Toughness and Hamiltonicity in Random Apollonian Networks

Total Page:16

File Type:pdf, Size:1020Kb

Toughness and Hamiltonicity in Random Apollonian Networks Toughness and Hamiltonicity in Random Apollonian Networks Lilian Markenzon ∗ NCE - Universidade Federal do Rio de Janeiro [email protected] Christina F. E. M. Waga IME - Universidade do Estado do Rio de Janeiro [email protected] Abstract In this paper we study the toughness of Random Apollonian Net- works (RANs), a random graph model which generates planar graphs with power-law properties. We consider their important characteristics: every RAN is a uniquely representable chordal graph and a planar 3-tree and as so, known results about these classes can be particularized. We establish a partition of the class in eight nontrivial subclasses and for each one of these subclasses we provide bounds for the toughness of their elements. We also study the hamiltonicity of the elements of these subclasses. Keywords: randon Apollonian network, planar k-tree, clique-tree, tough- ness, hamiltonicity 1 Introduction Over the last few years, the ever growing interest in social networks, the Web arXiv:2002.09244v1 [math.CO] 21 Feb 2020 graph, biological networks, etc., led to a great deal of research being built around modelling real world networks. In 2005, Andrade et al. [1] introduced Apollo- nian networks (AN s), inspired by Apollonian packings [12], that proved to be an interesting tool for modeling real networked systems. These networks can be produced as follows: start with a triangle and then at each iteration, inside each triangle, a vertex is added and linked to the three vertices. Apollonian networks are scale-free, display the small-world effect and have a power-law de- gree distribution. Generalizing ANs, the Random Apollonian Networks (RAN s) were introduced by Zhou et al. [22]; in this case, at each iteration of a RAN a ∗Partially supported by grant 304706/2017-5, CNPq, Brazil. triangle is randomly selected. Some problems have been solved for these classes. For instance, an exact analytical expression for the number of spanning trees in ANs was achieved by Zhang et al. [21]; the degree distribution, k largest degrees and k largest eigenvalues (for a fixed k) and the diameter of RANs were studied in Frieze and Tsourakakis [8]; Ebrahimzadeh et al. [7] follow this line of research by studying the asymptotic properties of the longest paths and pre- senting sharp estimates for the diameter of a RAN. Others papers had employed a non-deterministic concept. In this paper we focus in a different approach. Considering the equivalence between RAN s and the planar 3-trees ( i.e., the maximal chordal planar graphs [15]) we analyse vulnerability properties of the networks, based on their clique- trees. The toughness of a graph is an important invariant introduced in 1973 by Chv´atal [6] that deals with the vulnerability of a graph. Let the number of components of a graph G = (V, E) be denoted by ω(G). A graph G is t-tough if |S|≥ tω(G − S) for every subset S ⊆ V with ω(G − S) > 1. The toughness of G, denoted τ(G), is the maximum value of t for which G is t-tough (taking τ(Kn)= ∞, n ≥ 1). In other words, the toughness relates the size of a separa- tor with the number of components obtained after deleting it. It is important to highlight that the toughness can be directly related to the hamiltonicity of the graph. Chv´atal [6] has established that every Hamiltonian graph is 1-tough, but 1-toughness does not ensure hamiltonicity. He has also conjectured that there exists a t such that every t-tough graph is Hamiltonian. Some papers prove Chv´atal’s conjecture for different graph classes: τ(G) ≥ 3/2 for a split graph [13], τ(G) > 1 for planar chordal graphs [4], τ(G) ≥ 3/2 for spider graphs [11] and τ(G) ≥ 1 for strictly chordal graphs [18]. In particular for k-trees, Broersma et al. [5] presented important results, showing that if G is a k-tree, k ≥ 2, with toughness at least (k + 1)/3, then G is Hamiltonian. For k = 2, they prove that every 1-tough 2-tree on at least three vertices is Hamiltonian. Kabela [10] has improved this result, showing that every k-tree (except for K2) with toughness greather than k/3 is Hamiltonian. In this paper we study the toughness of Random Apollonian Networks based on their characteristics: every RAN is a uniquely representable chordal graph and, as so, it has a unique clique-tree; every RAN is a planar 3-tree and the results of B¨ohme et al. [4] and Broersma et al. [5] can be particularized. We establish a partition of the class in eight nontrivial subclasses reliant on the structure of the clique-tree, and for each one of these subclasses we provide bounds for the toughness of their elements. We also study the hamiltonicity of the elements of these subclasses. Some well-known graphs, as the Goldner-Harary graph and the Nishizeki’s example of a non-Hamiltonian maximal planar graph [19], fall in one of the defined subclasses. 2 2 Background Let G = (V, E), be a connected graph, where |V | = n and |E| = m. The set of neighbors of a vertex v ∈ V is denoted by N(v) = {w ∈ V ; {v, w} ∈ E}. The degree of a vertex v ∈ V is d(v) = |N(v)|. For any S ⊆ V , the subgraph of G induced by S is denoted G[S]. If G[S] is a complete graph then S is a clique in G. A vertex v ∈ V is said to be simplicial in G when N(v) is a clique in G. The set of simplicial vertices of G is denoted by SI. The graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there is a bijective function f : V → V ′ such that for all v, w ∈ V, {v, w} ∈ E if and only if {f(v),f(w)} ∈ E′, i.e, f preserves adjacency. Basic concepts about chordal graphs are assumed to be known and can be found in Blair and Peyton [3] and Golumbic [9]. In this section, the most pertinent concepts are reviewed. A subset S ⊂ V is a separator of G if at least two vertices in the same connected component of G are in two distinct connected components of G[V \ S]. Let G = (V, E) be a chordal graph and u, v ∈ V . A subset S ⊂ V is a vertex separator for non-adjacent vertices u and v (a uv-separator) if the removal of S from the graph separates u and v into distinct connected components. If no proper subset of S is a uv-separator then S is a minimal uv-separator. When the pair of vertices remains unspecified, we refer to S as a minimal vertex separator (mvs). The set of minimal vertex separators is denoted by S. The clique-intersection graph of a graph G is the connected weighted graph whose vertices are the maximal cliques of G and whose edges connect vertices corresponding to non-disjoint maximal cliques. Each edge is assigned an inte- ger weight, given by the cardinality of the intersection between the maximal cliques represented by its endpoints. Every maximum-weight spanning tree of the clique-intersection graph of G is called a clique-tree of G. The set of max- imal cliques of G is denoted by Q. A clique-tree of G represents the graph G. Clique-trees satisfy the induced subtree property (ISP): Q(v) induces a subtree of the clique-tree T of G where Q(v) is the set of maximal cliques containing the vertex v ∈ V . Observe that each maximal clique Q ∈ Q is related to a vertex q of the clique-tree T of G. A simplicial clique is a maximal clique containing at least one simplicial vertex. For a chordal graph G and a clique-tree T of G, a set S ⊂ V is a mvs of G if and only if S = Q ∩ Q′ for some edge {Q,Q′} in T . Moreover, the multiset M of the minimal vertex separators of G is the same for every clique-tree of G. The multiplicity of the minimal vertex separator S, denoted by µ(S), is the number of times that S appears in M. The determination of the minimal vertex separators and their multiplicities can be performed in linear time [16]. A k-regular tree is a tree in which every vertex that is not a leaf has degree k. 3 3 Some subclasses of chordal graphs In this paper we deal with some subclasses of chordal graphs which are now reviewed. A chordal graph is called a uniquely representable chordal graph [14] (briefly ur-chordal graph) if it has exactly one clique-tree. Theorem 1 [14] Let G be a chordal graph. Then, G is uniquely representable if and only if there is no proper containment between any minimal vertex sepa- rators and all minimal vertex separators are of multiplicity one. A k-tree, k> 0, firstly presented in [20], can be inductively defined as follows: 1. Every complete graph with k + 1 vertices is a k-tree. 2. If G = (V, E) is a k-tree, v∈ / V and S ⊆ V is a k-clique of G, then G′ = (V ∪{v}, E ∪{{v, w} | w ∈ S}) is also a k-tree. 3. Nothing else is a k-tree. Two subclasses of k-trees are the simple-clique k-trees (SC k-trees) and the k- path graphs [15]. A SC k-tree, k > 0, is a uniquely representable k-tree. A complete graph on k + 1 vertices is a k-path graph, k > 0; if n > k + 1, G is a k-path graph if and only if G has exactly two simplicial vertices.
Recommended publications
  • The Number of Spanning Trees in Apollonian Networks
    The Number of Spanning Trees in Apollonian Networks Zhongzhi Zhang, Bin Wu School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China ([email protected]). Francesc Comellas Dep. Matem`atica Aplicada IV, EETAC, Universitat Polit`ecnica de Catalunya, c/ Esteve Terradas 5, Castelldefels (Barcelona), Catalonia, Spain ([email protected]). Abstract In this paper we find an exact analytical expression for the number of span- ning trees in Apollonian networks. This parameter can be related to signif- icant topological and dynamic properties of the networks, including perco- lation, epidemic spreading, synchronization, and random walks. As Apol- lonian networks constitute an interesting family of maximal planar graphs which are simultaneously small-world, scale-free, Euclidean and space fill- ing, modular and highly clustered, the study of their spanning trees is of particular relevance. Our results allow also the calculation of the spanning tree entropy of Apollonian networks, which we compare with those of other graphs with the same average degree. Key words: Apollonian networks, spanning trees, small-world graphs, complex networks, self-similar, maximally planar, scale-free 1. Apollonian networks In the process known as Apollonian packing [9], which dates back to Apollonius of Perga (c262{c190 BC), we start with three mutually tangent circles, and draw their inner Soddy circle (tangent to the three circles). Next we draw the inner Soddy circles of this circle with each pair of the original three, and the process is iterated, see Fig. 1. An Apollonian packing can be used to design a graph, when each circle is associated to a vertex of the graph and vertices are connected if their corresponding circles are tangent.
    [Show full text]
  • Dynamic Phenomena on Complex Networks Luca Dall’Asta
    Dynamic Phenomena on Complex Networks Luca Dall’Asta To cite this version: Luca Dall’Asta. Dynamic Phenomena on Complex Networks. Data Analysis, Statistics and Probabil- ity [physics.data-an]. Université Paris Sud - Paris XI, 2006. English. tel-00093102 HAL Id: tel-00093102 https://tel.archives-ouvertes.fr/tel-00093102 Submitted on 12 Sep 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE` DE PARIS 11 - U.F.R. DES SCIENCES D’ORSAY Laboratoire de Physique Theorique´ d’Orsay THESE` DE DOCTORAT DE L’UNIVERSITE´ PARIS 11 Sp´ecialit´e: PHYSIQUE THEORIQUE´ pr´esent´epar Luca DALL’ASTA pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ PARIS 11 Sujet: Ph´enom`enes dynamiques sur des r´eseaux complexes Jury compos´ede: M. Alain Barrat (Directeur de th`ese) M. Olivier Martin M. R´emi Monasson M. Romualdo Pastor-Satorras (Rapporteur) M. Cl´ement Sire (Rapporteur) M. Alessandro Vespignani Juin, 2006 Contents List of Publications iv 1 Introduction 1 1.1 A networked description of Nature and Society . ............. 1 1.2 RelationbetweenTopologyandDynamics . ........... 3 1.3 Summaryofthethesis .............................. ...... 4 2 Structure of complex networks: an Overview 7 2.1 Introduction...................................
    [Show full text]
  • Stefan Felsnery Institut FUrmathematik Technische UniversitAtberlin
    4-Connected Triangulations on Few Lines£ Stefan Felsnery Institut furMathematik Technische UniversitatBerlin Abstract. We show that every 4-connected plane triangulation with n vertices can be drawn suchp that edges are represented by straight segments and the vertices lie on a set of at most 2n lines each of them horizontal or vertical. The same holds for plane graphs on n vertices without separating triangle. The proof is based on a corresponding result for diagrams of planar lattices which makes use of orthogonal chain and antichain families. 1 Introduction Given a planar graph G we denote by π(G) the minimum number ` such that G has a plane straight-line drawing in which the vertices can be covered by a collection of ` lines. Clearly π(G) = 1 if and only if G is a forest of paths. The set of graphs with π(G) = 2, however, is already surprisingly rich, it contains trees, outerplanar graphs and subgraphs of grids [1, 9]. The parameter π(G) has received some attention in recent years, here is a list of known results: It is NP-complete to decide whether π(G) = 2 (Biedl et al. [2]). For a stacked triangulation G, a.k.a. planar 3-tree or Apollonian network, let dG be the stacking depth (e.g. K4 has stacking depth 1). On this class lower and upper bounds on π(G) are dG + 1 and dG + 2 respectively, see Biedl et al. [2] and for the lower bound also Eppstein [8, Thm. 16.13]. 3 Eppstein [9] constructed a planar, cubic, 3-connected, bipartite graph G` on O(` ) ver- tices with π(G`) `.
    [Show full text]
  • Building a Larger Class of Graphs for Efficient Reconfiguration
    Building a larger class of graphs for efficient reconfiguration of vertex colouring by Owen Merkel A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2020 c Owen Merkel 2020 This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions Owen Merkel is the sole author of Chapters 1, 2, 3, and 6 which were written under the supervision of Prof. Therese Biedl and Prof. Anna Lubiw and were not written for publication. Exceptions to sole authorship are Chapters 4 and 5, which is joint work with Prof. Therese Biedl and Prof. Anna Lubiw and consists in part of a manuscript written for publication. iii Abstract A k-colouring of a graph G is an assignment of at most k colours to the vertices of G so that adjacent vertices are assigned different colours. The reconfiguration graph of the k-colourings, Rk(G), is the graph whose vertices are the k-colourings of G and two colourings are joined by an edge in Rk(G) if they differ in colour on exactly one vertex. For a k-colourable graph G, we investigate the connectivity and diameter of Rk+1(G). It is known that not all weakly chordal graphs have the property that Rk+1(G) is connected.
    [Show full text]
  • Some Properties of Random Apollonian Networks
    Some Properties of Random Apollonian Networks Alan Frieze, Charalampos E. Tsourakakis Department of Mathematical Sciences, Carnegie Mellon University, USA [email protected], [email protected] Abstract. In this work we analyze fundamental properties of Random Apollonian Networks [37,38], a popular random graph model which generates planar graphs with power law properties. Specifically, we analyze (a) the degree distribution, (b) the k largest degrees, (c) the k largest eigenvalues and (d) the diameter, where k is a constant. 1 Introduction Due to the surge of interest in social networks, the Web graph, the Internet, biological networks and many other types of networks, a large amount of research has focused on modeling real-world networks in recent years. Existing well-known models include the preferential attachment model [7], Kronecker graphs [31], the Cooper-Frieze model [17], the Aiello-Chung-Lu model [1], protean graphs [34] and the Fabrikant- Koutsoupias-Papadimitriou model [23]. Despite the fact that the family of planar graphs is a particularly important family of graphs [29] and models important real-world graphs such as road networks, there exists few generators of real-world planar graphs. In this work we focus on Random Apollonian Networks (RANs), a popular random graph model for generating planar graphs with power law properties [38]. Before we state our main results we briefly describe the model. Model: An example of a RAN is shown in Figure 1. At time t = 1 the RAN is shown in Figure 1a. At each step t ≥ 2 a face F is chosen uniformly at random among the faces of Gt.
    [Show full text]
  • Networks and Fractals Bsc Thesis
    Budapest University of Technology and Economics Institute of Mathematics Department of Stochastics Networks and fractals BSc Thesis Roland Molontay Supervisors: Dr. J´uliaKomj´athy Postdoctoral Research Fellow, Eindhoven University of Technol- ogy Prof. K´arolySimon Professor of Mathematics, Head of Department of Stochastics, Budapest University of Technology and Economics 2013 Contents Preface 2 Acknowledgements 3 1 Introduction 4 1.1 Historical overview . .4 1.2 Real networks and their fascinating features . .5 1.3 Structure of the thesis . .9 2 Mathematical modeling of complex networks 12 2.1 Notation . 12 2.2 Properties of real networks . 15 2.3 Preferential Attachment Model . 16 2.4 Apollonian networks . 18 2.4.1 Deterministic Apollonian Network . 18 2.4.2 Random Apollonian Network . 20 2.4.3 Evolutionary Apollonian Network . 21 2.5 Hierarchical graph sequence model . 23 2.5.1 Properties of the graph sequence . 24 3 Self-similarity and fractality of complex networks 27 3.1 Box-counting and renormalization . 27 3.2 Other definitions for network dimension . 29 4 Modified box dimension of the hierarchical graph sequence model 31 4.1 Proof of the lower bound . 32 4.2 Proof of the upper bound . 36 5 Summary 39 Bibliography 42 1 Preface My thesis was written based on the following thesis topic: Frakt´alok´esh´al´ozatok Az elm´ult´evekben egyre nagyobb figyelem ir´anyul a h´alzatokelm´elet´ere. A t´emadr. Simon K´aroly, dr. Komj´athy J´ulia´esV´ag´oLajos jelenleg is zajl´o kutat´asaihozkapcsol´odik. A hallgat´omegismerkedik a h´al´ozatelm´eletleg- fontosabb fogalmaival, ´attekint´estad n´eh´any fontos h´al´ozatmodellr´ol.K¨or¨ul- j´arjaa frakt´alokelm´elet´et,illetve h´al´ozatokkal val´okapcsolat´at.
    [Show full text]
  • 1. Relevant Standard Graph Theory
    Color identical pairs in 4-chromatic graphs Asbjørn Brændeland I argue that, given a 4-chromatic graph G and a pair of vertices {u, v} in G, if the color of u equals the color of v in every 4-coloring of G then there is no planar supergraph of G where u and v are adjacent. This is equivalent to the graph theoretical version of the Four Color Theorem, which says that every planar graph is 4-colorable. My argument focuses on the coloring constraint mechanisms that produce color identical pairs (e.g., {u, v}), and how these mechanisms affect the adjaceability of such pairs. Section 1 gives the relevant graph theoretical definitions, section 2 addresses adjaceability of vertices in planar graphs, section 3 explains color identical pairs, section 4 addresses coloring constraints, and section 5 gives the conclusive argument. 1. Relevant standard graph theory A graph G is an ordered pair (V(G), E(G)) where V(G) is a set of vertices and E(G) is a set of edges. If u and v are vertices in V(G) and uv is and edge in E(G), we say that u and v are adjacent, and that u and v are the end vertices of uv. Given two graphs G and H, if V(H) V(G) and E(H) E(G) then H is a subgraph of G and G is a supergraph of H. A path is a graph with an ordered set of vertices (v , …, v ) where for k < n, v and v are adjacent.
    [Show full text]
  • General Model for Apollonian Networks After T Gen- D New (D + 1)-Cliques with I As One Vertex of Them
    General model for Apollonian networks Zhongzhi Zhang∗ and Lili Rong† Institute of Systems Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116023, Liaoning, China (Dated: November 23, 2018) We introduce a general deterministic model for Apollonian Networks in an iterative fashion. The networks have small-world effect and scale-free topology. We calculate the exact results for the degree exponent, the clustering coefficient and the diameter. The major points of our results indicate that (a) the degree exponent can be adjusted in a wide range, (b) the clustering coefficient of each individual vertex is inversely proportional to its degree and the average clustering coefficient of all vertices approaches to a nonzero value in the infinite network order, and (c) the diameter grows logarithmically with the number of network vertices. PACS numbers: 02.10.Ox, 89.75.Hc, 89.75.Da, 89.20.Hh I. INTRODUCTION nian networks. In an iterative way we propose a general model for Apollonian networks by including a parame- In the past few years we have witnessed an upsurge in ter. Apollonian networks [18, 19, 20] are special cases of the research of a wide range of complex systems which the present model. The deterministic construction of our can be described in terms of networks——vertices con- model enables one to obtain the analytic solution for the nected together by edges [1, 2, 3, 4]. Various empirical degree distribution, clustering coefficient and the diame- studies have shown that most real-life systems exhibit the ter. Moreover, by tuning the parameter, we can obtain following three properties: power-law degree distribution scale-free networks with a variety of degree exponents [5], high clustering coefficient [6] and small average path and clustering coefficient.
    [Show full text]
  • Short Version Published in Electronic Notes in Discrete Mathematics
    Available online at www.sciencedirect.com Electronic Notes in Discrete Mathematics 43 (2013) 355–365 www.elsevier.com/locate/endm On the Longest Paths and the Diameter in Random Apollonian Networks 1 Ehsan Ebrahimzadeh a,2, Linda Farczadi b,3,PuGaoc,4, Abbas Mehrabian b,5, Cristiane M. Sato b,6, Nick Wormald b,d,7,8 and Jonathan Zung e,9 a Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, Canada b Department of Combinatorics and Optimization, University of Waterloo, Waterloo ON, Canada c Department of Computer Science, University of Toronto, Toronto ON, Canada d School of Mathematical Sciences, Monash University, Clayton VIC, Australia e Department of Mathematics, University of Toronto, Toronto ON, Canada Abstract We consider the following iterative construction of a random planar triangulation. Start with a triangle embedded in the plane. In each step, choose a bounded face uniformly at random, add a vertex inside that face and join it to the vertices of the face. After n − 3 steps, we obtain a random triangulated plane graph with n vertices, which is called a Random Apollonian Network (RAN). We show that asymptotically almost surely (a.a.s.) every path in a RAN has length o(n), refuting a conjecture of Frieze and Tsourakakis. We also show that a RAN always has a log 2/ log 3 path of length (2n − 5) , and that the expected length of its longest path is Ω n0.88 . Finally, we prove that a.a.s. the diameter of a RAN is asymptotic to c log n,wherec ≈ 1.668 is the solution of an explicit equation.
    [Show full text]
  • R, 44, 177 Abu-Khzam, Faisal N., 51 Agarwal, Pankaj K., 61, 190
    Cambridge University Press 978-1-108-42391-5 — Forbidden Configurations in Discrete Geometry David Eppstein Index More Information Index ∃R, 44, 177 Balko, Martin, 10 Balogh, Jozsef, 93 Abu-Khzam, Faisal N., 51 Bannister, Michael J., 151, 179, 181, Agarwal, Pankaj K., 61, 190 182 Aichholzer, Oswin, 10, 34, 131 Baran, Ilya, 60 Ailon, Nir, 59 Barnett, Vic, 129 algorithm, 33 Beck, József, 89 Alimonti, Paola, 45 betweenness, 14 Alon, Noga, 71 Bézout’s theorem, 74 alphabet, 88 binary relation, 20 Anderson, David Brent, 73 binary search, 139 Anning, Norman H., 142 binomial, 107–109 anti-symmetry, 20 binomial coefficient, 2, 107 antichain, 21, 22, 66, 123, 128, 135, bipartite graph, 168, 173–175 175, 201 bitangent, 16, 17 antimatroid, 164 Björner, Anders, 11 Apollonian network, 185, 186 Borwein, Peter, 53 Appel, Kenneth, 45 bounded obstacles, 25 approximation ratio, 45, 67, 68, 70, 71, bounding box, 198 75, 81–83, 98, 100, 118, 119, 130, Brahmagupta, 142 172, 196, 197, 209, 210 Brandenburg, Franz J., 181, 182 APX, 45, 67, 75, 119, 172, 209 Bremner, David, 136 area, 35 Brinkmann, Gunnar, 184 Arkin, Esther M., 106, 117, 118, brute force search, 44, 51, 62, 77, 172, 130 184 Aronov, Boris, 128 Bukh, Boris, 151, 157 arrangement of lines, 59, 62, 116, Burr, Michael A., 140 177–179, 191, 193 Burr, Stefan A., 54, 55 arrow symbol, 88, 90 Aurenhammer, Franz, 10 Cabello, Sergio, 184 avoids, 27–29, 31, 39, 48, 49, 52, 55, cap, 108 72, 75, 106, 119, 120, 126, 171, cap-set, 91, 92 172 Carathéodory, Constantin, 106 223 © in this web service Cambridge University
    [Show full text]
  • Degree Distribution of Random Apollonian Network Structures and Boltzmann Sampling Alexis Darrasse, Michèle Soria
    Degree distribution of random Apollonian network structures and Boltzmann sampling Alexis Darrasse, Michèle Soria To cite this version: Alexis Darrasse, Michèle Soria. Degree distribution of random Apollonian network structures and Boltzmann sampling. 2007 Conference on Analysis of Algorithms, AofA 07, Jun 2007, Juan les Pins, France. pp.313-324. hal-01184769 HAL Id: hal-01184769 https://hal.inria.fr/hal-01184769 Submitted on 17 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Degree distribution of random Apollonian network structures and Boltzmann sampling 345 One-sided Variations on Tries: Path Imbalance, Climbing, and Key Sampling 2007 Conference on Analysis of Algorithms, AofA 07 DMTCS proc. AH, 2007, 345–358 Degree distribution of random Apollonian network structures and Boltzmann sampling Alexis Darrasse and Michele` Soria LIP6 - Equipe SPIRAL, 104 avenue du president´ Kennedy, F-75016 Paris, France received 26thFeb 2007, revised 19th January 2008, accepted tommorow. Random Apollonian networks have been recently introduced for representing real graphs. In this paper we study a modified version: random Apollonian network structures (RANS), which preserve the interesting properties of real graphs and can be handled with powerful tools of random generation.
    [Show full text]
  • High Dimensional Apollonian Networks Zhongzhi Zhang, Francesc Comellas, Guillaume Fertin, Lili Rong
    High dimensional Apollonian networks Zhongzhi Zhang, Francesc Comellas, Guillaume Fertin, Lili Rong To cite this version: Zhongzhi Zhang, Francesc Comellas, Guillaume Fertin, Lili Rong. High dimensional Apollonian net- works. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2006, 39, pp.1811-1818. hal-00461776 HAL Id: hal-00461776 https://hal.archives-ouvertes.fr/hal-00461776 Submitted on 5 Mar 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High dimensional Apollonian networks Zhongzhi Zhang Institute of Systems Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China E-mail: [email protected] Francesc Comellas Dep. de Matem`atica Aplicada IV, EPSC, Universitat Polit`ecnica de Catalunya Av. Canal Ol´ımpic s/n, 08860 Castelldefels, Barcelona, Catalonia, Spain E-mail: [email protected] Guillaume Fertin LINA, Universit´e de Nantes, 2 rue de la Houssini`ere, BP 92208, 44322 Nantes Cedex 3, France E-mail: [email protected] Lili Rong Institute of Systems Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China E-mail: [email protected] Abstract. We propose a simple algorithm which produces high dimensional Apollonian networks with both small-world and scale-free characteristics.
    [Show full text]