Steven Mojo Steven A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternatives to Plastic Mulch
Alternatives to Plastic Mulch for Organic Vegetable Production Carol Miles, Kathryn Kolker, Jenn Reed and Gail Becker WSU Vancouver Research & Extension Unit 1919 NE 78th Street, Vancouver, WA 98665 (360) 576-6030, [email protected], http://agsyst.wsu.edu Introduction Weed control is one of the primary concerns in organic farming as it is labor intensive, expensive and time consuming. Since its introduction in the 1950s, plastic mulch has become a standard practice used by many farmers to control weeds, increase crop yield, and shorten time to harvest (Lamont, 1991). Plastic mulch has contributed significantly to the economic viability of farmers worldwide, and by 1999 almost 30 million acres worldwide were covered with plastic mulch, with more than 185,000 of those acres in the United States (American Plastics Council, 2004; Takakura and Fang, 2001). However, each year farmers must dispose of their plastic, and although agricultural plastic recycling has begun, the disposal option that most choose is the landfill (Garthe, 2002). Many organic farmers, especially those who are small-scale, choose not to use plastic mulch because of the waste disposal issues. An effective, affordable, degradable alternative to the now-standard plastic mulch would contribute the same production benefits as plastic mulch and in addition would reduce non-recyclable waste. Previous work. In 2003, we conducted a preliminary study at Washington State University Vancouver Research and Extension Unit (WSU VREU) to evaluate paper and cornstarch mulches as alternatives to plastic mulch. We used 81 lb Kraft paper with and without oil application. We evaluated three oils (soybean, linseed and tung) applied before and after laying the paper. -
AGRICULTURAL PLASTICS Q & a Vers Feb 8, 2016
Lois Levitan, PhD Recycling Agricultural Plastics Program Department of Communication Cornell University, Ithaca NY 14853 AGRICULTURAL PLASTICS Q & A vers Feb 8, 2016 • What are agricultural plastics? • What is plastic? • How is plastic film used on dairy farms? • How is plastic film used in producing fruits, vegetables & ornamentals? • What is done with waste plastic after it is no longer useful on the farm? • What new products are made from recycled agricultural plastics? • Why is plastic ground up or baled before shipping to markets? • Are all agricultural plastics made from the same material? • Is it ok to burn waste plastic in a back field on the farm? • What about pesticide containers? WHAT ARE AGRICULTURAL PLASTICS? ‘Agricultural Plastics’ are the array of plastic products and packaging used in agricultural production and sales. Most have a short useful life. Plastic products are typically lighter to lift and transport, less fragile, safer to use, and have a higher production efficiency than the concrete, glass, ceramic and other materials they have replaced over the past several decades. Silage Bags • Bunk Silo Covers • Polytwine • Bale Wrap • Netwrap • Maple Tubing • Irrigation Drip Tape & Polytubes • High Tunnels • Tarps • Seedling Plug Trays • Plant Pots • Mulch Film • Fumigation Film • Pesticide & Dairy Chemical Containers • Boat Wrap • Bee Hive Frames • Bird Netting • Aquaculture Supplies • Row Covers • O2 & Moisture-Barrier Film • Bags for Seed, Feed, Fertilizer, Peat, Wood Pellets, Potting Mix, etc. • Low Tunnels • • F.I.B.C. (totes, supersacks) • Grain Bags • Greenhouse Covers • Hoophouses • Solarization Film • WHAT IS PLASTIC? Plastics are solid materials that can be molded, pressed, or extruded into a variety of forms and shapes. -
Assessment of the Properties of Poly (Lactic Acid) Sheets with Different Amounts of Post-Consumer Recycled Poly (Lactic Acid)
ASSESSMENT OF THE PROPERTIES OF POLY (LACTIC ACID) SHEETS WITH DIFFERENT AMOUNTS OF POST-CONSUMER RECYCLED POLY (LACTIC ACID) By Chaiyatas Chariyachotilert A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Packaging 2011 ABSTRACT ASSESSMENT OF THE PROPERTIES OF POLY (LACTIC ACID) SHEETS WITH DIFFERENT AMOUNTS OF POST-CONSUMER RECYCLED POLY (LACTIC ACID) By Chaiyatas Chariyachotilert The main objective of this research was to evaluate the properties of sheet containing mechanically recycled post-consumer polylactic acid (PLA) bottle flakes blended with virgin PLA resin. PLA bottles were flaked, cleaned, blended with virgin resin and then extruded and thermoformed into trays. The molecular weight, physical, optical, thermal and mechanical properties of sheet containing 0, 20, 40, 60, 80 and 100 wt.-% recycled content were evaluated. Cleaning conditions were evaluated using response surface methodology, and conditions of 15 min, 85 °C, 1 wt.-% NaOH, and 0.3 wt.-% surfactant were adopted for cleaning the PLA flake. Virgin PLA sheet possessed superior properties to recycled sheet with statistically significant differences at α=0.05. PLA sheets were darker and absorbed more UV light in the 260 to 285 nm range when 20% or more recycled content was added. At 40% recycled content, the sheet had increased blue and red tones and the mechanical properties in the cross-machine direction decreased. At 60% recycled content or above, reduction of weight average molecular weight (Mw), tensile strength and tensile strength at yield in the machine direction (MD) were found. At 80% recycled content, the melting temperature and modulus of elasticity in the MD decreased. -
COT Microplastics Overarching Staement 2021
COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT Overarching statement on the potential risks from exposure to microplastics Background 1. Plastic pollution has been widely recognised as a global environmental problem (Villarrubia-Gómez et al., 2018). The adverse effects of plastic litter have been widely documented for marine animals (e.g. entanglement, ingestion and lacerations); however, the potential risks from exposure to smaller plastic particles i.e. micro- and nanoplastics in humans are yet to be fully understood. Scope and purpose 2. As part of horizon scanning, the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) identified the potential risks from microplastics as a topic it should consider. Upon review of the literature, it was decided that nanoplastics should also be included. An initial scoping paper was presented to the COT in October 2019 (TOX/2019/62)1, since when the topic and additional information has been discussed several times by COT with the final substantive discussion in December 2020. A list of all discussion papers considered by the COT during the review is given in Annex A. 3. The purpose of this overarching statement is to bring together these discussions, summarise the COT conclusions reached to date and provide a high-level overview of the current state of knowledge, data gaps and research needs with regards to this topic. 4. Future sub-statements, which will consider in detail the potential toxicological risks of exposure from microplastics via the oral and inhalation routes, are intended to provide supplementary material for this overarching statement. -
BPF – Understanding the Debate About Plastic
Understanding the debate about plastic At a time when a ‘climate emergency’ has been declared, it is important that people understand that ‘plastic free’ does not necessarily mean ‘better for the environment’. For example, researchers found that switching to alternative materials could quadruple what they dubbed ‘the environmental cost.’ Plastic will – and should – continue to play a vital role in all our lives going forward. That may surprise many of you. But this document helps explain why. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, British Plastics Federation recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information BPF House, 6 Bath Place contained within this document is correct, the British Plastics Federation can London, EC2A 3JE make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the First published in 2019 same including without limit, for direct, indirect or consequential loss, business © 2019 British Plastics Federation interruption, loss of profits, production, contracts or goodwill. Contents The enemy is not plastic, it is plastic waste 2 Key facts and figures 3 The right to choose (wisely) 4 Making a difference 5 Government proposals and the industry’s position 6 Why do we need single-use plastic? 8 Extended producer responsibility 10 Taxing plastic packaging based upon the amount of recycled content 12 Deposit return schemes 14 Exporting plastic waste for recycling 16 Biodegradable and oxo-degradable plastics 18 Marine litter 20 1 The enemy is not plastic, it is plastic waste Plastic brings many benefits, enabling many other cutting-edge technologies and keeping the weight and fuel emissions of vehicles down. -
Plasticulture in California Vegetable Production
PUBLICATION 8016 Plasticulture in California Vegetable Production WAYNE L. SCHRADER, UC Cooperative Extension Vegetable Farm Advisor, San Diego County Plasticulture is the art of using plastic materials to modify the production environ- UNIVERSITY OF ment in vegetable crop production. Plasticulture began in the 1950s and early 1960s with the introduction and use of plastic films, mulches, and drip irrigation systems. CALIFORNIA Vegetable growers frequently use plastics in pest management, stand establishment, Division of Agriculture harvesting, and postharvest handling operations, and in containers for marketing. and Natural Resources Plasticulture system components can include http://anrcatalog.ucdavis.edu • plastic mulches to control soil temperature, control weeds, and repel insects • plastic films for erosion control, soil fumigation, or solarization • row covers for temperature control, wind or frost protection, and insect exclusion • drip irrigation for improved water management and for the application of chemi- cals (chemigation) and fertilizers (fertigation) during irrigation • plastic windbreaks • plastic barriers against vertebrate pests Plasticulture has developed into management systems that allow growers to achieve higher-quality produce, superior yields, and extended production cycles. Growers using plasticulture can produce vegetables for markets during the winter, early spring, and late fall that would otherwise be impossible to address. Benefits of plasticulture include • earlier production (7 to 30 days earlier) • increased -
Year One of Positive Plastics Our Four-Point Plan for a Future with Less Waste
Year one of positive plastics Our four-point plan for a future with less waste. # PositivePlasticsPledge 2 Klöckner Pentaplast Sustainable protection of everyday needs At kp we have always known the value We still have some way to go, but by of plastic – its unique place in the lives of collaborating closely with our partners in communities we are very much part of the community, governments and local and its irreplaceable attributes that protect authorities, business and industry, and and package our products – in particular environmental groups we are quite literally dramatically avoiding food waste, delivering closing the loop when it comes to plastic medication and protecting the integrity packaging. We are helping reduce leakage of countless other products. Embedded in and littering of plastics into the environment, the fabric of our company is our primary ensuring plastics are valued and packaging is purpose – the sustainable protection of optimally designed for circularity. everyday needs – it’s why we exist; it’s why In the last year, the world of plastics has we do what we do. changed at an unprecedented rate and We’re determined to help we continue our determination to help make the world of plastics make it a sustainable one for society and for our environment. It’s exciting, it’s been sustainable for society successful and we have learned so much and for our environment. in the process. We are proud to share our first year of achievements with you and we We are also fully aware of our huge look forward to another challenging and responsibility to design products and transformational year ahead – we hope packaging to achieve closed-loop solutions. -
Critical Guidance Protocol for PE Film and Flexible Packaging
Critical Guidance Protocol for PE Film and Flexible Packaging Document number – FPE-CG-01 Revision date – August 17, 2021 Introduction – Scope, significance and use This is a comprehensive laboratory scale evaluation, or protocol, that can be used to assess the compatibility of PE-based films and flexible packaging innovations with film reclamation systems sourcing post-consumer film from store drop-off collection points or, in some cases, curbside collection. This test can be used to evaluate the impact of innovative PE film packaging components for which recycling compatibility is unknown or for which data is notably lacking. As examples: mono- and multi-layer constructions, coatings, additives (including compatibilizers along with innovative material), printing inks and pigments, labels with polymer substrate (paper labels are out of scope for Critical Guidance), adhesives, or new PE resin co- polymer or multi-material compositions. This test requires assessment of the effect of the packaging in blown film. This test evaluates compatibility of the flexible packaging innovation with current, industrial-scale, film-to- film recycling processes. Plastic film is generally defined as plastic items with a thickness of less than 10 mils (i.e., 0.010” or 0.25 mm) that are at least 95 percent (by weight) plastic with up to 5 percent other closely bonded or impregnated material, which may include printing, coatings, or fillers. Film, when used in packaging, is referred to as flexible packaging. The shape of flexible packaging typically changes when it is full of a product compared to when it is empty, whereas the shape of rigid packaging generally remains the same. -
Paper-Based Products As Promising Substitutes for Plastics in the Context of Bans on Non-Biodegradables
EDITORIAL bioresources.com Paper-based Products as Promising Substitutes for Plastics in the Context of Bans on Non-biodegradables Wei Liu,a,# Huayu Liu,a,# Kun Liu,a,# Haishun Du,b,* Ying Liu,c and Chuanling Si a,c,* As a global environmental problem, plastic pollution has attracted worldwide attention. Plastic wastes not only disrupt ecosystems and biodiversity, but they also threaten human life and health. Countries around the world have enacted regulations in recent years to limit the use of plastics. Paper products have been proposed as promising substitutes for plastics, which undoubtedly brings unprecedented opportunities to the pulp and paper industry. However, paper products have some deficiencies in replacing certain plastic products. Research and development to improve paper properties and reduce production costs is needed to meet such challenges. Keywords: Plastic; Plastic bans; Pulp and paper industry; Paper-based materials Contact information: a: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; b: Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA; c: Tianjin Jianfeng Natural Product R&D Co., Ltd., Tianjin 300457, China; *Corresponding authors: [email protected]; [email protected] # Co-first author with the same contribution to this work Plastics and Plastic Bans Plastic products have the advantages of light weight, low cost, good ductility, and excellent insulation, which explains why they have been widely used in industry, agriculture, medicine, and other fields (Geyer et al. 2017). Over the past few decades, the production of plastics has experienced rapid growth. It is reported that by 2015, 8.3 billion tons of plastics had been produced in the world; however, of that amount, 6.3 billion tons had become plastic waste (Geyer et al. -
Afrofuturism: the World of Black Sci-Fi and Fantasy Culture
AFROFUTURISMAFROFUTURISM THE WORLD OF BLACK SCI-FI AND FANTASY CULTURE YTASHA L. WOMACK Chicago Afrofuturism_half title and title.indd 3 5/22/13 3:53 PM AFROFUTURISMAFROFUTURISM THE WORLD OF BLACK SCI-FI AND FANTASY CULTURE YTASHA L. WOMACK Chicago Afrofuturism_half title and title.indd 3 5/22/13 3:53 PM AFROFUTURISM Afrofuturism_half title and title.indd 1 5/22/13 3:53 PM Copyright © 2013 by Ytasha L. Womack All rights reserved First edition Published by Lawrence Hill Books, an imprint of Chicago Review Press, Incorporated 814 North Franklin Street Chicago, Illinois 60610 ISBN 978-1-61374-796-4 Library of Congress Cataloging-in-Publication Data Womack, Ytasha. Afrofuturism : the world of black sci-fi and fantasy culture / Ytasha L. Womack. — First edition. pages cm Includes bibliographical references and index. ISBN 978-1-61374-796-4 (trade paper) 1. Science fiction—Social aspects. 2. African Americans—Race identity. 3. Science fiction films—Influence. 4. Futurologists. 5. African diaspora— Social conditions. I. Title. PN3433.5.W66 2013 809.3’8762093529—dc23 2013025755 Cover art and design: “Ioe Ostara” by John Jennings Cover layout: Jonathan Hahn Interior design: PerfecType, Nashville, TN Interior art: John Jennings and James Marshall (p. 187) Printed in the United States of America 5 4 3 2 1 I dedicate this book to Dr. Johnnie Colemon, the first Afrofuturist to inspire my journey. I dedicate this book to the legions of thinkers and futurists who envision a loving world. CONTENTS Acknowledgments .................................................................. ix Introduction ............................................................................ 1 1 Evolution of a Space Cadet ................................................ 3 2 A Human Fairy Tale Named Black .................................. -
Allowed Mulches on Organic Farms and the Future of Biodegradable Mulch
Allowed Mulches on Organic Farms and the Future of Biodegradable Mulch All farmers know that conventional polyethylene (aka: plastic) mulch is widely used for crop production because it controls weeds, conserves soil moisture, increases soil temperature, improves crop yield and quality, has a relatively low cost, and is readily available. Conventional mulch is also widely used on organic farms although organic farmers and others have questioned its use because it is often non- recyclable, and is generally made from non-biodegradable based materials. At this time, no biodegradable mulch is allowed for use on organic farms. None of the commercially available biodegradable mulches have been proven to meet the requirements of the National Organic Standards. In this document we answer common questions about the currently allowed mulches on organic farms and the potential of using biodegradable mulches in the future. How does the National Organic Program define “mulch”? 7 CFR 205.2 The National Organic Program (NOP) states that mulch is any non-synthetic material, such as wood chips, leaves, or straw, or any allowed synthetic material such as newspaper or plastic that serves to suppress weed growth, moderate soil temperature, or conserve soil moisture. What specifically can organic farmers use now for mulching? 7 CFR 205.601 Currently allowed options for mulching are: • Non-synthetic, untreated materials such as wood chips, leaves, or straw • Newspapers or other recycled paper, without gloss, glossy inks, or color inks • Plastic mulches and covers provided they are removed from the field at the end of the growing season, and they are petroleum-based, but not polyvinyl chloride (PVC) • Biodegradable bio-based mulch film - provided that it complies with the requirements and restrictions of the USDA organic regulations, and Policy Memo 15-1 in the NOP Program Handbook. -
Recycling Roadmap
BRITISH PLASTICS FEDERATION RECYCLING ROADMAP SUPPORTED BY The British Plastics Federation (BPF) is the trade association representing the entire plastics supply chain in the UK, from polymer producers and distributors, converters, equipment suppliers and recyclers. The BPF works in close collaboration with its member companies and liaises closely with government departments, as well as a broad range of non-governmental stakeholders such as charities, brands and retailers. The plastics industry is one of the UK manufacturing sector’s biggest strengths, comprising around 6,200 companies and directly employing 180,000 people. This report has been produced by the British Plastics Federation. The BPF would like to thank Keith Freegard of Keith Freegard Consulting Ltd for all his work on this report and all other reviewers who have provided valuable comments and feedback during its production. This report does not necessarily reflect the views of individual companies mentioned in this report and information provided by companies does not necessarily reflect the views of the BPF. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information contained within this document is correct, the British Plastics Federation can make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the same including without limit, for direct, indirect or consequential loss, business interruption, loss of profits, production, contracts or goodwill.