Metamaterials 2008 Proceedings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials
COMMUNICATION Optical Metamaterials www.advmat.de Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials James A. Dolan, Raphael Dehmel, Angela Demetriadou, Yibei Gu, Ulrich Wiesner, Timothy D. Wilkinson, Ilja Gunkel, Ortwin Hess, Jeremy J. Baumberg, Ullrich Steiner, Matthias Saba, and Bodo D. Wilts* Metamaterials are artificially engineered Optical metamaterials offer the tantalizing possibility of creating materials whose optical properties are extraordinary optical properties through the careful design and arrangement dependent on both the geometry of their of subwavelength structural units. Gyroid-structured optical metamaterials structural units and their chemical com- [1] possess a chiral, cubic, and triply periodic bulk morphology that exhibits position. The ability to design an effec- tive permittivity ε (ω) and permeability a redshifted effective plasma frequency. They also exhibit a strong linear eff µeff(ω) by careful choice of these subwave- dichroism, the origin of which is not yet understood. Here, the interaction length structural units offers the potential of light with gold gyroid optical metamaterials is studied and a strong for intriguing applications, such as super- correlation between the surface morphology and its linear dichroism is found. lenses and cloaking devices.[2,3] Associ- The termination of the gyroid surface breaks the cubic symmetry of the bulk ated material properties include those lattice and gives rise to the observed wavelength- and polarization-dependent otherwise unavailable in nature, such as a negative refractive index and extreme reflection. The results show that light couples into both localized and “hyperbolic” optical anisotropy.[4] The propagating plasmon modes associated with anisotropic surface protrusions observation of these unique properties and the gaps between such protrusions. -
ARTIFICIAL MATERIALS for NOVEL WAVE PHENOMENA Metamaterials 2019
ROME, 16-21 SEPTEMBER 2019 META MATE RIALS 13TH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA Metamaterials 2019 Proceedings In this edition, there are no USB sticks for the distribution of the proceedings. The proceedings can be downloaded as part of a zip file using the following link: 02 President Message 03 Preface congress2019.metamorphose-vi.org/proceedings2019 04 Welcome Message To browse the Metamaterials’19 proceedings, please open “Booklet.pdf” that will open the main file of the 06 Program at a Glance proceedings. By clicking the papers titles you will be forwarded to the specified .pdf file of the papers. Please 08 Monday note that, although all the submitted contributions 34 Tuesday are listed in the proceedings, only the ones satisfying requirements in terms of paper template and copyright 58 Wednesday form have a direct link to the corresponding full papers. 82 Thursday 108 Student paper competition 109 European School on Metamaterials Quick download for tablets and other mobile devices (370 MB) 110 Social Events 112 Workshop 114 Organizers 116 Map: Crowne Plaza - St. Peter’s 118 Map to the Metro 16- 21 September 2019 in Rome, Italy 1 President Message Preface It is a great honor and pleasure for me to serve the Virtual On behalf of the Technical Program Committee (TPC), Institute for Artificial Electromagnetic Materials and it is my great pleasure to welcome you to the 2019 edition Metamaterials (METAMORPHOSE VI) as the new President. of the Metamaterials Congress and to outline its technical Our institute spun off several years ago, when I was still a program. -
State-Of-The-Art of Metamaterials: Characterization, Realization and Applications
Technological University Dublin ARROW@TU Dublin Articles Antenna & High Frequency Research Centre 2014-7 State-of-the-Art of Metamaterials: Characterization, Realization and Applications Giuseppe Ruvio Technological University Dublin, [email protected] Giovanni Leone Second University of Naples, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/ahfrcart Part of the Electromagnetics and Photonics Commons Recommended Citation G. Ruvio & G. Leone,(2014) State-of-the-art of Metamaterials: Characterization, Realization and Applications, Studies in Engineering and Technology, vol. 1, issue 2. doi:10.11114/set.v1i2.456 This Article is brought to you for free and open access by the Antenna & High Frequency Research Centre at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Redfame Publish ing State-of-the-art of metamaterials: characterization, realization and applications Giuseppe Ruvio 1, 2 & Giovanni Leone 1 1Seconda Università di Napoli, Dipartimento di Ingegneria Industriale e dell’Informazione, Via Roma 29, 81031 Aversa (CE), Italy 2Dublin Institute of Technology, Antenna & High Frequency Research Centre, Kevin Street, Dublin 8, Ireland Abstract Metamaterials is a large family of microwave structures that produces interesting ε and µ conditions with huge implications for numerous electromagnetic applications. Following a description of modern techniques to realize epsilon-negative, mu-negative and double-negative metamaterials, this paper explores recent literature on the use of metamaterials in hot research areas such as metamaterial-inspired microwave components, antenna applications and imaging. -
CV Paspalakis EN 062016A.Pdf
CURRICULUM VITAE June 2016 Name: Emmanuel Paspalakis Date of Birth: 21 February 1973 Place of Birth: Thessaloniki, Greece Citizenship: Hellenic Marital Status: Married, two children Work Address: Materials Science Department School of Natural Sciences University of Patras Patras 265 04 Greece Tel: +30 2610 969346 E-mail: [email protected] Google scholar: http://scholar.google.com/citations?user=PtoIBy4AAAAJ&hl=en Home Address: Meilihou 74 Ekso Agia Patras 264 42 Greece Tel: +30 2610 423674, +30 6944 447194 (mobile) UNIVERSITY EDUCATION 10/1996 - 05/1999: PhD in Physics, Imperial College of Science, Technology and Medicine, University of London, London, England. Title of Thesis: “Quantum Interference and Coherent Control in Dissipative Atomic Systems”. Supervisor: Sir Peter L. Knight FRS. 10/1994 - 09/1996: MSc. in Atomic and Molecular Physics, Physics Department, University of Crete, Greece 09/1990 - 09/1994: 4-year BSc. (Ptyhion) in Physics, Physics Department, University of Crete, Greece (Ranked first in my year) EMPLOYMENT 07/2013 - present: Associate Professor, Materials Science Department, University of Patras, Greece. 05/2008 – 06/2013: Assistant Professor, Materials Science Department, University of Patras, Greece. Tenured 08/2011. 09/2003 – 04/2008: Lecturer, Materials Science Department, University of Patras, Greece. 11/2002 - 10/2003: Postdoctoral Researcher at the Materials Science Department, University of Patras, Greece, with a scholarship by the Greek State Scholarships Foundation (IKY). 11/2001 – 08/2003: Fixed Term Lecturer, Materials Science Department, University of Patras, Greece. 04/1999 - 09/1999 and 04/2001 - 10/2001: Full-time Research Associate in the group of Professor Sir P.L. Knight FRS, Department of Physics, Imperial College of Science, Technology and Medicine. -
Table of Contents
Table of Contents Schedule-at-a-Glance . 2 FiO + LS Chairs’ Welcome Letters . 3 General Information . 5 Conference Materials Access to Technical Digest Papers . 7 FiO + LS Conference App . 7 Plenary Session/Visionary Speakers . 8 Science & Industry Showcase Theater Programming . 12 Networking Area Programming . 12 Participating Companies . 14 OSA Member Zone . 15 Special Events . 16 Awards, Honors and Special Recognitions FiO + LS Awards Ceremony & Reception . 19 OSA Awards and Honors . 19 2019 APS/Division of Laser Science Awards and Honors . 21 2019 OSA Foundation Fellowship, Scholarships and Special Recognitions . 21 2019 OSA Awards and Medals . 22 OSA Foundation FiO Grants, Prizes and Scholarships . 23 OSA Senior Members . 24 FiO + LS Committees . 27 Explanation of Session Codes . 28 FiO + LS Agenda of Sessions . 29 FiO + LS Abstracts . 34 Key to Authors and Presiders . 94 Program updates and changes may be found on the Conference Program Update Sheet distributed in the attendee registration bags, and check the Conference App for regular updates . OSA and APS/DLS thank the following sponsors for their generous support of this meeting: FiO + LS 2019 • 15–19 September 2019 1 Conference Schedule-at-a-Glance Note: Dates and times are subject to change. Check the conference app for regular updates. All times reflect EDT. Sunday Monday Tuesday Wednesday Thursday 15 September 16 September 17 September 18 September 19 September GENERAL Registration 07:00–17:00 07:00–17:00 07:30–18:00 07:30–17:30 07:30–11:00 Coffee Breaks 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 15:30–16:00 15:30–16:00 13:30–14:00 13:30–14:00 PROGRAMMING Technical Sessions 08:00–18:00 08:00–18:00 08:00–10:00 08:00–10:00 08:00–12:30 15:30–17:00 15:30–18:30 Visionary Speakers 09:15–10:00 09:15–10:00 09:15–10:00 09:15–10:00 LS Symposium on Undergraduate 12:00–18:00 Research Postdeadline Paper Sessions 17:15–18:15 SCIENCE & INDUSTRY SHOWCASE Science & Industry Showcase 10:00–15:30 10:00–15:30 See page 12 for complete schedule of programs . -
Crphysique-Meta-Preface-Gralak
Foreword Boris Gralak, Sebastien Guenneau To cite this version: Boris Gralak, Sebastien Guenneau. Foreword. Comptes Rendus Physique, Centre Mersenne, 2020, 21 (4-5), pp.311-341. 10.5802/crphys.36. hal-03087380 HAL Id: hal-03087380 https://hal.archives-ouvertes.fr/hal-03087380 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Foreword Boris Gralak and Sébastien Guenneau a CNRS, Aix Marseille Univ, CentraleMarseille, Institut Fresnel,Marseille, France b UMI 2004 Abraham deMoivre-CNRS, Imperial College London, London SW7 2AZ,UK E-mails: [email protected] (B. Gralak), [email protected] (S. Guenneau) Manuscript received 14th October 2020, accepted 22nd October 2020. Metamaterial is a word that seems both familiar and mysterious to the layman: on the one hand, this research area born twenty years ago at the interface between physical and engineering sciences requires a high level of expertise to be investigated with advanced theoretical and experimental methods; and on the other hand electromagnetic paradigms such as negative refraction, super lenses and invisibility cloaks have attracted attention of mass media. Even the origin and meaning of the word metamaterial (formed of the Greek prefix μετά meaning beyond or self and the Latin suffix materia, meaning material) remains elusive. -
Federico Capasso
Federico Capasso ADDRESS: John A. Paulson School of Engineering and Applied Sciences Harvard University 205 A Pierce Hall 29 Oxford Street Cambridge MA 02138 PHONE: (617) 384-7611 FAX: (617) 495-2875 EMAIL: [email protected] PERSONAL: Married; two children CITIZENSHIP: Italian and U.S. (Naturalized; 09/23/1992) EDUCATION: 1973 Doctor of Physics, Summa Cum Laude University of Rome, La Sapienza, Italy 1973-1974 Postdoctoral Fellow Fondazione Bordoni, Rome, Italy ACADEMIC APPOINTMENTS Jan. 2003- Present Robert Wallace Professor of Applied Physics Vinton Hayes Senior Research Fellow in Electrical Engineering, John A. Paulson, School of Engineering and Applied Sciences, Harvard University, PROFESSIONAL POSITIONS: 2000 – 2002 Vice President of Physical Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ 1997- 2000 Department Head, Semiconductor Physics Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ. 1987- 1997 Department Head, Quantum Phenomena and Device Research, Bell Laboratories Lucent Technologies (formerly AT&T Bell Labs, until 1996), Murray Hill, NJ 1984 – 1987 Distinguished Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1977 – 1984 Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1976 – 1977 Visiting Scientist, Bell Laboratories, Holmdel, NJ 1974 – 1976 Research Physicist, Fondazione Bordoni, Rome, Italy Citations (Google Scholar) Over 93000 H-index (Google Scholar) 144 Publications Over 500 hundred peer reviewed journals Patents 70 US patents KEY ACHIEVEMENTS 1. Bandstructure Engineering and Quantum Cascade Lasers (QCLs) Capasso and his Bell Labs collaborators over a 20-year period pioneered band-structure engineering, a technique to design and implement artificially structured (“man-made”) semiconductor, materials, and related phenomena/ devices, which revolutionized heterojunction devices in photonics and electronics. -
The Quest for the Superlens
THE QUEST FOR THE CUBE OF METAMATERIAL consists of a three- dimensional matrix of copper wires and split rings. Microwaves with frequencies near 10 gigahertz behave in an extraordinary way in the cube, because to them the cube has a negative refractive index. The lattice spacing is 2.68 millimeters, or about one tenth of an inch. 60 SCIENTIFIC AMERICAN COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. Superlens Built from “metamaterials” with bizarre, controversial optical properties, a superlens could produce images that include details fi ner than the wavelength of light that is used By John B. Pendry and David R. Smith lmost 40 years ago Russian scientist Victor Veselago had Aan idea for a material that could turn the world of optics on its head. It could make light waves appear to fl ow backward and behave in many other counterintuitive ways. A totally new kind of lens made of the material would have almost magical attributes that would let it outperform any previously known. The catch: the material had to have a negative index of refraction (“refraction” describes how much a wave will change direction as it enters or leaves the material). All known materials had a positive value. After years of searching, Veselago failed to fi nd anything having the electromagnetic properties he sought, and his conjecture faded into obscurity. A startling advance recently resurrected Veselago’s notion. In most materials, the electromagnetic properties arise directly from the characteristics of constituent atoms and molecules. Because these constituents have a limited range of characteristics, the mil- lions of materials that we know of display only a limited palette of electromagnetic properties. -
Plasmonic Nanocavity Modes: from Near-Field to Far-Field Radiation Nuttawut Kongsuwan, Angela Demetriadou, Matthew Horton, Rohit Chikkaraddy, Jeremy J
pubs.acs.org/journal/apchd5 Article Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation Nuttawut Kongsuwan, Angela Demetriadou, Matthew Horton, Rohit Chikkaraddy, Jeremy J. Baumberg,* and Ortwin Hess* Cite This: https://dx.doi.org/10.1021/acsphotonics.9b01445 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: In the past decade, advances in nanotechnology have led to the development of plasmonic nanocavities that facilitate light−matter strong coupling in ambient conditions. The most robust example is the nanoparticle-on-mirror (NPoM) structure whose geometry is controlled with subnanometer precision. The excited plasmons in such nanocavities are extremely sensitive to the exact morphology of the nanocavity, giving rise to unexpected optical behaviors. So far, most theoretical and experimental studies on such nanocavities have been based solely on their scattering and absorption properties. However, these methods do not provide a complete optical description of the nanocavities. Here, the NPoM is treated as an open nonconservative system supporting a set of photonic quasinormal modes (QNMs). By investigating the morphology-dependent optical properties of nanocavities, we propose a simple yet comprehensive nomenclature based on spherical harmonics and report spectrally overlapping bright and dark nanogap eigenmodes. The near-field and far-field optical properties of NPoMs are explored and reveal intricate multimodal interactions. KEYWORDS: plasmonics, nanophotonics, nanocavities, quasinormal mode, near-to-far-field transformation etallic nanostructures have the ability to confine light resonances from far-field spectral peaks. Although significant M below the diffraction limit via the collective excitation of information can be obtained from the far-field spectra, they do conduction electrons, called localized surface plasmons. -
Mode-Locking in Broad-Area Semiconductor Lasers Enhanced
968 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004 Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection Joachim Kaiser, Ingo Fischer, Wolfgang Elsäßer, Senior Member, IEEE, Edeltraud Gehrig, and Ortwin Hess Abstract—We present combined experimental and theoretical extensive interest ever since the breakthrough of the semicon- investigations of the picosecond emission dynamics of broad-area ductor laser [11]–[19]—could lead to applications of BALs in semiconductor lasers (BALs). We enhance the weak longitu- short optical pulse or high repetition rate signal generation at dinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct high powers. regular train of 13-ps pulses. Modeling based on multimode In addition, fundamental questions arise from the fact that Maxwell–Bloch equations illustrates how the dynamic interaction the BALs emission does not only consist of many longitudinal of the injected pulse with the internal laser field efficiently couples modes, but each of these modes consists in fact of a multitude the longitudinal modes and synchronizes the output across the of different lateral modes typically up to the tenth order. This laser stripe. Thus, our results reveal insight into the complex interplay between lateral and longitudinal dynamics in BALs, at allows for a variety of phenomena associated with locking of the same time indicating their potential for short optical pulse the various modes: lateral modes of different longitudinal order generation. or different lateral modes within the same longitudinal mode Index Terms—Broad-area semiconductor lasers (BALs), mode- order might couple. -
Plenary & Keynote Talks
SHARE THIS CONFERENCE HOME ABOUT LOG IN ACCOUNT SEARCH ARCHIVE ANNOUNCEMENTS Print PinteresTwitter Addthis Home > Plenary & Keynote Talks 0共有する Plenary & Keynote Talks CONFERENCE INFORMATION Home Venue & General Info META 2017 will feature several Plenary Talks and Keynote Lectures by world's leading experts on nanophotonics, plasmonics and metamaterials. Accommodation Restaurant List Plenary Lectures Register Now! Program Plenary Lecture 1: Metaoptics in the visible Proceedings Pre-Conference Tutorials Federico Capasso Presenter Guidelines Harvard University, USA Dinner Cruise Publications/Journals Federico Capasso is the Robert Wallace Professor of Applied Physics at Harvard University, which he Entry Visa joined in 2003 after 27 years at Bell Labs where he was Member of Technical Staff, Department Head Plenaries & Keynotes and Vice President for Physical Research. He is visiting professor at NTU with both the School of Special Sessions Physical and Mathematical Sciences and Electrical and Electronic Engineering. His research has focused Special Symposia on nanoscale science and technology encompassing a broad range of topics. He pioneered band- structure engineering of semiconductor nanostructures and devices, invented and first demonstrated Workshop the quantum cascade laser and investigated QED forces including the first measurement of a repulsive Casimir force. His Call for Papers most recent contributions are new plasmonic devices and flat optics based on metasurfaces. He is a member of the National Call for Special Sessions Academy -
Metamaterial-Based Flat Lens: Wave Concept Iterative Process Approach
Progress In Electromagnetics Research C, Vol. 75, 13–21, 2017 Metamaterial-Based Flat Lens: Wave Concept Iterative Process Approach Mohamed K. Azizi1, *, Henri Baudrand2, Lassaad Latrach1, and Ali Gharsallah1 Abstract—Metamaterials left-hand negative refractive index has remarkable optical properties; this paper presents the results obtained from the study of a flat metamaterial lens. Particular interest is given to the interaction of electromagnetic waves with metamaterials in the structure of the lens Pendry. Using the new approach of the Wave Concept Iterative Process (WCIP) based on the auxiliary sources helps to visualize the behavior of the electric field in the metamaterial band and outside of its interfaces. The simulation results show an amplification of evanescent waves in the metamaterials with an index of n = −1, which corresponds to a resonance phenomenon to which the attenuation solution is canceled, leaving only the actual growth of these waves. This amplification permits the reconstruction of the image of the source with a higher resolution. 1. INTRODUCTION The way of negative refraction has sparked a rare craze after passionate debate generated by controversies on electromagnetic models. In 1968, the Russian Victor Veselago invented the converging lens plate [1]. In the late 1990s, Pendry and his team carried out work on metal wire networks (“wire medium”) [2, 3] and (split-ring resonators or SRR) [4]. Given the difficulty to achieve super-lenses, teams of researchers developed other systems exploiting the characteristics of metamaterials to achieve a sub-wave length resolution. These new devices include the wireless networks [5, 6] operating in the pipeline system, networks of nanoparticles [7], and the hyper-lenses using structures of spherical and anisotropic form [8–10].