Hydrocephalus.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hydrocephalus.Pdf Hydrocephalus Compiled By: Latasha Wallace Common Names for Disorder Hydrocephalus; “Water on the Brain”; The word “Hydrocephalus” in Greek literally means “watery head.” It is a condition in which the primary characteristic is excessive accumulation of fluid in the brain. The "water" is actually cerebrospinal fluid (CSF) — a clear fluid surrounding the brain and spinal cord. The excessive accumulation of CSF results in an abnormal dilation of the spaces in the brain called ventricles. This dilation causes potentially harmful pressure on the tissues of the brain. The balance between production and absorption of CSF is critically important. Ideally, the fluid is almost completely absorbed into the bloodstream as it circulates; however, there are circumstances which, when present, will prevent or disturb the production or absorption of CSF, or which will inhibit its normal flow. When this balance is disturbed, hydrocephalus is the result. Causes / Etiology Congenital / Acquired Hydrocephalus may be congenital or acquired. Congenital hydrocephalus is present at birth and may be caused by either environmental influences during fetal development or genetic predisposition. Acquired hydrocephalus develops at the time of birth or at some point afterward. This type of hydrocephalus can affect individuals of all ages and may be caused by injury or disease. Communicating / Non-Communicating Hydrocephalus may also be communicating or non-communicating. Communicating hydrocephalus occurs when the flow of CSF is blocked after it exits from the ventricles. This form is called communicating because the CSF can still flow between the ventricles, which remain open. Non- communicating hydrocephalus - also called "obstructive" hydrocephalus - occurs when the flow of CSF is blocked along one or more of the narrow pathways connecting the ventricles. One of the most common causes of hydrocephalus is "aqueductal stenosis." In this case, hydrocephalus results from a narrowing of the aqueduct of Sylvius, a small passageway between the third and fourth ventricles in the middle of the brain. Ex-Vacuo / Normal Pressure There are two other forms of hydrocephalus which do not fit distinctly into the categories mentioned above and primarily affect adults: hydrocephalus ex-vacuo and normal pressure hydrocephalus. Hydrocephalus ex-vacuo occurs when there is damage to the brain caused by stroke or traumatic injury. In these cases, there may be actual shrinkage (atrophy or wasting) of brain tissue. Normal pressure hydrocephalus can occur in people of any age, but it is most common in the elderly population. It may result from a subarachnoid hemorrhage, head trauma, infection, tumor, or complications of surgery. However, many people develop normal pressure hydrocephalus even when none of these factors are present. In these cases the cause of the disorder is unknown. 1 The causes of hydrocephalus are not all well understood. Hydrocephalus may result from genetic inheritance (aqueductal stenosis) or developmental disorders such as those associated with neural tube defects including spina bifida and encephalocele. Other possible causes include complications of premature birth such as intraventricular hemorrhage, diseases such as meningitis, tumors, traumatic head injury, or subarachnoid hemorrhage. Other Premature infants have an increased risk of intraventricular hemorrhage in which severe bleeding within the ventricles of the brain can lead to hydrocephalus. Other problems that can occur during pregnancy may increase an infant's risk of developing hydrocephalus, including intrauterine infection or a disorder involving incomplete closure of an infant's spinal column (myelomeningocele). Congenital or developmental defects can increase older children's risk of hydrocephalus. Lesions or tumors of the brain or spinal cord, central nervous system infections, bleeding in the brain, and severe head injury also can increase the risk of hydrocephalus. Incidence Incidence and prevalence data are difficult to establish as there is no existing national registry or database of people with hydrocephalus and closely associated disorders; however, hydrocephalus is believed to affect approximately 1 in every 500 children. At present, most of these cases are diagnosed prenatally, at the time of delivery, or in early childhood. Advances in diagnostic imaging technology allow more accurate diagnoses in individuals with atypical presentations, including adults with conditions such as normal pressure hydrocephalus. In the United States, a little over 1 in 1000 births are affected by hydrocephalus. Hydrocephalus is one of the most common "birth defects" and afflicts in excess of 10,000 babies each year. Studies by the World Health Organization show that one birth in every 2,000 result in hydrocephalus. There are 70,000 discharges a year from hospitals in the United States with a diagnosis of hydrocephalus. More than 50% of hydrocephalus cases are congenital. As many as 75% of children with hydrocephalus will have some form of motor disability. Over the past 25 years, death rates associated with hydrocephalus have decreased from 54% to 5%; intellectual disabilitity has decreased from 62% to 30%. About 80% of hydrocephalus patients are born with other defects. Other medical conditions usually associated with Hydrocephalus include: o Arachnoid Cysts. o Brain Injury. o Dandy-Walker Syndrome. o Head Trauma. o Meninigitis. o Porencephaly. o Tumors. o Spina Bifida. Hydrocephalus occurs in 70 to 90% of children with the most severe form of Spina Bifida. 2 Characteristics Symptoms of hydrocephalus vary with age, disease progression, and individual differences in tolerance to CSF. For example, an infant's ability to tolerate CSF pressure differs from an adult's. The infant skull can expand to accommodate the buildup of CSF because the sutures (the fibrous joints that connect the bones of the skull) have not yet closed. In infancy, the most obvious indication of hydrocephalus is often the rapid increase in head circumference or an unusually large head size. Other symptoms may include vomiting, sleepiness and irritability, downward deviation of the eyes (also called “sunsetting”), seizures, and developmental delays. Older children and adults may experience different symptoms because their skulls cannot expand to accommodate the buildup of CSF. In older children or adults, symptoms may include headache followed by vomiting, nausea, papilledema (swelling of the optic disk which is part of the optic nerve), blurred vision, diplopia (double vision), sunsetting of the eyes, problems with balance, poor coordination, gait disturbance, urinary incontinence, slowing or loss of development, lethargy, drowsiness, irritability, or other changes in personality or cognition including memory loss. Symptoms of normal pressure hydrocephalus include progressive mental impairment and dementia, problems with walking, and impaired bladder control leading to urinary frequency and/or incontinence. The person also may have a general slowing of movements or may complain that his or her feet feel "stuck." Because these symptoms are similar to those of other disorders such as Alzheimer's disease, Parkinson's disease, and Creutzfeldt-Jakob disease, the disorder is often misdiagnosed. Many cases go unrecognized and are never properly treated. Doctors may use a variety of tests, including brain scans (CT and/or MRI), a spinal tap or lumbar catheter, intracranial pressure monitoring, and neuropsychological tests, to help them diagnose normal pressure hydrocephalus and rule out other conditions. The symptoms described in this section account for the most typical ways in which progressive hydrocephalus manifests itself. It is, however, important to remember that symptoms vary significantly from individual to individual. IDEA Category / DSM Category IDEA: Other Health Impaired DSM: Long term Developmental Outcomes The prognosis for patients diagnosed with hydrocephalus is difficult to predict, although there is some correlation between the specific cause of the hydrocephalus and the patient's outcome. Prognosis is further complicated by the presence of associated disorders, the timeliness of diagnosis, and the success of treatment. The degree to which decompression (relief of CSF pressure or buildup) following shunt surgery can minimize or reverse damage to the brain is not well understood. Affected individuals and their families should be aware that hydrocephalus poses risks to both cognitive and physical development. However, many children diagnosed with the disorder benefit from rehabilitation therapies and educational interventions and go on to lead normal lives with few limitations. Treatment by an interdisciplinary team of medical professionals, rehabilitation specialists, and educational experts is critical to a positive outcome. Left untreated, progressive hydrocephalus is, with rare exceptions, fatal. 3 The symptoms of normal pressure hydrocephalus usually get worse over time if the condition is not treated, although some people may experience temporary improvements. While the success of treatment with shunts varies from person to person, some people recover almost completely after treatment and have a good quality of life. Early diagnosis and treatment improves the chance of a good recovery. Assessment Approaches (Clinical Interview, Qualitative, Quantitative) Hydrocephalus is diagnosed through clinical neurological evaluation and by using cranial imaging techniques such as ultrasonography, computed tomography
Recommended publications
  • Ultrasound Evaluation of the Central Nervous System
    Ultrasound Evaluation of the Ultrasound Evaluation of the Central Nervous System Central Nervous System ••CNSCNS malformations are the second most Mani Montazemi, RDMS frequent category of congenital anomaly, Director of Ultrasound Education & Quality Assurancee after congenital heart disease Baylor College of Medicine Division of Maternal-Fetal Medicine ••PoorPoor timing of the examination, rather than Department of Obstetrics and Gynecology Texas Children’s Hospital, Pavilion for Women poor sensitivity, can be an important factor Houston Texas & in failing to detect a CNS abnormality Clinical Instructor Thomas Jefferson University Hospital Radiology Department Fetal Head Philadelphia, Pennsylvania Fetal Head Central Nervous System Brain Development 9 -13 weeks Rhombencephalon 5th Menstrual Week •Gives rise to hindbrain •4th ventricle Arises from the posterior surface of the embryonic ectoderm Mesencephalon •Gives rise to midbrain A small groove is found along •Aqueduct the midline of the embryo and the edges of this groove fold over to form a neuro tube that Prosencephalon gives rise to the fetal spinal •Gives rise to forebrain rd cord and brain •Lateral & 3 ventricles Fetal Head Fetal Head Ventricular view Neural Tube Defects ••LateralLateral ventricles ••ChoroidChoroid plexus Group of malformations: Thalamic view • Anencephaly ••MidlineMidline falx •Anencephaly ••CavumCavum septiseptipellucidi pellucidi ••CephalocelesCephaloceles ••ThalamiThalami ••SpinaSpina bifida Cerebellar view ••CerebellumCerebellum ••CisternaCisterna magna Fetal
    [Show full text]
  • Congenital Externally Communicating Porencephaly Presenting As Hemiplegic Cerebral Palsy: Imaging Study of a Rare Condition
    SunKrist Journal of Neonatology and Pediatrics Case Presentation Volume: 3, Issue: 1 Scientific Knowledge Congenital Externally Communicating Porencephaly Presenting as Hemiplegic Cerebral Palsy: Imaging Study of a Rare Condition Al-Mosawi AJ1,2* 1Department of Pediatrics and Pediatric Psychiatry, Children Teaching Hospital of Baghdad Medical City, Iraq 2Head, Iraq Headquarter of Copernicus Scientists International Panel, Iraq 1. Abstract presentation including asymptomatic, various forms Congenital porencephaly is a very rare condition of cerebral palsy, seizures and cognitive impairment. characterized by cystic degeneration The disorder is heterogeneous in nature and the brain encephalomalacia and cysts or cavities within the lesions can be caused by developmental brain. Porencephalic cysts have a variable size and abnormalities, infection, perinatal brain ischemia, site and therefore it result in a variable clinical trauma and hemorrhage. Genetic factors have been presentations including asymptomatic, various forms suggested and familial cases have been reported. of cerebral palsy, seizures and cognitive impairment. Congenital porencephaly is generally classified into, The disorder is heterogeneous in nature and the brain internally communicating with the ventricle and lesions can be caused by developmental externally communicating with the subarachnoid abnormalities, infection, perinatal brain ischemia, space [1-7]. The aim of this paper is to report the rare trauma and hemorrhage. Genetic factors have been finding of externally communicating porencephaly in suggested and familial cases have been reported. a child with hemiplegic cerebral palsy. Congenital porencephaly is generally classified into, 4. Patients and Methods internally communicating with the ventricle and The case of a five-year old girl with hemiplegic externally communicating with the subarachnoid cerebral palsy caused by porencephaly is described space.
    [Show full text]
  • Susceptibility Weighted Imaging: a Novel Method to Determine the Etiology of Aqueduct Stenosis
    THIEME 44 Techniques in Neurosurgery Susceptibility Weighted Imaging: A Novel Method to Determine the Etiology of Aqueduct Stenosis Chanabasappa Chavadi1 Keerthiraj Bele1 Anand Venugopal1 Santosh Rai1 1 Department of Radiodiagnosis, Kasturba Medical College, Manipal Address for correspondence Chanabasappa Chavadi, DNB, Flat No. C- University, Mangalore, India 1-13, 3rd Floor, K.M.C Staff Quarters, Light House Hill Road, Mangalore 575001, India (e-mail: [email protected]). Indian Journal of Neurosurgery 2016;5:44–46. Abstract The stenosis of aqueduct of Sylvius (AS) is a very common cause of obstruction to cerebrospinal fluid. Multiple etiologies are proposed for this condition. Because treatment is specific for correctable disorder, assessment of etiology gains importance. A case of pediatric hydrocephalus was diagnosed with stenosis of AS on magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) demonstrated blooming in the distal aqueduct and lateral ventricle, which was not Keywords seen on routine MRI sequences. The findings suggest that old hemorrhage is a cause ► susceptibility of chemical arachnoiditis and adhesions causing aqueduct stenosis and weighted imaging hydrocephalus. To our knowledge literature is very scarce, wherein SWI is being ► aqueductal stenosis used to confirm blood products as a cause of aqueduct stenosis; hence SWI should be ► magnetic resonance routine protocol in imaging of pediatric hydrocephalus. Etiology, clinical presentation, imaging role of imaging, and, in particular, SWI in evaluation of aqueductal stenosis is ► hydrocephalus discussed. Introduction Case Report Aqueduct of Sylvius (AS) is the narrowest segment of the An 8-month-old child presented with increased head size, cerebrospinal fluid (CSF) pathway and is the most common site developmental delay, and an episode of seizure.
    [Show full text]
  • Sylvian Aqueduct Syndrome and Global Rostral Midbrain Dysfunction Associated with Shunt Malfunction
    Sylvian aqueduct syndrome and global rostral midbrain dysfunction associated with shunt malfunction Giuseppe Cinalli, M.D., Christian Sainte-Rose, M.D., Isabelle Simon, M.D., Guillaume Lot, M.D., and Spiros Sgouros, M.D. Department of Pediatric Neurosurgery and Pediatric Radiology, Hôpital Necker•Enfants Malades, Université René Decartes; and Department of Neurosurgery, Hôpital Lariboisiere, Paris, France Object. This study is a retrospective analysis of clinical data obtained in 28 patients affected by obstructive hydrocephalus who presented with signs of midbrain dysfunction during episodes of shunt malfunction. Methods. All patients presented with an upward gaze palsy, sometimes associated with other signs of oculomotor dysfunction. In seven cases the ocular signs remained isolated and resolved rapidly after shunt revision. In 21 cases the ocular signs were variably associated with other clinical manifestations such as pyramidal and extrapyramidal deficits, memory disturbances, mutism, or alterations in consciousness. Resolution of these symptoms after shunt revision was usually slow. In four cases a transient paradoxical aggravation was observed at the time of shunt revision. In 11 cases ventriculocisternostomy allowed resolution of the symptoms and withdrawal of the shunt. Simultaneous supratentorial and infratentorial intracranial pressure recordings performed in seven of the patients showed a pressure gradient between the supratentorial and infratentorial compartments with a higher supratentorial pressure before shunt revision. Inversion of this pressure gradient was observed after shunt revision and resolution of the gradient was observed in one case after third ventriculostomy. In six recent cases, a focal midbrain hyperintensity was evidenced on T2-weighted magnetic resonance imaging sequences at the time of shunt malfunction. This rapidly resolved after the patient underwent third ventriculostomy.
    [Show full text]
  • Porencephaly Diagnosed by Isotope Cisternography
    Journal of Neurology, Neurosurgery, and Psychiatry, 1972, 35, 669-675 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.35.5.669 on 1 October 1972. Downloaded from Porencephaly diagnosed by isotope cisternography D. FRONT, J. W. F. BEKS, AND L. PENNING' From the Departments of Neuroradiology and Neurosurgery, University Hospital, Gronintgen, The Netherlands SUMMARY The diagnosis of porencephaly by isotope cisternography is described. In the three cases presented, porencephaly was associated with non-resorptive hydrocephalus. The communi- cating hydrocephalus caused the isotope to enter the ventricular system and visualize the cyst, and the diagnosis of both disorders was established by RIHSA cisternography. The method is simple and non-traumatic and provides information about abnormalities which air may fail to demonstrate. Isotope cisternography has proved to be very plane of the collimator than does the gamma camera. useful in the diagnosis of disturbances of flow Every patient is studied at four, 24, and 48 hours and absorption of cerebrospinal fluid (CSF) and after injection. their resultant hydrocephalus (Di Chiro, Reames, and Matthews, 1964; Bannister, Gliford, and CASE 1 and Protected by copyright. Kocen, 1967; James, DeLand, Hodges, Wag- A 39 year old man suffered a head injury in a road ner, 1970; Front, 1971), and in the recognition of accident. Bleeding was noticed from his nose and CSF rhinorrhoea (Di Chiro and Grove, 1966; mouth but no abnormality was found on neurologi- Di Chiro, Ommaya, Ashburn, and Briner, 1968; cal examination. Plain radiographs of the skull Front and Penning, 1971). showed fractures of the nasal, right maxillary, and In addition, we have found this investigation zygomatic bones.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Parkinsonian Symptoms in Normal Pressure Hydrocephalus: a Population-Based Study
    http://www.diva-portal.org This is the published version of a paper published in Journal of Neurology. Citation for the original published paper (version of record): Molde, K., Söderström, L., Laurell, K. (2017) Parkinsonian symptoms in normal pressure hydrocephalus: a population-based study. Journal of Neurology, 264(10): 2141-2148 https://doi.org/10.1007/s00415-017-8598-5 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-142915 J Neurol (2017) 264:2141–2148 DOI 10.1007/s00415-017-8598-5 ORIGINAL COMMUNICATION Parkinsonian symptoms in normal pressure hydrocephalus: a population‑based study Karin Molde1 · Lars Söderström1 · Katarina Laurell1 Received: 3 June 2017 / Revised: 17 August 2017 / Accepted: 18 August 2017 / Published online: 6 September 2017 © The Author(s) 2017. This article is an open access publication Abstract It may be challenging to diferentiate normal liberal use of neuroradiological imaging when investigating pressure hydrocephalus (NPH) from neurodegenerative a patient with parkinsonian features. disorders such as Parkinson’s disease. In this population- based study, we wanted to describe the frequency of par- Keywords Normal pressure hydrocephalus · kinsonian symptoms among individuals with and without Hydrocephalus · Parkinsonism · Parkinson’s disease · NPH, and whether the motor examination part of the Unifed UPDRS Parkinson’s Disease Rating Scale (UPDRS-m) score difers between these groups. Furthermore, we wanted to fnd out whether there was a relationship between UPDRS-m score, Introduction NPH symptoms, and radiological signs of NPH.
    [Show full text]
  • Non-Tumoural Aqueduct Stenosis and Normal Pressure Hydrocephalus in the Elderly
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.49.5.529 on 1 May 1986. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1986;49:529-535 Non-tumoural aqueduct stenosis and normal pressure hydrocephalus in the elderly JAN VANNESTE, RON HYMAN From the Department of Neurology, Sint Lucas Ziekenhuis, Amsterdam, and the Department of Biological Psychiatry, University Hospital, Utrecht, The Netherlands SUMMARY From 1981 to 1985 a prospective study on normal pressure hydrocephalus was per- formed. One of the aims of this study was to determine the site of CSF obstruction. Among 17 consecutive patients with a tentative diagnosis of normal pressure hydrocephalus, nine appeared to have non-communicating hydrocephalus most probably due to primary non-tumoural aqueduct stenosis. This unexpected finding provides evidence that non-tumoural aqueduct stenosis is a frequent cause of normal pressure hydrocephalus in older patients. Some clinical, aetiological and therapeutic aspects in this particular subgroup are discussed. Normal pressure hydrocephalus is a syndrome com- stenosis. All of these were aged 60 years or over. This Protected by copyright. bining the non-specific clinical triad ofgait instability, particular group is discussed. mild to moderate mental deterioration and occa- sionally urinary incontineiice with chronic hydro- Patients cephalus and-normal CSF pressure at random lumbar punctures. - This syndrome is known to occur in The clinical profile was similar in all patients and is sum- both non-communicating and communicating hydro- marised in table 1. Two illustrative cases are briefly cephalus,1 4-6 but most articles on normal pressure described. Case 2 A 69-year-old man complained of slight gait hydrocephalus deal with communicating hydro- difficulties for one year.
    [Show full text]
  • Neonatal Porencephaly and Adult Stroke Related to Mutations in Collagen IV A1
    Neonatal Porencephaly and Adult Stroke Related to Mutations in Collagen IV A1 Marjo S. van der Knaap, MD, PhD,1 Leo M. E. Smit, MD, PhD,1 Frederik Barkhof, MD, PhD,2 Yolande A. L. Pijnenburg, MD,3 Sonja Zweegman, MD, PhD,4 Hans W. M. Niessen, MD, PhD,5 Saskia Imhof, MD, PhD,6 and Peter Heutink, PhD7 Objective: The objective of this study was to describe leukoencephalopathy, lacunar infarcts, microbleeds and macro- bleeds in the context of a collagen IV A1 mutation. Methods: We examined a family with autosomal dominant poren- cephaly, in whom a defect in collagen IV A1 was detected recently. The patients underwent neurological, ophthalmo- logical, and cardiological examinations and magnetic resonance imaging of the brain. Electron microscopy of a skin biopsy was performed. Extensive laboratory screening was performed for thrombophilia and increased bleeding tendency. Results: The porencephaly was symptomatic in the infantile period in two patients, whereas it led to only minor neu- rological dysfunction in their affected mother. However, she experienced development of recurrent strokes in her 40s. In addition to the porencephaly, all patients had a leukoencephalopathy, which was most severe in the mother. Her mag- netic resonance imaging results also showed lacunar infarcts, macrobleeds and a multitude of microbleeds. No other risk factors for recurrent stroke were found. Electron microscopy showed interruptions of the basement membrane of skin capillaries and inhomogeneous thickening of the basement membrane with pools of basement membrane fragments. Interpretation: Leukoencephalopathy, ischemic infarcts, microbleeds, and macrobleeds are indicative of an underlying microangiopathy, of which the best-known causes are hypertension, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and cerebral amyloid angiopathy.
    [Show full text]
  • Hydrocephalus Patient Information Guide Experience Life Without Boundaries
    Hydrocephalus Patient Information Guide Experience Life Without Boundaries Aesculap Neurosurgery 2 Table of Contents Foreword Page 4 About Us Page 5 What Is Hydrocephalus Page 6 Types Of Hydrocephalus Page 7 What You Should Know Page 8 Diagnosis Page 9 Treatment/Goal/Surgical Procedure Page 10 Complications Page 10 Prognosis/Helpful Sites Page 11 The Aesculap Shunts Page 12 Medical Definitions Page 13 3 Foreword The intention of this booklet is to provide information to patients, family members, caregivers and friends on the subject of hydrocephalus. The information provided is a general overview of the diagnosis and treatment of hydrocephalus and other conditions associated with hydrocephalus. About us History Aesculap AG (Germany) was founded in 1867 by Gottfried Jetter, a master craftsman trained in surgical instrument and cutlery techniques. Jetter’s original workshop, located in Tuttlingen, Germany, is the same location where Aesculap world headquarters resides today. The employee count has increased over the years (3,000+ employees), and the number of instrument patterns has grown from a select few to over 17,000; however, the German standard for quality and pattern consistency remains the same. Prior to 1977, many of the instruments sold in America by competing companies were sourced from Aesculap in Tuttlingen. In response to the United States customer demand for Aesculap quality surgical instruments, Aesculap, Inc. (U.S.) was established in 1977. Headquartered in Center Valley, Pennsylvania, with over one hundred direct nationwide sales representatives, Aesculap, Inc. currently supports the marketing, sales and distribution of Aesculap surgical instrumentation in the U.S. In order to support the company’s continued growth and provide the service and quality which customers have come to expect, Aesculap relocated the corporate offices from San Francisco to Center Valley, Pennsylvania.
    [Show full text]
  • Symptoms and Signs of Progressive Hydrocephalus
    Arch Dis Child: first published as 10.1136/adc.64.1.124 on 1 January 1989. Downloaded from Archives of Disease in Childhood, 1989, 64, 124-128 Symptoms and signs of progressive hydrocephalus M KIRKPATRICK, H ENGLEMAN, AND R A MINNS Department of Neurology, Royal Hospital for Sick Children, Edinburgh SUMMARY The clinical features of 107 cases of children with hydrocephalus and measured raised intraventricular pressure were analysed retrospectively. Fifty one children had recently been diagnosed as having hydrocephalus, and the remainder had had shunts injected to direct the cerebrospinal fluid. The most common symptoms in the group were vomiting, behavioural changes, drowsiness, and headaches. The most common clinical signs were inappropriately increasing occipitofrontal head circumferences, tense anterior fontanelles, splayed sutures, and distension of the scalp veins. Half the infantile cases of hydrocephalus were without symptoms, and a quarter of the cases with cerebrospinal fluid shunts and measured raised intraventricular pressure were without signs. There were no fewer than 33 different clinical signs including several unusual ones, such as macular rash and sweating. We believe that the presentation of hydrocephalus with raised intraventricular pressure is sufficiently variable, unusual, or even absent to justify the direct measurement of intracranial pressure. copyright. The classical adult presentation of raised intracra- cluded (even if there was also hydrocephalus). nial pressure (headache, vomiting, and papil- Those with ventriculitis were also excluded. Table 1 loedemal) is rare in children with progressive shows the underlying aetiologies in the 107 cases. hydrocephalus. There are few studies of the clinical Hydrocephalus associated with spina bifida and presentation of hydrocephalus with raised intracra- idiopathic hydrocephalus were the most common nial pressure either before or after an operation to presentation (65%).
    [Show full text]
  • Idiopathic Intracranial Hypertension: Any Light on the Mechanism of the Raised Pressure?
    J Neurol Neurosurg Psychiatry 2001;71:1–7 1 EDITORIAL Idiopathic intracranial hypertension: any light on the mechanism of the raised pressure? Everyone knows that no one knows the mechanism of the compensatory processes are no longer functioning. Thus increase of intracranial pressure in idiopathic intracranial an increase in cerebral volume with an equivalent hypertension (IIH; also called pseudotumour cerebri; see reduction in CSF volume will obviously not change the table 1 for diagnostic criteria). Does it much matter? After status quo. Over the years investigational techniques of all, for most aVected people IIH is a benign, self limiting every imaginable degree of complexity and invasiveness condition. However, sometimes it is not,1 and current have been used to explore these possibilities in IIH. Many therapies are unsatisfactory. Medical treatment is poor and of the relevant indices such as CSF formation rate, CSF of unproved benefit.23 Surgical interventions (optic nerve outflow resistance, CSF outflow rate, and sagittal sinus sheath fenestration, lumboperitoneal shunting) have ap- pressure can be measured or calculated, but some of the preciable hazards and failure rates.4–10 Moreover, the techniques used require certain assumptions and are mechanism of increase in intracranial pressure in IIH therefore possibly fallible. Particular diYculties exist in might have relevance to raised intracranial pressure and its knowing to what extent the brain is compressible in management in other situations such as meningitis and response to increasing CSF pressure, and to what extent hydrocephalus. the CSF space is expandable. These factors influence CSF outflow resistance calculations in infusion or perfusion Normal intracranial pressure studies.
    [Show full text]