Constraint Propagation

Total Page:16

File Type:pdf, Size:1020Kb

Constraint Propagation Constraint Propagation Models, Techniques, Implementation Guido Tack Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes Saarbrücken, 2009 Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes, eingereicht am 5. Dezember 2008 von Dipl.-Inform. Guido Tack, geboren am 6. Oktober 1978 in Lippstadt. Berichterstatter: Prof. Dr. Gert Smolka Prof. Dr. Christian Schulte Prof. Dr. Frédéric Benhamou Dekan: Prof. Dr. Joachim Weickert Prüfungsausschuss: Prof. Dr. Holger Hermanns Prof. Dr. Gert Smolka Prof. Dr. Christian Schulte Dr. Alexander Koller Tag des Kolloquiums: 29. Januar 2009 Textfassung vom 29. Januar 2009 Copyright c 2008, 2009 Guido Tack Abstract This dissertation presents the design of a propagation-based constraint solver. The design is based on models that span several levels of abstraction, ranging from a mathematical foundation, to a high-level implementation architecture, to concrete data structures and algorithms. This principled design approach results in a well- understood, correct, modular, and efficient implementation. The core of the developed architecture is the propagation kernel. It provides the propagation infrastructure and is thus crucial for correctness and efficiency of the solver. Based on a mathematical model as well as a careful design of the employed algorithms and data structures, the presented architecture results in an efficient and domain-independent kernel. Constraints are realized by propagators, and im- plementing a propagator is a challenging, error-prone, and time-consuming task. A practically useful solver must however provide a comprehensive propagator library. This dissertation introduces two techniques for automatically deriving correct and efficient propagators. Views generalize variables and are used to derive propaga- tors from existing propagators. For constraints over set variables, propagators are derived from formal constraint specifications. The presented techniques are the basis of Gecode, a production-quality, highly effi- cient, and widely deployed constraint solver. Gecode is the empirical evidence for success and relevance of the principled design approach of this dissertation. iii Kurzzusammenfassung Diese Dissertation entwirft einen propagierungsbasierten Constraintlöser auf unter- schiedlichen Abstraktionsebenen, von einem mathematischen Fundament über eine Implementierungsarchitektur bis hin zu konkreten Datenstrukturen und Algorith- men. Dieser Ansatz führt zu einer gut verstandenen, korrekten, modularen und effi- zienten Implementierung. Das Kernstück der vorgestellten Architektur ist der Propagierungskernel. Er stellt die Infrastruktur für Constraintpropagierung zur Verfügung und ist daher von großer Bedeutung für Korrektheit und Effizienz. Diese Dissertation entwickelt die Architek- tur für einen effizienten, domänenunabhängigen Kernel, basierend auf einem ma- thematischen Modell und einem sorgfältigen Entwurf der verwendeten Algorithmen und Datenstrukturen. Constraints werden durch Propagierer realisiert, und das Im- plementieren eines Propagierers ist fehleranfällig und zeitaufwändig. Andererseits muss eine ausreichend große Propagiererbibliothek bereitstehen. Diese Dissertati- on untersucht zwei Techniken, um korrekte und effiziente Propagierer automatisch abzuleiten. Views verallgemeinern Variablen und dienen dazu, Propagierer von vor- handenen Propagierern abzuleiten. Für Mengenconstraints werden Propagierer von formalen Spezifikationen der Constraints abgeleitet. Die vorgestellten Techniken bilden die Grundlage für Gecode, einen umfangreichen, hocheffizienten und weit verbreiteten Constraintlöser. Gecode liefert den empiri- schen Nachweis dafür, dass die in dieser Dissertation gewählte Vorgehensweise rele- vant und in der Praxis erfolgreich ist. v Acknowledgements The research that I report on in this dissertation is the result of several years of work—but not only my own. I take this opportunity to express my deep gratitude towards my advisors, colleagues, friends, and family. I consider myself extraordinarily fortunate, being able to work with my two advi- sors, Gert Smolka and Christian Schulte. Gert let me choose my topic freely, and then supported me in numberless discussions with a fresh, outside look on my re- search and his enthusiasm for the perfect, elegant formalism. Christian offered me to join the Gecode project, and I quickly found out that that offer included the best supervision one can hope for as a doctoral student. To him I owe nearly everything I know about software design and implementation, about writing papers and writing reviews, about organizing my work and my thoughts. Mikael Z. Lagerkvist was my fellow doctoral student on the Gecode project, and I very much enjoyed working with him, sharing thoughts and discussing ideas. Furthermore, I thank Frédéric Ben- hamou for giving his expert opinion on this dissertation, and Holger Hermanns and Alexander Koller for serving on my examination committee. The Programming Systems Lab at Saarland University has been an inspiring and gratifying working environment for the past seven years. I especially want to thank Marco Kuhlmann, my long-term office-mate, for his great friendship and his trust in me. For interesting discussions, their willingness to share their knowledge, and help whenever needed, I thank all my current and previous colleagues: Gert, Marco, Chad E. Brown, Mark Kaminski, Mathias Möhl, Sandra Neumann, and Jan Schwinghammer; Christian, Ondˇrej Bojar, Thorsten Brunklaus, Ralph Debusmann, Denys Duchier, Leif Kornstaedt, Didier Le Botlan, Joachim Niehren, Tim Priesnitz, Andreas Rossberg, Lutz Straßburger, Gábor Szokoli, and Ann van de Veire. Thanks to our student assistants Christophe Boutter, Robert Künnemann, and Hannes von Haugwitz, who made system administration much less of a hassle. Being employed by the university of course involved teaching duties. However, the kind of teaching I was allowed to do made this an opportunity rather than a burden. I thank all my students, and I want to mention in particular those who worked with me on Gecode, Niko Paltzer, Patrick Pekczynski, and Raphael Reischuk. I hope they learned as much from me as I learned from them. For the last year, I have had the freedom to work exclusively on my dissertation, which was partly made possible by the support from the Saarbrücken Graduate School of Computer Science. Scientific work requires meeting people in person from time to time. Both my doctoral project as well as Gecode have benefited from the DAAD travel grant that allowed me to visit Christian and Mikael in Stockholm twice a year. Peter J. Stuckey invited me to visit the G12 project at Melbourne University vii and NICTA for six weeks in 2007. I am grateful for having had this opportunity, and I thank the whole G12 crew for the great time. For further cooperations and discussions, I thank Martin Mann and Sebastian Will; Mats Carlsson, Pierre Flener, and Magnus Ågren; Yves Deville, Grégoire Dooms, and Stéphane Zampelli; as well as Claude-Guy Quimper, Andrea Rendl, and Peter Tiedemann. My friends and my family have been a constant source of support. Thank you, Paul, Achim, and especially Monika. Finally, I want to dedicate this dissertation to my mother, Ulla, whom we all sorely miss. Saarbrücken, January 2009 Guido Tack viii My freedom will be so much the greater and more meaningful the more narrowly I limit my field of action and the more I surround myself with obstacles. Whatever diminishes constraint diminishes strength. The more constraints one imposes, the more one frees one’s self of the chains that shackle the spirit. Igor Stravinsky, Poetics of Music Contents 1 Introduction 1 1.1 ConstraintProgramming . 1 1.2 TheThesis..................................... 2 1.3 Overview...................................... 4 2 Constraint Programming 7 2.1 Modeling Constraint Problems: Sudoku . 7 2.2 Constraint Propagation and Search . 9 2.3 SetConstraints .................................. 10 I A Propagation Kernel 13 3 A Model of Constraint Propagation 15 3.1 A Denotational Model of Constraint Problems . 15 3.2 An Operational Model of Constraint Propagation . ... 18 3.3 Propagation as a Transition System . 23 3.4 Idempotency, Monotonicity, and Confluence . 27 3.5 AMany-SortedModel .............................. 32 4 Propagation Strength 33 4.1 Weakest and Strongest Propagators . 34 4.2 DomainApproximations . 35 4.3 Strength with Respect to a Domain System . 38 4.4 TheIntegerIntervalApproximation . 41 4.5 The Interval Approximation for Set Variables . ... 44 4.6 RelatedWork ................................... 45 5 Efficient Propagator Scheduling 47 5.1 Propagator-Centered Propagation . 48 5.2 Event-DirectedScheduling . 51 5.3 Dynamic Dependencies and Propagator Sets . 55 5.4 Self-ReschedulingPropagators . 59 5.5 Propagation Conditions and Modification Events . ... 62 5.6 RelatedWork ................................... 65 xi 6 Implementing a Propagation Kernel 67 6.1 CopyingVersusTrailing . 68 6.2 AnObject-OrientedDesign. 71 6.3 DomainModules ................................. 74 6.4 DependencyManagement . 81 6.5 ThePriorityQueue................................ 85 6.6 Control....................................... 88 6.7 Copying and Memory Management . 88 6.8 Gecode....................................... 92 6.9 PerformanceAnalysis . 93 Contributions of Part I 101 II Techniques for Deriving
Recommended publications
  • Constraint Satisfaction with Preferences Ph.D
    MASARYK UNIVERSITY BRNO FACULTY OF INFORMATICS } Û¡¢£¤¥¦§¨ª«¬­Æ !"#°±²³´µ·¸¹º»¼½¾¿45<ÝA| Constraint Satisfaction with Preferences Ph.D. Thesis Brno, January 2001 Hana Rudová ii Acknowledgements I would like to thank my supervisor, Ludˇek Matyska, for his continuous support, guidance, and encouragement. I am very grateful for his help and advice, which have allowed me to develop both as a person and as the avid student I am today. I want to thank to my husband and my family for their support, patience, and love during my PhD study and especially during writing of this thesis. This research was supported by the Universities Development Fund of the Czech Repub- lic under contracts # 0748/1998 and # 0407/1999. Declaration I declare that this thesis was composed by myself, and all presented results are my own, unless otherwise stated. Hana Rudová iii iv Contents 1 Introduction 1 1.1 Thesis Outline ..................................... 1 2 Constraint Satisfaction 3 2.1 Constraint Satisfaction Problem ........................... 3 2.2 Optimization Problem ................................ 4 2.3 Solution Methods ................................... 5 2.4 Constraint Programming ............................... 6 2.4.1 Global Constraints .............................. 7 3 Frameworks 11 3.1 Weighted Constraint Satisfaction .......................... 11 3.2 Probabilistic Constraint Satisfaction ........................ 12 3.2.1 Problem Definition .............................. 13 3.2.2 Problems’ Lattice ............................... 13 3.2.3 Solution
    [Show full text]
  • Backtracking Search (Csps) ■Chapter 5 5.3 Is About Local Search Which Is a Very Useful Idea but We Won’T Cover It in Class
    CSC384: Intro to Artificial Intelligence Backtracking Search (CSPs) ■Chapter 5 5.3 is about local search which is a very useful idea but we won’t cover it in class. 1 Hojjat Ghaderi, University of Toronto Constraint Satisfaction Problems ● The search algorithms we discussed so far had no knowledge of the states representation (black box). ■ For each problem we had to design a new state representation (and embed in it the sub-routines we pass to the search algorithms). ● Instead we can have a general state representation that works well for many different problems. ● We can build then specialized search algorithms that operate efficiently on this general state representation. ● We call the class of problems that can be represented with this specialized representation CSPs---Constraint Satisfaction Problems. ● Techniques for solving CSPs find more practical applications in industry than most other areas of AI. 2 Hojjat Ghaderi, University of Toronto Constraint Satisfaction Problems ●The idea: represent states as a vector of feature values. We have ■ k-features (or variables) ■ Each feature takes a value. Domain of possible values for the variables: height = {short, average, tall}, weight = {light, average, heavy}. ●In CSPs, the problem is to search for a set of values for the features (variables) so that the values satisfy some conditions (constraints). ■ i.e., a goal state specified as conditions on the vector of feature values. 3 Hojjat Ghaderi, University of Toronto Constraint Satisfaction Problems ●Sudoku: ■ 81 variables, each representing the value of a cell. ■ Values: a fixed value for those cells that are already filled in, the values {1-9} for those cells that are empty.
    [Show full text]
  • Prolog Lecture 6
    Prolog lecture 6 ● Solving Sudoku puzzles ● Constraint Logic Programming ● Natural Language Processing Playing Sudoku 2 Make the problem easier 3 We can model this problem in Prolog using list permutations Each row must be a permutation of [1,2,3,4] Each column must be a permutation of [1,2,3,4] Each 2x2 box must be a permutation of [1,2,3,4] 4 Represent the board as a list of lists [[A,B,C,D], [E,F,G,H], [I,J,K,L], [M,N,O,P]] 5 The sudoku predicate is built from simultaneous perm constraints sudoku( [[X11,X12,X13,X14],[X21,X22,X23,X24], [X31,X32,X33,X34],[X41,X42,X43,X44]]) :- %rows perm([X11,X12,X13,X14],[1,2,3,4]), perm([X21,X22,X23,X24],[1,2,3,4]), perm([X31,X32,X33,X34],[1,2,3,4]), perm([X41,X42,X43,X44],[1,2,3,4]), %cols perm([X11,X21,X31,X41],[1,2,3,4]), perm([X12,X22,X32,X42],[1,2,3,4]), perm([X13,X23,X33,X43],[1,2,3,4]), perm([X14,X24,X34,X44],[1,2,3,4]), %boxes perm([X11,X12,X21,X22],[1,2,3,4]), perm([X13,X14,X23,X24],[1,2,3,4]), perm([X31,X32,X41,X42],[1,2,3,4]), perm([X33,X34,X43,X44],[1,2,3,4]). 6 Scale up in the obvious way to 3x3 7 Brute-force is impractically slow There are very many valid grids: 6670903752021072936960 ≈ 6.671 × 1021 Our current approach does not encode the interrelationships between the constraints For more information on Sudoku enumeration: http://www.afjarvis.staff.shef.ac.uk/sudoku/ 8 Prolog programs can be viewed as constraint satisfaction problems Prolog is limited to the single equality constraint: – two terms must unify We can generalise this to include other types of constraint Doing so leads
    [Show full text]
  • The Logic of Satisfaction Constraint
    Artificial Intelligence 58 (1992) 3-20 3 Elsevier ARTINT 948 The logic of constraint satisfaction Alan K. Mackworth* Department of Computer Science, University of British Columbia, Vancouver, BC, Canada V6T 1 W5 Abstract Mackworth, A.K., The logic of constraint satisfaction, Artificial Intelligence 58 (1992) 3-20. The constraint satisfaction problem (CSP) formalization has been a productive tool within Artificial Intelligence and related areas. The finite CSP (FCSP) framework is presented here as a restricted logical calculus within a space of logical representation and reasoning systems. FCSP is formulated in a variety of logical settings: theorem proving in first order predicate calculus, propositional theorem proving (and hence SAT), the Prolog and Datalog approaches, constraint network algorithms, a logical interpreter for networks of constraints, the constraint logic programming (CLP) paradigm and propositional model finding (and hence SAT, again). Several standard, and some not-so-standard, logical methods can therefore be used to solve these problems. By doing this we obtain a specification of the semantics of the common approaches. This synthetic treatment also allows algorithms and results from these disparate areas to be imported, and specialized, to FCSP; the special properties of FCSP are exploited to achieve, for example, completeness and to improve efficiency. It also allows export to the related areas. By casting CSP both as a generalization of FCSP and as a specialization of CLP it is observed that some, but not all, FCSP techniques lift to CSP and thereby to CLP. Various new connections are uncovered, in particular between the proof-finding approaches and the alternative model-finding ap- proaches that have arisen in depiction and diagnosis applications.
    [Show full text]
  • Constraint Satisfaction Problems (Backtracking Search)
    CSC384: Introduction to Artificial Intelligence Constraint Satisfaction Problems (Backtracking Search) • Chapter 6 – 6.1: Formalism – 6.2: Constraint Propagation – 6.3: Backtracking Search for CSP – 6.4 is about local search which is a very useful idea but we won’t cover it in class. Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011 1 Acknowledgements • Much of the material in the lecture slides comes from Fahiem Bacchus, Sheila McIlraith, and Craig Boutilier. • Some slides come from a tutorial by Andrew Moore via Sonya Allin. • Some slides are modified or unmodified slides provided by Russell and Norvig. Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011 2 Constraint Satisfaction Problems (CSP) • The search algorithms we discussed so far had no knowledge of the states representation (black box). – For each problem we had to design a new state representation (and embed in it the sub-routines we pass to the search algorithms). • Instead we can have a general state representation that works well for many different problems. • We can then build specialized search algorithms that operate efficiently on this general state representation. • We call the class of problems that can be represented with this specialized representation: CSPs – Constraint Satisfaction Problems. Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011 3 Constraint Satisfaction Problems (CSP) •The idea: represent states as a vector of feature values. – k-features (or variables) – Each feature takes a value. Each variable has a domain of possible values: • height = {short, average, tall}, • weight = {light, average, heavy} •In CSPs, the problem is to search for a set of values for the features (variables) so that the values satisfy some conditions (constraints).
    [Show full text]
  • Constraint Satisfaction
    Constraint Satisfaction Rina Dechter Department of Computer and Information Science University of California, Irvine Irvine, California, USA 92717 dechter@@ics.uci.edu A constraint satisfaction problem csp de ned over a constraint network consists of a nite set of variables, each asso ciated with a domain of values, and a set of constraints. A solution is an assignmentofavalue to each variable from its domain such that all the constraints are satis ed. Typical constraint satisfaction problems are to determine whether a solution exists, to nd one or all solutions and to nd an optimal solution relative to a given cost function. An example of a constraint satisfaction problem is the well known k -colorability. The problem is to color, if p ossible, a given graph with k colors only, such that anytwo adjacent no des have di erent colors. A constraint satisfaction formulation of this problem asso ciates the no des of the graph with variables, the p ossible colors are their domains and the inequality constraints b etween adjacent no des are the constraints of the problem. Each constraint of a csp may b e expressed as a relation, de ned on some subset of variables, denoting their legal combinations of values. As well, constraints 1 can b e describ ed by mathematical expressions or by computable pro cedures. Another known constraint satisfaction problem is SATis ability; the task of nding the truth assignment to prop ositional variables such that a given set of clauses are satis ed. For example, given the two clauses A _ B _ :C ; :A _ D , the assignmentof false to A, true to B , false to C and false to D , is a satisfying truth value assignment.
    [Show full text]
  • Propositional Satisfiability and Constraint Programming
    Propositional Satisfiability and Constraint Programming: A Comparative Survey LUCAS BORDEAUX, YOUSSEF HAMADI and LINTAO ZHANG Microsoft Research Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively in- dependent threads of research cross-fertilizing occasionally. These two approaches to problem solving have a lot in common as evidenced by similar ideas underlying the branch and prune algorithms that are most successful at solving both kinds of problems. They also exhibit differences in the way they are used to state and solve problems since SAT’s approach is, in general, a black-box approach, while CP aims at being tunable and programmable. This survey overviews the two areas in a comparative way, emphasizing the similarities and differences between the two and the points where we feel that one technology can benefit from ideas or experience acquired from the other. Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Logic and constraint programming; D.3.3 [Programming Languages]: Language Constructs and Features—Constraints; G.2.1 [Discrete Mathematicals]: Combinatorics—Combinatorial algorithms General Terms: Algorithms Additional Key Words and Phrases: Search, constraint satisfaction, SAT ACM Reference Format: Bordeaux, L., Hamadi, Y., and Zhang, L. 2006. Propositional satisfiability and constraint programming: A comparative survey. ACM Comput. Surv. 38, 4, Article 12 (Dec. 2006), 54 pages. DOI = 10.1145/1177352. 1177354 http://doi.acm.org/10.1145/1177352.1177354 1. INTRODUCTION Propositional satisfiability solving (SAT) and constraint programming (CP) are two automated reasoning technologies that have found considerable industrial applications during the last decades. Both approaches provide generic languages that can be used to express complex (typically NP-complete) problems in areas like hardware verification, configuration, or scheduling.
    [Show full text]
  • Techniques for Efficient Constraint Propagation
    Techniques for Efficient Constraint Propagation MIKAEL Z. LAGERKVIST Licentiate Thesis Stockholm, Sweden, 2008 TRITA-ICT/ECS AVH 08:10 ISSN 1653-6363 KTH ISRN KTH/ICT/ECS AVH-08/10–SE SE-100 44 Stockholm ISBN 978-91-7415-154-1 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan fram- lägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 21 November 2008 klockan 13.15 i N2, Electrum 3, Kista. © Mikael Z. Lagerkvist, 2008 Tryck: Universitetsservice US AB On two occasions I have been asked, ’Pray, Mr. Babbage, if you put into the machine wrong figures, will the right an- swers come out?’ ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question. Passages from the Life of a Philosopher Charles Babbage v Abstract This thesis explores three new techniques for increasing the efficiency of constraint propagation: support for incremental propagation, im- proved representation of constraints, and abstractions to simplify prop- agation. Support for incremental propagation is added to a propagator- centered propagation system by adding a new intermediate layer of abstraction, advisors, that capture the essential aspects of a variable- centered system. Advisors are used to give propagators a detailed view of the dynamic changes between propagator runs. Advisors enable the implementation of optimal algorithms for important constraints such as extensional constraints and Boolean linear in-equations, which is not possible in a propagator-centered system lacking advisors. Using Multivalued Decision Diagrams (MDD) as the representa- tion for extensional constraints is shown to be useful for several rea- sons.
    [Show full text]
  • FOUNDATIONS of CONSTRAINT SATISFACTION Edward Tsang
    FOUNDATIONS OF CONSTRAINT SATISFACTION Edward Tsang Department of Computer Science University of Essex Colchester Essex, UK Copyright 1996 by Edward Tsang All rights reserved. No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the author. Copyright 1993-95 by Academic Press Limited This book was first published by Academic Press Limited in 1993 in UK: 24-28 Oval Road, London NW1 7DX USA: Sandiego, CA 92101 ISBN 0-12-701610-4 To Lorna Preface Many problems can be formulated as Constraint Satisfaction Problems (CSPs), although researchers who are untrained in this field sometimes fail to recognize them, and consequently, fail to make use of specialized techniques for solving them. In recent years, constraint satisfaction has come to be seen as the core problem in many applications, for example temporal reasoning, resource allocation, schedul- ing. Its role in logic programming has also been recognized. The importance of con- straint satisfaction is reflected by the abundance of publications made at recent conferences such as IJCAI-89, AAAI-90, ECAI-92 and AAAI-92. A special vol- ume of Artificial Intelligence was also dedicated to constraint reasoning in 1992 (Vol 58, Nos 1-3). The scattering and lack of organization of material in the field of constraint satisfac- tion, and the diversity of terminologies being used in different parts of the literature, make this important topic more difficult to study than is necessary. One of the objectives of this book is to consolidate the results of CSP research so far, and to enable newcomers to the field to study this problem more easily.
    [Show full text]
  • Constraint Logic Programming a Short Tutorial
    Constraint Logic Programming a short tutorial Inês Dutra [email protected] ØØÔ»»ÛÛÛº ÙÔºÔØ»Ò× Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto CRACS & INESC-Porto LA LAI-OIL, June 2010 Outline What is CLP? A little bit of history (motivation) Systems, applications and clients Variable domain CLP by example CRACS-INESC-Porto LA & DCC/FCUP Inês Dutra LAI-OIL, June 2010 2 Constraint Logic Programming What is CLP? the use of a rich and powerful language to model optimization problems (not only...) modelling based on variables, domains and constraints CRACS-INESC-Porto LA & DCC/FCUP Inês Dutra LAI-OIL, June 2010 3 CLP Motivation: 1. to offer a declarative way of modelling constraint satisfaction problems (CSP) 2. to solve 2 limitations in Prolog: Each term in Prolog needs to be explicitly evaluated and is not interpreted (evaluated): · ½ is a term that is not evaluated in Prolog. It is only a syntactic representation. a variable can assume one single value. Uniform computation, but not that powerful: depth-first search, “generate-and-test”. 3. to integrate Artificial Intelligence (AI) and Operations Research (OR) CRACS-INESC-Porto LA & DCC/FCUP Inês Dutra LAI-OIL, June 2010 4 CLP CLP can use Artificial Intelligence (AI) techniques to improve the search: propagation, data-driven computation, “forward checking” and “lookahead”. Applications: planning, scheduling, resource allocation, computer graphics, digital circuit design, fault diagnosis etc. Clients: Michelin and Dassault, French railway SNCF, Swissair, SAS and Cathay Pacific, HK International terminals, Eriksson, British Telecom etc. CRACS-INESC-Porto LA & DCC/FCUP Inês Dutra LAI-OIL, June 2010 5 CLP CLP joins 2 research areas: Introduction of richer and powerful data structures to Logic Programming (e.g.: replace unification by efficient manipulation of constraints and domains).
    [Show full text]
  • Constraint Logic Programming for Qualitative and Quantitative Constraint Satisfaction Problems
    ELSEVIER Decision Support Systems 16 (1996) 67-83 Constraint logic programming for qualitative and quantitative constraint satisfaction problems Ho Geun Lee a,., Ronald M. Lee b, Gang Yu c a Information and System Management Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong b Erasmus University Research Institute for Decision and Information Systems (EURIDIS), Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands c Department of Management Science and Information Systems, Graduate School of Business, The University of Texas at Austin, Austin, TX 78712-1175, USA Abstract AI and OR approaches have complementary strengths: AI in domain-specific knowledge representation and OR in efficient mathemat:ical computation. Constraint Logic Programming (CLP), which combines these complementary strengths of the AI and OR approach, is introduced as a new tool to formalize a special class of constraint satisfaction problems that include both qualitative and quantitative constraints. The CLP approach is contrasted with the Mixed Integer Programming (MIP) method from a model-theoretic view. Three relative advantages of CLP over MIP are analyzed: (1) representational economies for domain-specific heuristics, (2) partial solutions, and (3) ease of model revision. A case example of constraint satisfaction problems is implemented by MIP and CLP for comparison of the two approaches. The results exhibit those relative advantages of CLP with computational efficiency comparable to MIP. Keywords: Constraint logic programming; Logic modelling; Constraint solving I. Introduction Since most decisions are made under restrictions or constraints, Constraint Satisfaction Problems (CSP) have been widely studied in both OR and AI. In the OR approach, constraints are quantitative, and a special algorithm like simplex method optimizes single or multiple objective functions subject to numeric constraints.
    [Show full text]
  • Usability Improvements of Optaplanner Benchmarker
    Masarykova univerzita Fakulta}w¡¢£¤¥¦§¨ informatiky !"#$%&'()+,-./012345<yA| Usability improvements of OptaPlanner Benchmarker Diploma thesis Bc. Matej Čimbora Brno, January 2015 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Bc. Matej Čimbora Advisor: doc. RNDr. Tomáš Pitner, Ph.D. ii Acknowledgement I would like to thank doc. RNDr. Tomáš Pitner, Ph.D. and RNDr. Filip Nguyen for valuable advisory and comments. I owe special thanks to Geoffrey de Smet and Lukáš Petrovický for guidance and help during development process. iii Abstract This thesis is dedicated to improvements of OptaPlanner’s benchmark- ing functionality. Selected usability issues are presented, together with proposed solutions, while the main attention is paid on result persis- tence and comparison. In addition, a short introduction into constraint programming, together with an overview of the main features of Opta- Planner engine is included. iv Keywords OptaPlanner, benchmarking, constraint programming, optimization, Java v Contents 1 Introduction ...........................3 1.1 Goals .............................3 1.2 Structure ..........................4 2 Constraint programming ...................5 3 Configuration and basic usage ...............8 3.1 Modeling the problem ...................8 3.2 Solver configuration ..................... 10 3.2.1 Solution evaluation . 12 3.2.2 Termination . 15 3.3 Running the solver ..................... 15 4 Supported algorithms ..................... 17 4.1 Local search algorithms ................... 17 4.1.1 Hill climbing . 17 4.1.2 Simulated annealing . 18 4.1.3 Tabu search . 18 4.1.4 Late acceptance .
    [Show full text]