors are produced as dimeric Smad4α and Smad4β, have been identified in Xenopus precursors, in which the C-terminal portions form active (Howell et al., 1999; Masuyama et al., 1999). Smad6 and ligands following proteolytic processing (Miyazono et al., Smad7 act as I-Smads. 1993; Kingsley, 1994). The secreted TGF-β-like factors bind Signaling by TGF-β-like factors is regulated in both positive 1102 K. Miyazono and others and negative fashions, and is tightly controlled temporally and EXTRACELLULAR ANTAGONISTS spatially through multiple mechanisms at the extracellular, membrane, cytoplasmic and nuclear levels. Positive regulation TGF-β is secreted as a latent complex, which must be activated could be critical for amplification of signaling by TGF-β-like to exhibit its biological effects (Saharinen et al., 1999). TGF- factors. Negative regulation plays an important role in βs are synthesized as precursor forms; the N-terminal portions restriction and termination of signaling, and often occurs of the TGF-β precursors are cleaved off, but remain bound to through a negative feedback loop (Fig. 2). Negative regulation the C-terminal active dimers and maintain them in inactive is also crucial in early embryonic development and forms (Miyazono et al., 1993). In contrast, activins and BMPs morphogenetic processes, limiting the range of signaling by do not form such TGF-β-like latent complexes and therefore TGF-β-like factors and forming a gradient of ligand activity. do not require prior activation to exert biological effects; Signaling by TGF-β-like factors is also regulated through however, their activities are tightly regulated by specific cross-talk with other signal transduction pathways, including antagonists. Two different types of antagonist have been MAP kinase pathways and JAK/STAT pathways. Perturbation identified: those that directly bind ligands, and those that of the negative regulation of TGF-β signaling might be linked belong to the TGF-β superfamily and interfere with binding of to the pathogenesis of various clinical disorders, especially ligands to specific receptors. progression of tumors. Ligand-binding antagonists Various antagonists that directly bind BMPs have been POSITIVE REGULATION OF TGF-β AND BMP identified. These include noggin, chordin, cerberus and its SIGNALING related proteins, and follistatin. Cerberus, gremlin, caronte, DAN and other structurally related proteins are collectively Positive regulation of TGF-β and BMP signaling, especially termed the DAN family (Hsu et al., 1998). Proteins of the DAN the induction of ligands and their signaling components, often family have a conserved cystine-knot motif, which is also occurs through the action of TGF-β-like factors themselves. found in other growth factors, including TGF-β-like factors For example, three mammalian isoforms of TGF-β (TGF-β1, (Pearce et al., 1999; Rodriguez Esteban et al., 1999). However, TGF-β2, and TGF-β3) are auto- and cross-induced by different other BMP antagonists lack sequence similarity with each TGF-β isoforms (Bascom et al., 1989; Kim et al., 1990; other. O’Reilly et al., 1992). Nodal and its related proteins, which Why are there so many antagonists of BMPs? One important play an important role in early embryogenesis and act through reason may be that these antagonists have distinct expression activin receptors and Smad2 (Nomura and Li, 1998), are also profiles and regulate different biological responses in vivo. induced by nodal signaling (Meno et al., 1999). In certain types Noggin and chordin are secreted by Spemann’s organizer, and of cell, TGF-β receptors might be induced by ligand induce neural tissue from ectoderm and dorsalize ventral stimulation (Bloom et al., 1996). mesoderm (Piccolo et al., 1996; Zimmerman et al., 1996). Transcription factors that function as targets of TGF-β- Cerberus plays an essential role in formation of head-like like factors are also induced by ligand stimulation. TGF-β structure. A cerberus-like protein, caronte, plays a critical role induces production of a transcription factor, Runx3 (formerly in the establishment of left-right asymmetry (Rodriguez termed PEBP2αC/Cbfa3/AML2), in B lymphocytes (Shi and Esteban et al., 1999; Yokouchi et al., 1999). Limb development Stavnezer, 1998). Newly synthesized Runx3 in turn forms a is controlled by various BMP antagonists, including noggin, complex with Smad3 activated by TGF-β, and cooperatively chordin, follistatin and gremlin, which have distinct roles in induces IgA class switching in B lymphocytes (Hanai et al., limb morphogenesis (McMahon et al., 1998; Capdevila et al., 1999). c-Jun is induced by TGF-β (Wong et al., 1999) and 1999; Merino et al., 1999). Noggin is also involved in hair- regulates the transcription of target genes in concert with follicle induction (Botchkarev et al., 1999). Smads (Zhang et al., 1998; Liberati et al., 1999). Another important reason may be that these antagonists have Smad signaling is also positively modulated through cross- different affinities for various BMP isoforms (some of them are talk with other signaling pathways. Smads might be activated termed growth/differentiation factors or GDFs) as well as other by tyrosine kinase receptor signals under certain conditions (de factors. Both noggin and chordin directly and specifically bind Caestecker et al.,
Recommended publications
  • Spemann Organizer Transcriptome Induction by Early Beta-Catenin, Wnt
    Spemann organizer transcriptome induction by early PNAS PLUS beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis Yi Dinga,b,1, Diego Plopera,b,1, Eric A. Sosaa,b, Gabriele Colozzaa,b, Yuki Moriyamaa,b, Maria D. J. Beniteza,b, Kelvin Zhanga,b, Daria Merkurjevc,d,e, and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662; bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095-1662; cDepartment of Medicine, University of California, Los Angeles, CA 90095-1662; dDepartment of Microbiology, University of California, Los Angeles, CA 90095-1662; and eDepartment of Human Genetics, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, February 24, 2017 (sent for review January 17, 2017; reviewed by Juan Larraín and Stefano Piccolo) The earliest event in Xenopus development is the dorsal accumu- Wnt8 mRNA leads to a dorsalized phenotype consisting entirely of lation of nuclear β-catenin under the influence of cytoplasmic de- head structures without trunks and a radial Spemann organizer terminants displaced by fertilization. In this study, a genome-wide (9–11). Similar dorsalizing effects are obtained by incubating approach was used to examine transcription of the 43,673 genes embryos in lithium chloride (LiCl) solution at the 32-cell stage annotated in the Xenopus laevis genome under a variety of con- (12). LiCl mimics the early Wnt signal by inhibiting the enzymatic ditions that inhibit or promote formation of the Spemann orga- activity of glycogen synthase kinase 3 (GSK3) (13), an enzyme nizer signaling center.
    [Show full text]
  • Bone Morphogenetic Protein Antagonist Gremlin-1 Regulates Colon Cancer Progression
    Biol. Chem. 2015; 396(2): 163–183 George S. Karagiannis, Natasha Musrap, Punit Saraon, Ann Treacy, David F. Schaeffer, Richard Kirsch, Robert H. Riddell and Eleftherios P. Diamandis* Bone morphogenetic protein antagonist gremlin-1 regulates colon cancer progression Abstract: Bone morphogenetic proteins (BMP) are phylo- E-cadherin-upregulation of N-cadherin) and overexpres- genetically conserved signaling molecules of the trans- sion of Snail. Collectively, our data support that GREM1 forming growth factor-beta (TGF-beta) superfamily of promotes the loss of cancer cell differentiation at the can- proteins, involved in developmental and (patho)physi- cer invasion front, a mechanism that may facilitate tumor ological processes, including cancer. BMP signaling has progression. been regarded as tumor-suppressive in colorectal cancer (CRC) by reducing cancer cell proliferation and invasion, Keywords: angiogenesis; bone morphogenetic protein; and by impairing epithelial-to-mesenchymal transition cancer-associated fibroblasts; colorectal cancer; epithe- (EMT). Here, we mined existing proteomic repositories lial-to-mesenchymal transition; gremlin-1; stroma; tumor to explore the expression of BMPs in CRC. We found that microenvironment. the BMP antagonist gremlin-1 (GREM1) is secreted from heterotypic tumor-host cell interactions. We then sought DOI 10.1515/hsz-2014-0221 to investigate whether GREM1 is contextually and mecha- Received June 26, 2014; accepted August 1, 2014; previously nistically associated with EMT in CRC. Using immunohis- published
    [Show full text]
  • Bmpr Encodes a Type I Bone Morphogenetic Protein Receptor That Is Essential for Gastrulation During Mouse Embryogenesis
    Downloaded from genesdev.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis Yuji Mishina, ~ Atsushi Suzuki, 2 Naoto Ueno, 2 and Richard R. Behringer ~'3 1Department of Molecular Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030 USA; ~Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan Bone morphogenetic proteins (BMPs) are secreted proteins that interact with cell-surface receptors and are believed to play a variety of important roles during vertebrate embryogenesis. Bmpr, also known as ALK-3 and Brk-1, encodes a type I transforming growth factor-~ (TGF-[3) family receptor for BMP-2 and BMP-4. Bmpr is expressed ubiquitously during early mouse embryogenesis and in most adult mouse tissues. To study the function of Bmpr during mammalian development, we generated Bmpr-mutant mice. After embryonic day 9.5 (E9.5), no homozygous mutants were recovered from heterozygote matings. Homozygous mutants with morphological defects were first detected at E7.0 and were smaller than normal. Morphological and molecular examination demonstrated that no mesoderm had formed in the mutant embryos. The growth characteristics of homozygous mutant blastocysts cultured in vitro were indistinguishable from those of controls; however, embryonic ectoderm (epiblast) cell proliferation was reduced in all homozygous mutants at E6.5 before morphological abnormalities had become prominent. Teratomas arising from E7.0 mutant embryos contained derivatives from all three germ layers but were smaller and gave rise to fewer mesodermal cell types, such as muscle and cartilage, than controls.
    [Show full text]
  • Structure of Protein Related to Dan and Cerberus: Insights Into the Mechanism of Bone Morphogenetic Protein Antagonism
    Structure Article Structure of Protein Related to Dan and Cerberus: Insights into the Mechanism of Bone Morphogenetic Protein Antagonism Kristof Nolan,1,5 Chandramohan Kattamuri,1,5 David M. Luedeke,1 Xiaodi Deng,1 Amrita Jagpal,2 Fuming Zhang,3 Robert J. Linhardt,3,4 Alan P. Kenny,2 Aaron M. Zorn,2 and Thomas B. Thompson1,* 1Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA 2Perinatal Institute, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA 3Departments of Chemical and Biological Engineering and Chemistry and Chemical Biology 4Departments of Biology and Biomedical Engineering Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA 5These authors contributed equally to this work *Correspondence: [email protected] http://dx.doi.org/10.1016/j.str.2013.06.005 SUMMARY follicular development, as well as gut differentiation from meso- derm tissue (Bragdon et al., 2011). Furthermore, their roles in The bone morphogenetic proteins (BMPs) are several disease states, including lung and kidney fibrosis, oste- secreted ligands largely known for their functional oporosis, and cardiovascular disease, have indicated their roles in embryogenesis and tissue development. A importance in adult homeostasis (Cai et al., 2012; Walsh et al., number of structurally diverse extracellular antago- 2010). nists inhibit BMP ligands to regulate signaling. The At the molecular level, BMP ligands form stable disulfide- differential screening-selected gene aberrative in bonded dimers that transduce their signals by binding two type I and two type II receptors, leading to type I receptor phos- neuroblastoma (DAN) family of antagonists repre- phorylation.
    [Show full text]
  • BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells Via Interaction with Acvr2b
    MUShare Faculty Publications and Research College of Osteopathic Medicine 1-1-2012 BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells Via Interaction With Acvr2b. Shoichiro Kokabu Laura Gamer Karen Cox Jonathan W. Lowery Ph.D. Marian University - Indianapolis, [email protected] Kunikazu Tsuji See next page for additional authors Follow this and additional works at: https://mushare.marian.edu/com_fp Part of the Cells Commons, and the Genetics and Genomics Commons Recommended Citation Kokabu S, Gamer L, Cox K, Lowery JW, Kunikazu T, Econimedes A, Katagiri T, Rosen V. “BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b.” Mol Endocrinol. 2012;26(1):87-94. PMC3248326. PMID: 22074949. This Article is brought to you for free and open access by the College of Osteopathic Medicine at MUShare. It has been accepted for inclusion in Faculty Publications and Research by an authorized administrator of MUShare. For more information, please contact [email protected]. Authors Shoichiro Kokabu, Laura Gamer, Karen Cox, Jonathan W. Lowery Ph.D., Kunikazu Tsuji, Regina Raz, Aris Economides, Takenobu Katagiri, and Vicki Rosen This article is available at MUShare: https://mushare.marian.edu/com_fp/12 ORIGINAL RESEARCH BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells via Interaction with Acvr2b Shoichiro Kokabu, Laura Gamer, Karen Cox, Jonathan Lowery, Kunikazu Tsuji, Regina Raz, Aris Economides, Takenobu Katagiri, and Vicki Rosen Department of Developmental Biology (S.K., L.G., K.C., J.L., V.R.), Harvard School of Dental Medicine, Boston, Massachusetts 02115; Section of Orthopedic Surgery (K.T.),Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Regeneron Pharmaceuticals (R.R., A.E.), Tarrytown, New York 10591; and Division of Pathophysiology (T.K.), Saitama Medical University, Saitama 359-8513, Japan Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair.
    [Show full text]
  • Product Data Sheet
    KAMIYA BIOMEDICAL COMPANY Rev. 082707 PRODUCT DATA SHEET Product: Bone Morphogenetic Protein Receptor Type IA (BMPR1A), (human recombinant) Cat. No.: BP-026 (10 µg) Synonyms: Reconstitution: BMPR-1A, BMP-R1A, BMPR1A, BMR1A, It is recommended to reconstitute the lyophilized CD292, CD-292, Serine/threonine-protein kinase recombinant human BMPR1A in sterile PBS at receptor R5, SKR5, Activin receptor-like kinase not less than 100 µg/mL, which can then be 3, ALK-3, ACVRLK3, EC 2.7.11.30, CD292 further diluted to other aqueous solutions. antigen. Storage: Background: Lyophilized protein is stable for at least 3 weeks The bone morphogenetic protein (BMP) at room temperature. Long term storage should receptors are a family of transmembrane be below -18 °C, desiccated. Upon serine/threonine kinases that include the type I reconstitution, human recombinant BMPR1A receptors BMPR1A and BMPR1B and the type II should be stored at 4°C between 2-7 days, and receptor BMPR2. These receptors are also for future use below -18°C. For long term closely related to the activin receptors, ACVR1 storage it is recommended to add a carrier and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF- protein (0.1% HSA or BSA). Aliquot to avoid betas and activins transduce their signals freeze/thaw cycles. through the formation of heteromeric complexes with two different types of serine (threonine) Purity: kinase receptors: type I receptors of about 50-55 >90% determined by RP-HPLC, and SDS-PAGE. kDa and type II receptors of about 70-80 kDa. Type II receptors bind ligands in the absence of Biological Activity: type I receptors, but they require their respective Measured by its ability to inhibit recombinant type I receptors for signaling, whereas type I human BMP-2 induced alkaline phosphatase receptors require their respective type II production by C2C12 myogenic cells.
    [Show full text]
  • Activation of Smad Transcriptional Activity by Protein Inhibitor of Activated STAT3 (PIAS3)
    Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3) Jianyin Long*†‡, Guannan Wang*†‡, Isao Matsuura*†‡, Dongming He*†‡, and Fang Liu*†‡§ *Center for Advanced Biotechnology and Medicine, †Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, and ‡Cancer Institute of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854 Communicated by Allan H. Conney, Rutgers, The State University of New Jersey, Piscataway, NJ, November 17, 2003 (received for review August 22, 2003) Smad proteins play pivotal roles in mediating the transforming of many transcription factors through distinct mechanisms. growth factor ␤ (TGF-␤) transcriptional responses. We show in this PIAS1 and PIAS3 bind and inhibit STAT1 and STAT3 DNA- report that PIAS3, a member of the protein inhibitor of activated binding activities, respectively (19, 20). PIASx␣ and PIASx␤ STAT (PIAS) family, activates TGF-␤͞Smad transcriptional re- were identified through interactions with the androgen receptor sponses. PIAS3 interacts with Smad proteins, most strongly with and the homeodomain protein Msx2, respectively (21, 22). Smad3. PIAS3 and Smad3 interact with each other at the endog- PIASx␣ and PIASx␤ inhibit IL12-mediated and STAT4- enous protein level in mammalian cells and also in vitro, and the dependent gene activation (23). PIAS1, PIAS3, PIASx␣, and association occurs through the C-terminal domain of Smad3. We PIASx␤ also regulate transcriptional activation by various ste- further show that PIAS3 can interact with the general coactivators roid receptors (21, 24–26). PIASy has been shown to antagonize p300͞CBP, the first evidence that a PIAS protein can associate with the activities of STAT1 (27), androgen receptor (28), p53 (29), p300͞CBP.
    [Show full text]
  • Gremlin1 Preferentially Binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 Over BMP-7
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen's University Research Portal Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7 Church, R. H., Krishnakumar, A., Urbanek, A., Geschwinder, S., Meneely, J., Bianchi, A., ... Brazil, D. P. (2015). Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7. Biochemical Journal, 466(1), 55-68. DOI: 10.1042/BJ20140771 Published in: Biochemical Journal Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights The final version of record is available at http://www.biochemj.org/bj/imps/abs/BJ20140771.htm General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:15. Feb. 2017 Differential Gremlin1 binding to Bone Morphogenetic Proteins Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7 Rachel H.
    [Show full text]
  • A Truncated Bone Morphogenetic Protein Receptor Affects Dorsal-Ventral Patterning in the Early Xenopus Embryo ATSUSHI SUZUKI*, R
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 10255-10259, October 1994 Developmental Biology A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo ATSUSHI SUZUKI*, R. ScoTT THIESt, NOBORU YAMAJIt*, JEFFREY J. SONGt, JOHN M. WOZNEYt, KAZUO MURAKAMI§, AND NAOTO UENO*1 *Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan; tGenetics Institute Inc., 87 Cambridge Park Drive, Cambridge, MA 02140; tYamanouchi Pharmaceutical Co., Ltd., Tokyo 103, Japan; and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan Communicated by Igor B. Dawid, July 13, 1994 ABSTRACT Bone morphogenetic proteins (BMPs), which corresponding proteins are present in developing Xenopus are members of the trnsming growth factor 13 (TGF-I) embryos, and overexpression of BMP4 in the embryos superfamily, have been implicated in bone formation and the enhances the formation of ventral mesoderm (8-11). Animal regulation ofearly development. To better understand the roles cap ectoderm treated with a combination of BMP4 and of BMPs in Xenopus laevis embryogenesis, we have cloned a activin also results in the formation of ventral mesoderm, cDNA coding for a serine/threonine kinase receptor that binds suggesting that BMP-4 is a ventralizing factor that acts by BMP-2 and BMP-4. To analyze its function, we attempted to overriding the dorsalizing signal provided by activin (8, 9). block the BMP signaling pathway in Xenopus embryos by using Therefore, activin and BMP-4 are thought to play important a domint-negative mutant of the BMP receptor. When the roles in the dorsal-ventral patterning of embryonic meso- mutant receptor lacking the putative serine/threonine kinase derm.
    [Show full text]
  • GDF11 in Ocular Development and MOTA Mapping by Robertino Ralph Karlo Peralta Mateo
    University of Alberta GDF11 in Ocular Development and MOTA Mapping by Robertino Ralph Karlo Peralta Mateo A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science In Medical Sciences – Medical Genetics ©Robertino Ralph Karlo Peralta Mateo Fall 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Abstract Vision relies on the ability of the eye to receive, process, and send signals to the brain for interpretation. To perform these functions, the eye must properly form during embryogenesis which requires the interaction of genes encoding proteins with various functions during development such as cellular differentiation, migration, and proliferation. In this thesis, I investigate ocular formation and disease. One project assesses the role of gdf11 in a zebrafish animal model to study the eye formation. I also explore the effect of human GDF11 sequence variants in ocular disorders. The second project involves mapping a genomic interval responsible for an autosomal recessive disorder known as Manitoba Oculotrichoanal syndrome.
    [Show full text]
  • Integrative Differential Expression and Gene Set Enrichment Analysis Using Summary Statistics for Scrna-Seq Studies
    ARTICLE https://doi.org/10.1038/s41467-020-15298-6 OPEN Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies ✉ Ying Ma 1,7, Shiquan Sun 1,7, Xuequn Shang2, Evan T. Keller 3, Mengjie Chen 4,5 & Xiang Zhou 1,6 Differential expression (DE) analysis and gene set enrichment (GSE) analysis are commonly applied in single cell RNA sequencing (scRNA-seq) studies. Here, we develop an integrative 1234567890():,; and scalable computational method, iDEA, to perform joint DE and GSE analysis through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can improve the power and consistency of DE analysis and the accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, enabling effective data modeling through com- plementing and pairing with various existing DE methods. We illustrate the benefits of iDEA with extensive simulations. We also apply iDEA to analyze three scRNA-seq data sets, where iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% power gain over existing DE methods. The power gain brought by iDEA allows us to identify many pathways that would not be identified by existing approaches in these data. 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA. 2 School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China. 3 Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. 4 Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 5 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
    [Show full text]
  • Follistatin and Noggin Are Excluded from the Zebrafish Organizer
    DEVELOPMENTAL BIOLOGY 204, 488–507 (1998) ARTICLE NO. DB989003 Follistatin and Noggin Are Excluded from the Zebrafish Organizer Hermann Bauer,* Andrea Meier,* Marc Hild,* Scott Stachel,†,1 Aris Economides,‡ Dennis Hazelett,† Richard M. Harland,† and Matthias Hammerschmidt*,2 *Max-Planck Institut fu¨r Immunbiologie, Stu¨beweg 51, 79108 Freiburg, Germany; †Department of Molecular and Cell Biology, University of California, 401 Barker Hall 3204, Berkeley, California 94720-3204; and ‡Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707 The patterning activity of the Spemann organizer in early amphibian embryos has been characterized by a number of organizer-specific secreted proteins including Chordin, Noggin, and Follistatin, which all share the same inductive properties. They can neuralize ectoderm and dorsalize ventral mesoderm by blocking the ventralizing signals Bmp2 and Bmp4. In the zebrafish, null mutations in the chordin gene, named chordino, lead to a severe reduction of organizer activity, indicating that Chordino is an essential, but not the only, inductive signal generated by the zebrafish organizer. A second gene required for zebrafish organizer function is mercedes, but the molecular nature of its product is not known as yet. To investigate whether and how Follistatin and Noggin are involved in dorsoventral (D-V) patterning of the zebrafish embryo, we have now isolated and characterized their zebrafish homologues. Overexpression studies demonstrate that both proteins have the same dorsalizing properties as their Xenopus homologues. However, unlike the Xenopus genes, zebrafish follistatin and noggin are not expressed in the organizer region, nor are they linked to the mercedes mutation. Expression of both genes starts at midgastrula stages.
    [Show full text]