Final Copy 2020 05 12 Tatton

Total Page:16

File Type:pdf, Size:1020Kb

Final Copy 2020 05 12 Tatton This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Tatton-Brown, Oliver M W Title: Rigour, Proof and Soundness General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Rigour, Proof and Soundness By Oliver Tatton-Brown Department of Philosophy School of Arts University of Bristol A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Arts. March 2020 Word count: 79746 Abstract The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested and illustrated by considering a case study discussed in the literature. On the view put forward here one can obtain a manner of informal, rigorous mat- hematics founded on any of a variety of proof systems. The latter part of the thesis is concerned with the question of how we should decide which of these competing proof systems we should base our mathematics on: i.e., the question of which proof system we should take as a foundation for our mathematics. A novel answer to this question is proposed, in which the key property we should require of a proof system is that for as many different kinds of structures as possible, when the proof system allows a gene- ralization about that kind of structure to be proved, the generalization actually holds of all real examples of that kind of structure which exist. This is the requirement of soundness of the proof system (for each kind of structure). It is argued that the best way to establish the soundness of a proof system may be by giving an interpretation of its axioms on which they are established as true. As preparation for this discussion, the thesis first investigates the logical and conceptual basis of various arithmetic concepts, with the results obtained used in the final discussion of soundness. Dedication and Acknowledgements To Alex and Amy I would like to extend my sincere gratitude to a number of people who have made this work possible. Leon Horsten has been a wonderful guide into academic philosophy, the source of too many fascinating conversations to count, and has been admirably patient and nurturing with my various proto-ideas. Catrin Campbell-Moore has done much sterling work identifying places where the thesis was lacking in clarity or force. In a few key conversations Philip Welch has made various remarks that have contributed greatly. As well as the above, a variety of people have provided very helpful (and often very detailed) comments on my papers, including in particular Daniel Waxman, Brendan Larvor, Marcus Giaquinto, Yacin Hamami, and various anonymous referees. I am also thankful for crucial remarks from members of the audience at talks I have given, including at the FSB research seminars in Bristol, and at conferences in Sicily, London Ontario, Cambridge, and Leuven. Finally I would like to thank Mungo for being my initial companion in my first days of interest in philosophy, and Alex and Amy for their endless help and support. This work was generously funded by the AHRC, grant AH/L503939/1, via the SWWDTP. Chapter II is an edited version of Tatton-Brown (2019b), and chapter IV is an edited version of Tatton-Brown (2019a). Author’s Declaration I declare that the work in this dissertation was carried out in accordance with the requirements of the University’s Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate’s own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author. SIGNED: ........................................................ DATE: ........................................................ Contents Introduction 1 I Understanding Rigour 5 1 Questions about proof .............................. 5 2 Initial remarks on rigour ............................. 9 3 A rigorous eduction ................................ 15 4 The concept of rigour ............................... 27 5 Disagreements about validity .......................... 31 6 Naive set theory? ................................. 34 7 Formalizability .................................. 36 8 Further questions ................................. 45 9 The choice of proof systems ........................... 47 II Intuition and Permissible Actions 49 1 Alexander’s lemma ................................ 49 2 De Toffoli and Giardino’s account of proof ................... 52 3 De Toffoli and Giardino’s account of Alexander’s argument . 61 4 The “legitimate operations” ........................... 64 5 Termination of the process ............................ 74 III Rigour, Pictures and Knot Theory 79 1 Rigorous use of pictures I ............................ 80 2 Jones’s argument ................................. 85 3 Definitions ..................................... 90 4 Structure of the argument ............................ 92 5 “Short stretches”? ................................ 95 6 The “over the shoulder” manoeuvre . 102 7 Assessment of Jones’s argument . 111 8 Rigorous use of pictures II ............................112 IV Ancestrals, Primitive Recursion and Isaacson’s Thesis 117 1 The thesis .....................................120 2 The argument ...................................122 ix CONTENTS 3 The ancestral and the double ancestral . 123 4 Primitive recursion and the double ancestral . 129 5 Double ancestral arithmetic . 133 V Ancestrals and plurals 137 1 Plural double ancestral logic . 138 2 Finiteness .....................................141 3 Equinumerosity ..................................143 4 Arithmetic operations ..............................148 5 Abstraction and cardinalities . 151 VI Sound Foundations 155 1 Introduction ....................................155 2 Proof, and proof .................................160 3 Interpretations of mathematics . 164 4 Realizations of mathematical concepts . 172 5 The eliminative constraint ............................194 6 Foundational goals ................................204 7 Arguing for soundness ..............................211 8 Summary .....................................234 9 Implications ....................................235 Conclusion 239 Appendices 241 A The Smooth Case of Alexander’s Lemma 243 1 The proof .....................................243 2 Smooth and periodic functions . 287 3 Smooth knots and projections . 296 B Ontologically innocent second order logic 321 C Complete ordered field structure on a continuously ordered open interval 331 D Interpreting mathematics in terms of a complete ordered field 341 Bibliography 359 x List of Figures I.1 Very basic proof example ........................... 15 I.2 Basic proof example .............................. 17 I.3 Slightly more complex proof example ..................... 19 I.4 Levels of detail ................................. 22 II.1 A knot diagram ................................. 51 II.2 A knot diagram winding around an axis ................... 52 II.3 The over the shoulder manoeuvre ....................... 63 II.4 Avoiding K with the triangle [a, b, c] ..................... 68 II.5 The result of replacing [a, b] with [a, c] ∪ [c, b] . 69 III.1 Removing squares of different colours from a chessboard . 82 III.2 The over the shoulder manoeuvre ....................... 86 III.3 The over the shoulder manoeuvre, avoiding unfixed short sections . 94 III.4 The separating hyperplane theorem . 104 III.5 A planar isotopy ................................107 III.6 More complicated planar isotopy . 107 III.7 Zooming in on a wiggly path . 109 IV.1 The “ancestor of the same generation” relation . 124 IV.2 The double ancestral of φ and ψ . 125 IV.3 Primitive recursion via the double ancestral . 131 xi Introduction A mathematical proof of a proposition is often taken to be amongst the best kinds of evidence for
Recommended publications
  • The Origins of Connectedness 1M Kleinen
    THE ORIGINS OF CONNECTEDNESS 1M KLEINEN A Dissertation {'03, Hm Degree of DH. D. MICEEGAN STATE UNIVERSWY John Michael McGrew 11976 ” ~ F 3'3} This is to certify that the thesis entitled THE ORIGINS OF CONNECTEDNESS IM KLE INEN presented by John Michael McGrew has been accepted towards fulfillment of the requirements for Ph.D. degree in Mathematics ......_V -r‘-—-'-..' ajor professor - . Date December 12, 1975 0-7 639 THE Th the backg r. Theorem, intermedi a and Possib 5m”? the Ch by JOIdan. and this i which math t"lentieth Stand the Ch & Conntere Etta: pted lza‘tion do 4.: “‘menSion ABSTRACT THE ORIGINS OF CONNECTEDNESS IM KLEINEN BY JOhn Michael McGrew This thesis is an eXposition of the history of the background work leading to the Hahn-Mazurkiewicz Theorem. Examples are exhibited illustrating the various intermediate concepts and their range of applicability and possible generalizations. The inter-relationship among the isolated results is demonstrated. Chapter II explores the definition of curve given by Jordan. Jordan's definition was a very general one, and this is illustrated using the pathological examples which mathematicians of the late nineteenth and early twentieth centuries discovered in their efforts to under— stand the essence of curve. Chapter III examines the characterization of curve which Schoenflies gave for subsets of the plane. A counterexample is also discussed, which Brouwer attempted to produce, showing that Schoenflies' character- ization does not carry over directly to spaces of higher dimension. Chapt' Kalli, Denjoy fie boundarie discusses the to characteri :‘ieory of pri showing the e khoenflies, also included Chapt between 1914 and 1921 are ”l John Michael McGrew Chapter IV treats the work of Zoretti, Janiszewski, Nalli, Denjoy and Brouwer on irreducible continua and the boundaries of simply connected regions.
    [Show full text]
  • Topos Theory
    Topos Theory Olivia Caramello Sheaves on a site Grothendieck topologies Grothendieck toposes Basic properties of Grothendieck toposes Subobject lattices Topos Theory Balancedness The epi-mono factorization Lectures 7-14: Sheaves on a site The closure operation on subobjects Monomorphisms and epimorphisms Exponentials Olivia Caramello The subobject classifier Local operators For further reading Topos Theory Sieves Olivia Caramello In order to ‘categorify’ the notion of sheaf of a topological space, Sheaves on a site Grothendieck the first step is to introduce an abstract notion of covering (of an topologies Grothendieck object by a family of arrows to it) in a category. toposes Basic properties Definition of Grothendieck toposes Subobject lattices • Given a category C and an object c 2 Ob(C), a presieve P in Balancedness C on c is a collection of arrows in C with codomain c. The epi-mono factorization The closure • Given a category C and an object c 2 Ob(C), a sieve S in C operation on subobjects on c is a collection of arrows in C with codomain c such that Monomorphisms and epimorphisms Exponentials The subobject f 2 S ) f ◦ g 2 S classifier Local operators whenever this composition makes sense. For further reading • We say that a sieve S is generated by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P. If S is a sieve on c and h : d ! c is any arrow to c, then h∗(S) := fg | cod(g) = d; h ◦ g 2 Sg is a sieve on d.
    [Show full text]
  • The Freyd-Mitchell Embedding Theorem States the Existence of a Ring R and an Exact Full Embedding a Ñ R-Mod, R-Mod Being the Category of Left Modules Over R
    The Freyd-Mitchell Embedding Theorem Arnold Tan Junhan Michaelmas 2018 Mini Projects: Homological Algebra arXiv:1901.08591v1 [math.CT] 23 Jan 2019 University of Oxford MFoCS Homological Algebra Contents 1 Abstract 1 2 Basics on abelian categories 1 3 Additives and representables 6 4 A special case of Freyd-Mitchell 10 5 Functor categories 12 6 Injective Envelopes 14 7 The Embedding Theorem 18 1 Abstract Given a small abelian category A, the Freyd-Mitchell embedding theorem states the existence of a ring R and an exact full embedding A Ñ R-Mod, R-Mod being the category of left modules over R. This theorem is useful as it allows one to prove general results about abelian categories within the context of R-modules. The goal of this report is to flesh out the proof of the embedding theorem. We shall follow closely the material and approach presented in Freyd (1964). This means we will encounter such concepts as projective generators, injective cogenerators, the Yoneda embedding, injective envelopes, Grothendieck categories, subcategories of mono objects and subcategories of absolutely pure objects. This approach is summarised as follows: • the functor category rA, Abs is abelian and has injective envelopes. • in fact, the same holds for the full subcategory LpAq of left-exact functors. • LpAqop has some nice properties: it is cocomplete and has a projective generator. • such a category embeds into R-Mod for some ring R. • in turn, A embeds into such a category. 2 Basics on abelian categories Fix some category C. Let us say that a monic A Ñ B is contained in another monic A1 Ñ B if there is a map A Ñ A1 making the diagram A B commute.
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Diagram Chasing in Abelian Categories
    Diagram Chasing in Abelian Categories Toni Annala Contents 1 Overview 2 2 Abelian Categories 3 2.1 Denition and basic properties . .3 2.2 Subobjects and quotient objects . .6 2.3 The image and inverse image functors . 11 2.4 Exact sequences and diagram chasing . 16 1 Chapter 1 Overview This is a short note, intended only for personal use, where I x diagram chasing in general abelian categories. I didn't want to take the Freyd-Mitchell embedding theorem for granted, and I didn't like the style of the Freyd's book on the topic. Therefore I had to do something else. As this was intended only for personal use, and as I decided to include this to the application quite late, I haven't touched anything in chapter 2. Some vague references to Freyd's book are made in the passing, they mean the book Abelian Categories by Peter Freyd. How diagram chasing is xed then? The main idea is to chase subobjects instead of elements. The sections 2.1 and 2.2 contain many standard statements about abelian categories, proved perhaps in a nonstandard way. In section 2.3 we dene the image and inverse image functors, which let us transfer subobjects via a morphism of objects. The most important theorem in this section is probably 2.3.11, which states that for a subobject U of X, and a morphism f : X ! Y , we have ff −1U = U \ imf. Some other results are useful as well, for example 2.3.2, which says that the image functor associated to a monic morphism is injective.
    [Show full text]
  • Toposes Toposes and Their Logic
    Building up to toposes Toposes and their logic Toposes James Leslie University of Edinurgh [email protected] April 2018 James Leslie Toposes Building up to toposes Toposes and their logic Overview 1 Building up to toposes Limits and colimits Exponenetiation Subobject classifiers 2 Toposes and their logic Toposes Heyting algebras James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Products Z f f1 f2 X × Y π1 π2 X Y James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Coproducts i i X 1 X + Y 2 Y f f1 f2 Z James Leslie Toposes e : E ! X is an equaliser if for any commuting diagram f Z h X Y g there is a unique h such that triangle commutes: f E e X Y g h h Z Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Equalisers Suppose we have the following commutative diagram: f E e X Y g James Leslie Toposes Limits and colimits Building up to toposes Exponenetiation Toposes and their logic Subobject classifiers Equalisers Suppose we have the following commutative diagram: f E e X Y g e : E ! X is an equaliser if for any commuting diagram f Z h X Y g there is a unique h such that triangle commutes: f E e X Y g h h Z James Leslie Toposes The following is an equaliser diagram: f ker G i G H 0 Given a k such that following commutes: f K k G H ker G i G 0 k k K k : K ! ker(G), k(g) = k(g).
    [Show full text]
  • Weekly Homework 10
    Weekly Homework 10 Instructor: David Carchedi Topos Theory July 12, 2013 July 12, 2013 Problem 1. Epimorphisms and Monomorphisms in a Topos Let E be a topos. (a) Let m : A ! B be a monomorphism in E ; and let φm : B ! Ω be a map to the subobject classifier of E classifying m; and similarly denote by φB the map classifying the maximal subobject of B (i.e. idB). Denote by m0 : E = lim (B Ω) ! B − ⇒ 0 the equalizer diagram for φm and φB: Show that m and m represent the same subobject of B. Deduce that a morphism in a topos is an isomorphism if and only if it is both a monomorphism and an epimorphism. (b) Let f : X ! Y be a map of sets. Denote by X ×Y X ⇒ X the kernel pair of f and by a Y ⇒ Y Y X the cokernel pair of f: Show that the coequalizer of the kernel pair and the equalizer of the cokernel pair both coincide with the the set f (X) : Deduce that for f : X ! Y a map in E ; ! a X ! lim Y Y Y ! Y − ⇒ X and X ! lim (X × X X) ! Y −! Y ⇒ are both factorizations of f by an epimorphism follows by a monomorphism. (c) Show that the factorization of a morphism f in E into an epimorphism followed by a monomorphism is unique up to isomorphism. Deduce that f : X ! Y is an epimor- phism, if and only if the canonical map lim (X × X X) ! Y − Y ⇒ is an isomorphism.
    [Show full text]
  • Topos Theory
    Topos Theory Olivia Caramello Local operators For further reading Topos Theory Lecture 11: Local operators Olivia Caramello Topos Theory The concept of local operator Olivia Caramello Local operators For further Definition reading • Let E be a topos, with subobject classifier > : 1 ! Ω.A local operator (or Lawvere-Tierney topology) on E is an arrow j :Ω ! Ω in E such that the diagrams ^ 1 Ω Ω × Ω / Ω > j > j j×j j Ω / ΩΩ / ΩΩ × Ω / Ω j j ^ commute (where ^ :Ω × Ω ! Ω is the meet operation of the internal Heyting algebra Ω). • Let E be an elementary topos. A universal closure operation on E is a closure operation c on subobjects which commutes with pullback (= intersection) of subobjects. 2 / 6 Topos Theory Universal closure operations I Olivia Caramello Local operators For further reading Definition Let c be a universal closure operation on an elementary topos E . • A subobject m : a0 ! a in E is said to be c-dense if c(m) = ida, and c-closed if c(m) = m. • An object a of E is said to be a c-sheaf if whenever we have a diagram f 0 b0 / a m b where m is a c-dense subobject, there exists exactly one arrow f : b ! a such that f ◦ m = f 0. • The full subcategory of E on the objects which are c-sheaves will be denoted by shc(E ). 3 / 6 Topos Theory Universal closure operations II Olivia Caramello Local operators For further reading Theorem For any elementary topos E , there is a bijection between universal closure operations on E and local operators on E .
    [Show full text]
  • Category Theory Course
    Category Theory Course John Baez September 3, 2019 1 Contents 1 Category Theory: 4 1.1 Definition of a Category....................... 5 1.1.1 Categories of mathematical objects............. 5 1.1.2 Categories as mathematical objects............ 6 1.2 Doing Mathematics inside a Category............... 10 1.3 Limits and Colimits.......................... 11 1.3.1 Products............................ 11 1.3.2 Coproducts.......................... 14 1.4 General Limits and Colimits..................... 15 2 Equalizers, Coequalizers, Pullbacks, and Pushouts (Week 3) 16 2.1 Equalizers............................... 16 2.2 Coequalizers.............................. 18 2.3 Pullbacks................................ 19 2.4 Pullbacks and Pushouts....................... 20 2.5 Limits for all finite diagrams.................... 21 3 Week 4 22 3.1 Mathematics Between Categories.................. 22 3.2 Natural Transformations....................... 25 4 Maps Between Categories 28 4.1 Natural Transformations....................... 28 4.1.1 Examples of natural transformations........... 28 4.2 Equivalence of Categories...................... 28 4.3 Adjunctions.............................. 29 4.3.1 What are adjunctions?.................... 29 4.3.2 Examples of Adjunctions.................. 30 4.3.3 Diagonal Functor....................... 31 5 Diagrams in a Category as Functors 33 5.1 Units and Counits of Adjunctions................. 39 6 Cartesian Closed Categories 40 6.1 Evaluation and Coevaluation in Cartesian Closed Categories. 41 6.1.1 Internalizing Composition................. 42 6.2 Elements................................ 43 7 Week 9 43 7.1 Subobjects............................... 46 8 Symmetric Monoidal Categories 50 8.1 Guest lecture by Christina Osborne................ 50 8.1.1 What is a Monoidal Category?............... 50 8.1.2 Going back to the definition of a symmetric monoidal category.............................. 53 2 9 Week 10 54 9.1 The subobject classifier in Graph.................
    [Show full text]
  • ELEMENTARY TOPOI: SETS, GENERALIZED Contents 1. Categorical Basics 1 2. Subobject Classifiers 6 3. Exponentials 7 4. Elementary
    ELEMENTARY TOPOI: SETS, GENERALIZED CHRISTOPHER HENDERSON Abstract. An elementary topos is a nice way to generalize the notion of sets using categorical language. If we restrict our world to categories which satisfy a few simple requirements we can discuss and prove properties of sets without ever using the word \set." This paper will give a short background of category theory in order to prove some interesting properties about topoi. Contents 1. Categorical Basics 1 2. Subobject Classifiers 6 3. Exponentials 7 4. Elementary Topoi 9 5. Lattices and Heyting Algebras 10 6. Factorizing Arrows 12 7. Slice Categories as Topoi 13 8. Lattice Objects and Heyting Algebra Objects 17 9. Well-Pointed Topoi 22 10. Concluding Remarks 22 Acknowledgments 23 References 23 1. Categorical Basics Definition 1.1. A category, C is made up of: • Objects: A; B; C; : : : • Morphisms: f; g; h; : : : This is a generalization of \functions" between objects. If f is a mor- phism in a category C then there are objects A; B in C such that f is a morphism from A to B, as below. We call A = dom(f) (the \domain") and B = cod(f) (the \codomain"). f A / B Date: August 5, 2009. 1 2 CHRISTOPHER HENDERSON If we have morphisms f : A ! B and g : B ! C then there exists an arrow h : A ! C such that the following diagram commutes: f A / B @@ @@ g h @@ @ C Here we are only asserting some rule of composition. We denote h = g ◦ f. This rule of composition must satisfy associativity, so that for f : A ! B; g : B ! C; h : C ! D, we have that: h ◦ (g ◦ f) = (h ◦ g) ◦ f Lastly, for every object A in C, there is a morphism idA : A ! A such that for any other morphisms g : A ! B and h : B ! A, we have that: g = g ◦ idA; h = idA ◦ h Remark 1.2.
    [Show full text]
  • Category Theory
    Category theory Helen Broome and Heather Macbeth Supervisor: Andre Nies June 2009 1 Introduction The contrast between set theory and categories is instructive for the different motivations they provide. Set theory says encouragingly that it’s what’s inside that counts. By contrast, category theory proclaims that it’s what you do that really matters. Category theory is the study of mathematical structures by means of the re- lationships between them. It provides a framework for considering the diverse contents of mathematics from the logical to the topological. Consequently we present numerous examples to explicate and contextualize the abstract notions in category theory. Category theory was developed by Saunders Mac Lane and Samuel Eilenberg in the 1940s. Initially it was associated with algebraic topology and geometry and proved particularly fertile for the Grothendieck school. In recent years category theory has been associated with areas as diverse as computability, algebra and quantum mechanics. Sections 2 to 3 outline the basic grammar of category theory. The major refer- ence is the expository essay [Sch01]. Sections 4 to 8 deal with toposes, a family of categories which permit a large number of useful constructions. The primary references are the general category theory book [Bar90] and the more specialised book on topoi, [Mac82]. Before defining a topos we expand on the discussion of limits above and describe exponential objects and the subobject classifier. Once the notion of a topos is established we look at some constructions possible in a topos: in particular, the ability to construct an integer and rational object from a natural number object.
    [Show full text]