Phylogenetic Dispersion of Host Use in a Tropical Insect Herbivore Community Author(S): George D

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Dispersion of Host Use in a Tropical Insect Herbivore Community Author(S): George D Phylogenetic Dispersion of Host Use in a Tropical Insect Herbivore Community Author(s): George D. Weiblen, Campbell O. Webb, Vojtech Novotny, Yves Basset, Scott E. Miller Source: Ecology, Vol. 87, No. 7, Supplement: Phylogenetic Approaches to Community Ecology (Jul., 2006), pp. S62-S75 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/20069157 . Accessed: 04/10/2011 18:23 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org Ecology, 87(7) Supplement, 2006, pp. S62-S75 ? 2006 by the Ecological Society of America phylogenetic dispersion of host use in a tropical insect herbivore community and George D. Weiblen,1'6 Campbell O. Webb,2,7 Vojtech Novotny,3 Yves Basset,4 Scott E. Miller5 1Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108 USA 2Section of Evolution and Ecology, University of California, Davis, California 95616 USA 3Institute of Entomology, Czech Academy of Sciences and Biological Faculty, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic ^Smithsonian Tropical Research Institute, Balboa, Ancon, Panama 5National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012 USA to Abstract. Theory has long predicted that insect community structure should be related host plant phylogeny. We examined the distribution of insect herbivore associations with respect to host plant phylogeny for caterpillars (Lepidoptera), beetles (Cole?ptera), and in a New rain forest. We collected grasshoppers and relatives (orthopteroids) Guinea more herbivores from three lineages of closely related woody plants and from distantly related scale at host plant lineages in the same locality to examine the phylogenetic which specificity can be detected in a community sample. By grafting molecular phylogenies inferred from three different genes into a supertree, we developed a phylogenetic hypothesis for the host community. Feeding experiments were performed on more than 100 000 live insects collected from the 62 use to the As host species. We examined patterns of host with respect host plant phylogeny. we a between faunal defined as the predicted, found negative relationship similarity, on that are the and the proportion of all herbivores feeding two hosts shared between hosts, phylogenetic distance between hosts based on DNA sequence divergence. Host phylogenetic distance explained a significant fraction of the variance (25%) in herbivore community similarity, in spite of the many ecological factors that probably influence feeding patterns. was on Herbivore community similarity among congeneric hosts high (50% average) on We confirmed this compared to overlap among host families (20-30% average). pattern using the nearest taxon index (NTI) and net relatedness index (NRI) to quantify the extent of and to test whether are phylogenetic clustering in particular herbivore associations patterns significantly different from chance expectations. We found that 40% of caterpillar species to somewhat showed significant phylogenetic clustering with respect host plant associations, as a more so than for beetles or orthopteroids. We interpret this evidence that substantial are fraction of tropical forest insect herbivores clade specialists. host Key words: community ecology; community phylogenetics; herbivory; host specialization; specificity; plant-insect interactions; phylogenetic dispersion; phylogeny; tropical rainforest. Introduction insects have tended to focus on the reconstruction of ancestral associations for particular groups (Kelley and In the era before automated DNA sequencing and Farrell or whether insect groups and that 1998) particular molecular phylogenetics, Daniel H. Janzen stated their host plants have diversified in parallel (Farrell and "the systematics and taxonomy of interactions is hope Mitter 1990, 1998). Other macroevolutionary studies less" (Janzen 1977). As robust phylogeny estimates for have examined patterns of phylogenetic conservatism in the plants and insects become available, investigating the host associations of phytophagous insects no a plant evolutionary history of their interactions is longer (Farrell 1998, Janz and Nylin 1998,Ward et al. 2003). fruitless endeavor. It is now to examine the possible com Ecologists interested in patterns of herbivore historical associations of plants and insects by compar munity structure are faced with a different set of ing molecular phylogenies for the interacting lineages questions. For example, to what extent do insects feed and Bush et al. (Becerra 1997, Weiblen 2002, Percy a on closely related host plants in particular community? host use 2004). Phylogenetic studies of by phytophagous occur How likely are host shifts to between divergent to host lineages? Few studies have attempted integrate Manuscript received 24 January 2005; revised 20 June 2005; the knowledge of phylogeny in the study of community 23 June 2005. Editor: A. A. accepted Corresponding Agrawal. structure (Connor et al. 1980, Strong et al. 1984, For reprints of this Special Issue, see footnote 1, p. SI. 6 Marquis 1991, Losos 1996, Odegaard 2003, Odegaard E-mail: [email protected] 7 et al. Concern over the lack of statistical Present affiliation: Arnold Arboretum of Harvard Uni 2005). led and Southwood versity. independence among species Kelly S62 July 2006 PHYLOGENY OF HOST ASSOCIATIONS S63 (1999) to control for phylogenetic effects in demonstrat integrated across three genes and rate-smoothed across ing that host plant abundance can predict herbivore the community phylogeny using penalized likelihood. If species richness in the temperate forest of Britain. But herbivores tend to feed on closely related plants more more can still be learned from phylogeny. The members than on distantly related plants, as we expect, then are of any biotic community related in some fashion, faunal similarity should decline with increasing phylo can and insights be gained by examining ecological genetic distance between host species. patterns with respect to patterns of descent from Indices of phylogenetic dispersion that incorporate common ancestors. null models can be especially useful as quantitative tests The incorporation of phylogenetic knowledge in of host specificity in community samples. We used the ecological studies can inform our understanding of nearest taxon index (NTI) and net relatedness index community structure (Webb et al. 2002) and of evolu (NRI) to quantify the extent of phylogenetic clustering on tionary constraints the distribution of traits in in particular herbivore associations and to test whether ecological communities (Chazdon et al. 2003). A useful patterns are significantly different from chance expect approach is to apply clustering indices to the phyloge ations (Webb 2000, Webb et al. 2002). These indices a netic distribution of species that belong to particular measure the mean phylogenetic distance between plants a community sample drawn from larger species pool that share a particular herbivore, relative to the mean (Futuyma and Gould 1979, Webb 2000). Such indices and standard deviation of herbivore associations ran were first applied to the distribution of phytophagous domly distributed on the phylogeny, as obtained by insects across a host in order to plant phylogeny quantify multiple iteration. The NRI measures the average diet breadth (Symons and Beccaloni 1999, Beccaloni and distance between all plants that share an herbivore studies of diet to Symons 2000). Early breadth failed species (i.e., the extent of overall clustering), while the the consider phylogenetic nonequivalence of taxonomic NTI measures the average minimal distance between ranks families and and the (e.g. orders), phylogenetic plants that share an herbivore species (i.e., the extent of index and the clade in diversity dispersion index, terminal clustering). particular, were proposed to address this problem Methods (Symons and Beccaloni 1999). However, these indices measured relatedness in terms of the branching order, Community ecology not branch lengths, of phylogenies. Branch lengths are Leaf-chewing insects were collected from 62 plant especially critical for studies of phylogenetic dispersion in species representing 41 genera and 18 families communities with an uneven distribution of (Table 1). ecological was Sampling effort equalized across all host plants to closely related and distantly related species (Cavender provide quantitative estimates of herbivore relative Bares et al. 2004). Consider lowland tropical rain forest abundance. Parataxonomists and village collectors tree communities, for example, which are often domi surveyed 1500 m2 of foliage over nearly 1600 field-days nated by a relatively small number of highly species-rich and >6 X 104 tree inspections. Live insects were genera and families (Novotny et al. 2002). In such cases, subjected to feeding trials with fresh foliage of the plant narrow host specificity of herbivores has been invoked
Recommended publications
  • Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009
    Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Fauna Conservation Department Kadoorie Farm & Botanic Garden 29 June 2010 Kadoorie Farm and Botanic Garden Publication Series: No 6 Fung Yuen SSSI & Butterfly Reserve moth survey 2009 Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Executive Summary The objective of this survey was to generate a moth species list for the Butterfly Reserve and Site of Special Scientific Interest [SSSI] at Fung Yuen, Tai Po, Hong Kong. The survey came about following a request from Tai Po Environmental Association. Recording, using ultraviolet light sources and live traps in four sub-sites, took place on the evenings of 24 April and 16 October 2009. In total, 825 moths representing 352 species were recorded. Of the species recorded, 3 meet IUCN Red List criteria for threatened species in one of the three main categories “Critically Endangered” (one species), “Endangered” (one species) and “Vulnerable” (one species” and a further 13 species meet “Near Threatened” criteria. Twelve of the species recorded are currently only known from Hong Kong, all are within one of the four IUCN threatened or near threatened categories listed. Seven species are recorded from Hong Kong for the first time. The moth assemblages recorded are typical of human disturbed forest, feng shui woods and orchards, with a relatively low Geometridae component, and includes a small number of species normally associated with agriculture and open habitats that were found in the SSSI site. Comparisons showed that each sub-site had a substantially different assemblage of species, thus the site as a whole should retain the mosaic of micro-habitats in order to maintain the high moth species richness observed.
    [Show full text]
  • University of Gent Faculty of Science Department Nematology Academic Year 2014-2015 BIODIVERSITY ASSESSMENT of MARINE SEDIMENTS
    University of Gent Faculty of Science Department Nematology Academic year 2014-2015 BIODIVERSITY ASSESSMENT OF MARINE SEDIMENTS THROUGH DNA BARCODING Xorla Kanfra Promoter: Dr. Sofie Derycke Literature review submitted in partial Co-promoter: Dr. Katja Guilini fulfillment for a degree in Master of Supervisor: Dr. Sofie Derycke Science in Nematology Table of Contents 1 Introduction ................................................................................................................................. 1 1.1 Marine nematode biodiversity ............................................................................................. 1 1.2 Dispersal in nematodes ........................................................................................................ 2 1.3 Nematode taxonomy ............................................................................................................ 4 1.4 Taxonomy: Traditional and molecular approaches ............................................................ 5 1.5 Molecular markers for systematics and identification of marine nematodes ...................... 8 1.5.1 Nuclear genes .......................................................................................................... 9 1.5.2 Mitochondrial genes .............................................................................................. 11 1.6 The DNA barcoding approach ........................................................................................... 12 1.6.1 Application of DNA barcoding: Environmental metagenetics
    [Show full text]
  • Review of Literature
    Chapter 2: REVIEW OF LITERATURE Lepidoptera being astonishingly beautiful insects had grabbed attention long back. The systematic study of moths traces back to 18th century when Carl Linnaeus described them in ‘Systema Nature’(Linnaeus, 1758). Since then, there has been extensive research carried out on moths. Catalogue of Lepidoptera given by Hübner, in 1786 was one of the earliest detailed records of moth. In 1829, Stephens published Catalogue of Lepidoptera of Palearctic region. Boisduval (1833, 1840) studied lepidopterous fauna of Madagascar and Europe. Further, Duponchel (1844) described classification of Lepidoptera of Europe. Elaborate studies by Swinhoe (1884, 1885, 1886, 1888) were done in British India. He studied lepidoptera from Kurachee in 1884, from Bombay (Mumbai) and Deccan in 1885, Central India (Mhow) in 1886, Karachi and its neighbourhood in 1888. In 1889, he published his observations on Heterocera from India (Swinhoe, 1889). He also enlisted lepidopterans from Khasia Hills (Swinhoe, 1893). In 1890, Smith gave his contributions of Noctuid moths from temperate North America. He also revised genus Agrotis. Tams in 1924 enlisted moths from Siam. Further, in 1930 he described new African moths from collection of British Museum. In 1935, he described Samoan insects. Wiltshire in 1936 described new noctuid species from zoological collection of Dr. Z Kasab in Mangolia. In 1939, Ellison & Wiltshire described seasonal distribution of Lepidopteran fauna from Lebanon. Wiltshire (1946a and 1946b) studied new species and two new races from Iran along with some middle east migrants their phenology and ecology. Further, in 1947 he studied lepidoptera from Middle East. Viette in (1948a and 1948b) described Pacific region lepidopterans and studied male genitalia morphology.
    [Show full text]
  • Lepidoptera: Tortricidae: Tortricinae) and Evolutionary Correlates of Novel Secondary Sexual Structures
    Zootaxa 3729 (1): 001–062 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3729.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:CA0C1355-FF3E-4C67-8F48-544B2166AF2A ZOOTAXA 3729 Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures JASON J. DOMBROSKIE1,2,3 & FELIX A. H. SPERLING2 1Cornell University, Comstock Hall, Department of Entomology, Ithaca, NY, USA, 14853-2601. E-mail: [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9 3Corresponding author Magnolia Press Auckland, New Zealand Accepted by J. Brown: 2 Sept. 2013; published: 25 Oct. 2013 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 JASON J. DOMBROSKIE & FELIX A. H. SPERLING Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures (Zootaxa 3729) 62 pp.; 30 cm. 25 Oct. 2013 ISBN 978-1-77557-288-6 (paperback) ISBN 978-1-77557-289-3 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press 2 · Zootaxa 3729 (1) © 2013 Magnolia Press DOMBROSKIE & SPERLING Table of contents Abstract . 3 Material and methods . 6 Results . 18 Discussion . 23 Conclusions . 33 Acknowledgements . 33 Literature cited . 34 APPENDIX 1. 38 APPENDIX 2. 44 Additional References for Appendices 1 & 2 . 49 APPENDIX 3. 51 APPENDIX 4. 52 APPENDIX 5.
    [Show full text]
  • DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
    Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time.
    [Show full text]
  • In Coonoor Forest Area from Nilgiri District Tamil Nadu, India
    International Journal of Scientific Research in ___________________________ Research Paper . Biological Sciences Vol.7, Issue.3, pp.52-61, June (2020) E-ISSN: 2347-7520 DOI: https://doi.org/10.26438/ijsrbs/v7i3.5261 Preliminary study of moth (Insecta: Lepidoptera) in Coonoor forest area from Nilgiri District Tamil Nadu, India N. Moinudheen1*, Kuppusamy Sivasankaran2 1Defense Service Staff College Wellington, Coonoor, Nilgiri District, Tamil Nadu-643231 2Entomology Research Institute, Loyola College, Chennai-600 034 Corresponding Author: [email protected], Tel.: +91-6380487062 Available online at: www.isroset.org Received: 27/Apr/2020, Accepted: 06/June/ 2020, Online: 30/June/2020 Abstract: This present study was conducted at Coonoor Forestdale area during the year 2018-2019. Through this study, a total of 212 species was observed from the study area which represented 212 species from 29 families. Most of the moth species were abundance in July to August. Moths are the most vulnerable organism, with slight environmental changes. Erebidae, Crambidae and Geometridae are the most abundant families throughout the year. The Coonoor Forestdale area was showed a number of new records and seems to supporting an interesting the monotypic moth species have been recorded. This preliminary study is useful for the periodic study of moths. Keywords: Moth, Environment, Nilgiri, Coonoor I. INTRODUCTION higher altitude [9]. Thenocturnal birds, reptiles, small mammals and rodents are important predator of moths. The Western Ghats is having a rich flora, fauna wealthy The moths are consider as a biological indicator of and one of the important biodiversity hotspot area. The environmental quality[12]. In this presentstudy moths were Western Ghats southern part is called NBR (Nilgiri collected and documented from different families at Biosphere Reserve) in the three states of Tamil Nadu, Coonoor forest area in the Nilgiri District.
    [Show full text]
  • Mitochondrial Pseudogenes in Insect DNA Barcoding: Differing Points of View on the Same Issue
    Biota Neotrop., vol. 12, no. 3 Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue Luis Anderson Ribeiro Leite1,2 1Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brasil 2Corresponding author: Luis Anderson Ribeiro Leite, e-mail: [email protected] LEITE, L.A.R. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotrop. 12(3): http://www.biotaneotropica.org.br/v12n3/en/abstract?thematic-review+bn02412032012 Abstract: Molecular tools have been used in taxonomy for the purpose of identification and classification of living organisms. Among these, a short sequence of the mitochondrial DNA, popularly known as DNA barcoding, has become very popular. However, the usefulness and dependability of DNA barcodes have been recently questioned because mitochondrial pseudogenes, non-functional copies of the mitochondrial DNA incorporated into the nuclear genome, have been found in various taxa. When these paralogous sequences are amplified together with the mitochondrial DNA, they may go unnoticed and end up being analyzed as if they were orthologous sequences. In this contribution the different points of view regarding the implications of mitochondrial pseudogenes for entomology are reviewed and discussed. A discussion of the problem from a historical and conceptual perspective is presented as well as a discussion of strategies to keep these nuclear mtDNA copies out of sequence analyzes. Keywords: COI, molecular, NUMTs. LEITE, L.A.R. Pseudogenes mitocondriais no DNA barcoding em insetos: diferentes pontos de vista sobre a mesma questão.
    [Show full text]
  • Supporting Information
    Supporting Information Craft et al. 10.1073/pnas.0913084107 SI Materials and Methods Phylogenetic analysis of mitochondrial COI haplotypes con- Study Area, Caterpillars, and Host Plants. We outlined an approx- firmed the reciprocal monophyly of species and species complexes imately equidistant grid of eight sites with an average distance of (Fig. S1), but caution should be exercised when evaluating 160 km between neighboring sites and with pairwise distances phylogenetic relationships among species in community samples ranging from 59 to 513 km. Sites were located at <500 m above because of incomplete taxon sampling. Although the monophyly sea level in vegetation classified as mixed evergreen hill forest of Tortricidae and Thyrididae was recovered, a number of er- (1). The area has a human population of <10 people per km2 roneous groupings were evident; for example, Geometridae were and has <1 km of roads per 100 km2. The climate at these sites is nested within Crambidae, and Noctuidae were polyphyletic. humid, with a mean annual rainfall of 3,000–4,000 mm, a mod- Moreover, Gelechiidae relationships were unresolved, and the erate dry season from July to September (monthly mean rainfall, monophyly of three families represented by only single species <100 mm), and a mean monthly temperature of ∼26 °C. could not be assessed. Evolutionary interpretation of phyloge- The study area is situated in a complex tectonic region at the netic trends in dietary specialization and geographic distribution convergence of two major plates, the Australian and Pacific, where must be based not on Fig. S1, but rather on the best available ancient accretion of volcanic arc terranes to the central cordillera estimate of phylogeny, which necessarily is a synthesis of in- border the Sepik and Ramu river basins.
    [Show full text]
  • Phylogeny and Nomenclature of the Box Tree Moth, Cydalima Perspectalis (Walker, 1859) Comb
    Eur. J. Entomol. 107: 393–400, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1550 ISSN 1210-5759 (print), 1802-8829 (online) Phylogeny and nomenclature of the box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., which was recently introduced into Europe (Lepidoptera: Pyraloidea: Crambidae: Spilomelinae) RICHARD MALLY and MATTHIAS NUSS Museum of Zoology, Koenigsbruecker Landstrasse 159, 01109 Dresden, Germany; e-mails: [email protected]; [email protected] Key words. Crambidae, Spilomelinae, box tree moth, generic placement, Diaphania, Glyphodes, Neoglyphodes, Palpita, Cydalima perspectalis, new combination, taxonomy, phylogeny, morphology, nomenclature Abstract. The box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., is native to India, China, Korea, Japan and the Rus- sian Far East. Its larvae are a serious pest of different species of Buxus. Recently, C. perspectalis was introduced into Europe and first recorded from Germany in 2006. This species has been placed in various spilomeline genera including Palpita Hübner, 1808, Diaphania Hübner, 1818, Glyphodes Guenée, 1854 and the monotypic Neoglyphodes Streltzov, 2008. In order to solve this nomen- clatural confusion and to find a reasonable and verifiable generic placement for the box tree moth, the morphology of the above mentioned and some additional spilomeline taxa was investigated and their phylogeny analysed. The results show that C. perspec- talis belongs to a monophylum that includes three of the genera in which it was previously placed: Glyphodes, Diaphania and Pal- pita. Within this monophylum, it is closely related to the Asian Cydalima Lederer, 1863. As a result of this analysis, Sisyrophora Lederer, 1863 syn. rev. and Neoglyphodes Streltzov, 2008 syn.
    [Show full text]
  • Molecular Phylogeny of Agrioglypta Meyrick and Talanga Moore (Lepidoptera: Crambidae; Spilomelinae) Inferred from Nuclear EF-1Α Gene
    Hayati, Juni 2005, hlm. 45-49 Vol. 12, No. 2 ISSN 0854-8587 Molecular Phylogeny of Agrioglypta Meyrick and Talanga Moore (Lepidoptera: Crambidae; Spilomelinae) Inferred from Nuclear EF-1α Gene HARI SUTRISNO Laboratory of Entomology, Zoological Division, Research Center for Biology, Jalan Raya Bogor Km. 46, Cibinong 16911 Tel. +62-21-8765056, Fax. +62-21-8765068, Email: [email protected] Diterima 16 Oktober 2003/Disetujui 13 April 2005 The phylogeny of the two closely- related genera, Agrioglypta Meyrick and Talanga Moore, was inferred from nucleotide sequence variation across a 973-bp region in the nuclear elongation factor-1α (EF-1α) gene. Seven species representing the two genera and two outgroup species (Feltia jaculifera Guenée and Metallarcha aureodiscalis Meyrick) were analyzed. The results showed the averages of the p-distances in the comparisons between species within genus and between species belonging to other different genera were 3.5% and 4.9%, respectively. EF-1α gene had almost reached saturation at the level of the divergence of these two genera. The phylogenetic analysis using MP and NJ methods showed that each genus was found to be a monophyletic group and the species relationships within each genus were almost consistent as well. A. eurytusalis is the basal species in the genus Agrioglypta. In the genus Talanga, T. sabacusalis lied in the basal node and T. tolumnialis was found to be sister group of T. sexpunctalis. ___________________________________________________________________________ INTRODUCTION mitochondrial genes in another group of Lepidoptera (Reed & Sperling 1999). Applying this approach, I expect that a It has been suggested that the two moth genera, similar rate of the gene in these two genera would give better Agrioglypta Meyrick, and Talanga Moore are poorly defined.
    [Show full text]
  • Similarities and Contrasts in the Local Insect Faunas Associated with Ten Forest Tree Species of New Guinea!
    Pacific Science (1996), vol. 50, no. 2: 157-183 © 1996 by University of Hawai'i Press. All rights reserved Similarities and Contrasts in the Local Insect Faunas Associated with Ten Forest Tree Species of New Guinea! YVES BASSET,z,3 G. A. SAMUELSON, 2 AND S. E. MILLER 2 ABSTRACT: Insect faunas associated with 10 tree species growing in a sub­ montane area in Papua New Guinea are described and compared. In total, 75,000 insects were collected on these trees during the day and night by hand collecting, beating, branch clipping, intercept flight traps, and pyrethrum knock­ down over a l-yr period. Association of chewing insects with the hosts was in­ ferred from feeding trials. Characteristics of the fauna associated with each tree species are briefly outlined, with an emphasis on chewing insects. Four subsets of data, of decreasing affinity with the host, were analyzed by canonical corre­ spondence and cluster analyses: (1) specialist leaf-chewers, (2) proven leaf­ chewers, (3) all herbivores (including transient leaf-chewers and sap-suckers), and (4) all insects (including nonherbivore categories). Analyses of similarity between tree species were performed using number of either species or in­ dividuals within insect families. Analyses using number ofindividuals appeared more robust than those using number of species, because transient herbivore species artificially inflated the level of similarity between tree species. Thus, it is recommended that number of individuals be used in analyses of this type, par­ ticularly when the association of insects with their putative host has not been ascertained. Not unexpectedly, the faunal similarity of tree species increased along the sequence (1)-(2)-(3)-(4).
    [Show full text]
  • Lepidoptera: Pyraloidea: Crambidae) Inferred from DNA and Morphology 141-204 77 (1): 141 – 204 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Mally Richard, Hayden James E., Neinhuis Christoph, Jordal Bjarte H., Nuss Matthias Artikel/Article: The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology 141-204 77 (1): 141 – 204 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology Richard Mally *, 1, James E. Hayden 2, Christoph Neinhuis 3, Bjarte H. Jordal 1 & Matthias Nuss 4 1 University Museum of Bergen, Natural History Collections, Realfagbygget, Allégaten 41, 5007 Bergen, Norway; Richard Mally [richard. [email protected], [email protected]], Bjarte H. Jordal [[email protected]] — 2 Florida Department of Agriculture and Consumer Ser- vices, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32608 USA; James E. Hayden [[email protected]] — 3 Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany; Christoph Neinhuis [[email protected]] — 4 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Tierkunde, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Matthias Nuss [[email protected]] — * Corresponding author Accepted on March 14, 2019. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Brian Wiegmann & Klaus-Dieter Klass. Abstract. Spilomelinae and Pyraustinae form a species-rich monophylum of Crambidae (snout moths). Morphological distinction of the two groups has been diffcult in the past, and the morphologically heterogenous Spilomelinae has not been broadly accepted as a natural group due to the lack of convincing apomorphies.
    [Show full text]