Biochemical Production and Separation of Carboxylic Acids for Biorefinery Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates. -
Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production. -
Acidogenic Properties of Carbohydrate-Rich Wasted Potato and Microbial Community Analysis: Effect of Ph
Journal of Bioscience and Bioengineering VOL. 128 No. 1, 50e55, 2019 www.elsevier.com/locate/jbiosc Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH Yan Li,* Xiaodong Zhang, Haipeng Xu, Hui Mu, Dongliang Hua, Fuqiang Jin, and Guangfan Meng Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), China Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China Received 28 August 2018; accepted 18 December 2018 Available online 14 January 2019 Vegetable waste is one of the major organic solid residues available for sustainable biogas production. The aim of this study was to investigate the possibility and optimal controlling strategy for acidogenic fermentation of wasted potato (WP). Three leaching bed reactors (LBRs) were operated at various pH values (6.0, 7.0 and 8.0) with an organic loading rate (OLR) of 6.7 g volatile solid/(L$d) and hydraulic retention time of 6 d. Butyric acid-type fermentation with butyric acid as predominant volatile fatty acid (VFA) was observed with a concentration and proportion (of total VFAs) of butyric acid, which were 7.8 g/L, 49.7 % and 9.6 g/L and 52.2 % at pH 6.0 and 7.0, respectively. Conversely, at pH 8.0, mixed acid- type fermentation was observed with acetic and butyric acid as the major VFAs. Control experiment without pH manipulation didn’t perform well in VFAs production at first 6 days and then VFAs concentration increased as pH value was adjusted to 8. It was indicated that the inhibition was caused by high undissociated VFAs concentration due to low pH and the VFAs production could be improved through pH control strategy to regulate the undissociated VFAs con- centration. -
Enhanced Acidogenesis by the Degenerated Clostridium Sp. Strain on a Continuous Membrane Cell Recycle Reactor
Research Article Adv Biotech & Micro - Volume 7 Issue 4 November 2017 Copyright © All rights are reserved by Annamma AO DOI: 10.19080/AIBM.2017.07.555716 Enhanced Acidogenesis by the Degenerated Clostridium Sp. Strain on a Continuous Membrane Cell Recycle Reactor Hiral S, Abhishek M, Aruna GA, Annamma AO* and Arvind Lali DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (Formerly UDCT), India Submission: July 13, 2017; Published: November 28, 2017 *Corresponding author: Annamma AO, DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology (Formerly UDCT), Nathalal Parekh Marg, Mumbai-400019, India, Tel: 02233612310; Fax: 02233611020; Email: Abstract Microbial organic acids production is being extensively studied to achieve success at industrial scale. Commercial organic acid production employs homofermentative microbes while the use of heterofermentative organisms has been restricted due to expensive downstream processes. ClostridiumWith development acetobutylicum on appropriate inexpensive separation technology for separation of a mixture of organic acids, heterofermentative-1 and total organic acid fermentation may soon-1 become.h-1 feasible at large scale. Present work aims-1.h at-1 enhancing organic acid production by the degenerated strain of ATCC4259. At batch mode, pH 6 resulted in the highest total organic acid concentration of 10.22g.L acid productivity of 0.58g.L . The constant specific productivity of 1.1g.g obtained-1 for total organic acid at different pH values proved that total organic acid productivity is not governed by pH of the medium but is dependent on cell growth. However, the metabolic shifts in the cell were proved to be subject to external pH values. -
Phylogenomic Analysis of 589 Metagenome-Assembled Genomes Encompassing All Major Prokaryotic Lineages from the Gut of Higher Termites
Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites Vincent Hervé1, Pengfei Liu1, Carsten Dietrich1, David Sillam-Dussès2, Petr Stiblik3, Jan Šobotník3 and Andreas Brune1 1 Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany 2 Laboratory of Experimental and Comparative Ethology EA 4443, Université Paris 13, Villetaneuse, France 3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic ABSTRACT “Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different Submitted 29 August 2019 gut compartments of eight higher termite species that encompass 17 prokaryotic -
Production of Succinic Acid by E.Coli from Mixtures of Glucose
2005:230 CIV MASTER’S THESIS Production of Succinic Acid by E. coli from Mixtures of Glucose and Fructose ANDREAS LENNARTSSON MASTER OF SCIENCE PROGRAMME Chemical Engineering Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Biochemical and Chemical Engineering 2005:230 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 05/230 - - SE Abstract Succinic acid, derived from fermentation of renewable feedstocks, has the possibility of replacing petrochemicals as a building block chemical. Another interesting advantage with biobased succinic acid is that the production does not contribute to the accumulation of CO2 to the environment. The produced succinic acid can therefore be considered as a “green” chemical. The bacterium used in this project is a strain of Escherichia coli called AFP184 that has been metabolically engineered to produce succinic acid in large quantities from glucose during anaerobic conditions. The objective with this thesis work was to evaluate whether AFP184 can utilise fructose, both alone and in mixtures with glucose, as a carbon source for the production of succinic acid. Hydrolysis of sucrose yields a mixture of fructose and glucose in equal ratio. Sucrose is a common sugar and the hydrolysate is therefore an interesting feedstock for the production of succinic acid. Fermentations with an initial sugar concentration of 100 g/L were conducted. The sugar ratios used were 100 % fructose, 100 % glucose and a mixture with 50 % fructose and glucose, respectively. The fermentation media used was a lean, low- cost media based on corn steep liquor and a minimal addition of inorganic salts. Fermentations were performed with a 12 L bioreactor and the acid and sugar concentrations were analysed with an HPLC system. -
The Carbon-Isotope Record of the Sub-Seafloor Biosphere
geosciences Review The Carbon-Isotope Record of the Sub-Seafloor Biosphere Patrick Meister 1,* and Carolina Reyes 2 1 Department of Geodynamics and Sedimentology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria 2 Department of Environmental Geosciences, University of Vienna, Althanstr. 14, 1090 Vienna, Austria; [email protected] * Correspondence: [email protected] Received: 13 November 2019; Accepted: 29 November 2019; Published: 5 December 2019 Abstract: Sub-seafloor microbial environments exhibit large carbon-isotope fractionation effects as a result of microbial enzymatic reactions. Isotopically light, dissolved inorganic carbon (DIC) derived from organic carbon is commonly released into the interstitial water due to microbial dissimilatory processes prevailing in the sub-surface biosphere. Much stronger carbon-isotope fractionation occurs, however, during methanogenesis, whereby methane is depleted in 13C and, by mass balance, DIC is enriched in 13C, such that isotopic distributions are predominantly influenced by microbial metabolisms involving methane. Methane metabolisms are essentially mediated through a single enzymatic pathway in both Archaea and Bacteria, the Wood–Ljungdahl (WL) pathway, but it remains unclear where in the pathway carbon-isotope fractionation occurs. While it is generally assumed that fractionation arises from kinetic effects of enzymatic reactions, it has recently been suggested that partial carbon-isotope equilibration occurs within the pathway of anaerobic methane oxidation. Equilibrium fractionation might also occur during methanogenesis, as the isotopic difference between DIC and methane is commonly on the order of 75%, which is near the thermodynamic equilibrium. The isotopic signature in DIC and methane highly varies in marine porewaters, reflecting the distribution of different microbial metabolisms contributing to DIC. -
On the Protective Effect of Omega-3 Against Propionic Acid-Induced Neurotoxicity in Rat Pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery
El-Ansary et al. Lipids in Health and Disease 2011, 10:142 http://www.lipidworld.com/content/10/1/142 RESEARCH Open Access On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery Abstract Backgrounds: The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective: To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods: 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-a, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain’s tissue of different groups. Results: The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function. -
Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2008 Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System Reese S. Thompson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Engineering Commons Recommended Citation Thompson, Reese S., "Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System" (2008). All Graduate Theses and Dissertations. 208. https://digitalcommons.usu.edu/etd/208 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. HYDROGEN PRODUCTION BY ANAEROBIC FERMENTATION USING AGRICULTURAL AND FOOD PROCESSING WASTES UTILIZING A TWO-STAGE DIGESTION SYSTEM by Reese S. Thompson A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: _______________________ _______________________ Dr. Conly L. Hansen Dr. Carl S. Hansen Major Professor Committee Member _______________________ _______________________ Dr. Sridhar Viamajala Dr. Byron Burnhan Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2008 ii Copyright © Reese S. Thompson 2008 All Rights Reserved iii ABSTRACT Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System by Reese S. Thompson, Master of Science Utah State University, 2008 Major Professor: Dr. Conly L. Hansen Department: Biological and Irrigation Engineering Hydrogen production by means of anaerobic fermentation was researched utilizing three different substrates. -
Methods of Extraction, Refining and Concentration of Fish Oil As a Source of Omega-3 Fatty Acids
Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 645 Transformation and agro-industry Review article Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega 3 Jeimmy Rocío Bonilla-Méndez,1* José Luis Hoyos-Concha2 1 Researcher, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-5362-5950 2 Lecturer, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-9025-9734 Editor temático: Miguel Ángel Rincón Cervera (Instituto de Nutrición y Tecnología de los Alimentos [INTA]) Date of receipt: 05/07/2017 Date of approval: 15/03/2018 How to cite this article: Bonilla-Méndez, J. R., & Hoyos-Concha, J. L. (2018). Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 645-668. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:684 This license allows distributing, remixing, retouching, and creating from the work in a non-commercial manner, as long as credit is given and their new creations are licensed under the same conditions. * Corresponding author. Universidad del Cauca, Facultad de Ciencias Agrarias. Vereda Las Guacas, Popayán, Colombia. 2018 Corporación Colombiana de Investigación Agropecuaria Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 Abstract Fish oil is an industrial product of high nutritional methods, there are new technologies with potential value because of its Omega-3 polyunsaturated fatty to be applied on fish oil. -
Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation
processes Article Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation Chiu-Yue Lin 1,2,3,†, Wai Siong Chai 4,†, Chyi-How Lay 1,2,5,* , Chin-Chao Chen 6, Chun-Yi Lee 2 and Pau Loke Show 4,* 1 Green Energy and Biotechnology Industry Research Center, Feng Chia University, Taichung City 40724, Taiwan; [email protected] 2 Master’s Program of Green Energy Science and Technology, Feng Chia University, Taichung City 40724, Taiwan; [email protected] 3 Department of Environmental Engineering and Science, Feng Chia University, Taichung City 40724, Taiwan 4 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; [email protected] 5 Professional Master’s Program for Intelligent Manufacturing and Engineering Management, Feng Chia University, Taichung City 40724, Taiwan 6 Department of Landscape Architecture, Chung Chou University of Science and Technology, Changhwa 51000, Taiwan; [email protected] * Correspondence: [email protected] (C.-H.L.); [email protected] (P.L.S.) † These authors contributed equally to this work. Abstract: The traditional pig manure wastewater treatment in Taiwan has been low in methane production efficiency due to unstable influent concentration, wastewater volume, and quality. Two- Citation: Lin, C.-Y.; Chai, W.S.; Lay, stage anaerobic systems, in contrast, have the advantage of buffering the organic loading rate C.-H.; Chen, C.-C.; Lee, C.-Y.; Show, in the first stage (hydrolysis-acidogenesis phase), allowing a more constant feeding rate to the P.L. Optimization of second stage (methanogenesis phase). -
Formic Acid Acetic Acid Propionic Acid Butyric Acid Valeric Acid Caproic
Organic Acids: Formic acid Citric acid Acetic acid Malic acid Propionic acid Benzoic acid Butyric acid Tartaric acid Valeric acid Caproic acid Oxalic acid Lactic acid Organic Bases: Pyridine Imidazole (solid) Benzimidazole Aniline TEA (tri-ethyl amine) Histidine Nitroaniline Imidazole (dissolved) Amino bases/ Nucleotides ממסים אורגניים (מכילים קשר פחמן-מימן): :(Organic Solvents (contains carbon-hydrogen bond Xylene DMF Hexane Parafine oil Ethylacetate Formamide IPA Piperidine Trizol/Trireagent Butanol SDS (solid) Acetone PMSF (Phenylmethanesulfonyl fluoride) Methanol Tween PFA RNA / DNA (kit parts that contains thioisocyanate) Toluene BME (beta mercaptoethanol) DMSO Ethylenglycol Ethanol Halogenated Organic Solvents (contains F, Cl, Br, I): ממסים אורגניים הלוגניים (מכילים F, Cl, Br, I) Chloroform (CHCl3) Methylene chloride Vinyl chloride Tetrafluoroethylene (CF2 =CF2) Trichloroethylene (CHCl=CCl2) Bromoethane Tert-Butyl bromide חומרים אנאורגניים (חומרים שהם לא חומצה/בסיס אנאורגני) Inorganic Materials (are not inorganic acid/base) LiCl Salts (such as MgCl2, CaCl) Hydrogen peroxide (H2O2) Metals (Cu, Pb, Na etc.) Ammonium thiocyanate (NH4SCN) Sodium Azide (NaN3) Ammonium azide (NH4N3) בסיסים אנאורגניים :Inorganic Bases NH3 NaOH NH4OH Ba(OH)2 NaOH (dissolved) Ca(OH)2 KOH (dissolved) CaCO3 KOH חומצות אנאורגניות: :Inorganic Acids Boric acid (H3BO3) Hydrochloric acid (HCl) Hydrofluoric acid (HF) Nitric acid (HNO3) Hydrobromic acid (HBr) Phosphoric acid (H3PO4) Perchloric acid (HClO4) Sulfuric acid (H2SO4) Hydroiodic acid (HI) Cytotoxic materials: