Lecture - 1 “Moving Ahead”

Total Page:16

File Type:pdf, Size:1020Kb

Lecture - 1 “Moving Ahead” Lecture - 1 “Moving Ahead” - from Clusters and Grids to Cloud computing Salman Toor [email protected] Basic questions • Why Cloud computing? • What are the previous technologies? • What was missing in the previous technologies? • Will previous technologies be substituted? • Can legacy applications run on Cloud platforms? 2 Were supercomputers the only source of large scale computing before Clouds? ANSWER: NO 3 Distributed Computing Infrastructures (DCI) • Cluster Computing • Accessible via Local Area Network (LAN) • Grid Computing • Based on Wide Area Network (WAN) • Cloud Computing • Next generation computing model • Desktop Computing • Utility Computing • P2P Computing • Pervasive Computing • Ubiquitous Computing • Mobile Computing 4 Contribution of large scale computing • Areas in which the role of large scale computing is inevitable: • Particle Physics • Bioinformatics • Computational Mathematics • Quantum Chemistry • … • … 5 Computing model • Most of the large scale applications both from academia and industry were designed for batch processing • Batch Processing: A complete set of batch or group of instructions together with the required input data to accomplish a given task (often known as job). No user interaction is possible during the execution. 6 Cluster computing http://www.wikid.eu/index.php/Computer_Clustering Cluster computing • A cluster is a type of parallel or distributed computer system, which consists of a collection of interconnected stand-alone computers working together as a single integrated computing resource • First realised in 60’s but gained real momentum in mid 80’s • The aim is to move away from the specialised supercomputing platform and build more general purpose computing environment based on commodity hardware http://www.cloudbus.org/papers/ic_cluster.pdf Cluster computing • The concept of building computing clusters materialised with tremendous growth in computer hardware • In a typical scenario (worker/slave/compute) cluster nodes are dedicated resources with no external peripherals attached • Specifically designed for batch processing • Cluster Types: • Supercomputing clusters • Commodity hardware based clusters 9 Cluster computing • Known Softwares of Cluster computing: • HTCondor • Portable Batch System (PBS) • Load Sharing Facility (LSF) • Simple Linux Utility for Resource Management (SLRM) • Rocks • …. • …. 10 Cluster computing Advantages • Uniform access to available resources • Load balancing • Various job scheduling techniques • Cluster management tools • User interfaces • single job submission • complex workflows management • Fundamental level security (in typical cases) • Production quality softwares are available 11 Cluster computing Disadvantages • Applications need to adopt the way underlying infrastructure is designed • Cluster softwares are non-coherent • Steep learning curve • Less secure (improved significantly over the years) • Tightly coupled with the underlying resources • Difficult to port new applications • Applications need to stick with the available tools and libraries • Non standard interfaces 12 Cluster computing Current status • Cluster computing is one of the most established way of accessing limited amount of interconnected computational resources • For example, hundreds of organisations in industry, government, and academia have used HTCondor • Extension like Directed Acyclic Graph Manager (DagMAN) in HTCondor are still in use to define complex workflows https://research.cs.wisc.edu/htcondor/description.html 13 https://research.cs.wisc.edu/htcondor/dagman/dagman.html Cluster computing Short falls ̣ Uniform access to large number of resources ̣ System that can handle complex and large workloads • Possible next steps • Explore ways to find more resources • Uniform access to distributed computational resources • A bigger system for batch processing 14 Grid computing • Definition - 1 : (Computational Grid) Grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous resources dynamically at runtime depending on their availability, capability, performance, cost, and users' quality-of-service requirements. • Definition - 2 : (Computational Power Grids) The computational power grid is analogous to electric power grid and it allows to couple geographically distributed resources and offer a consistent and inexpensive access to resources irrespective of their physical location or access point. http://toolkit.globus.org/alliance/publications/papers/chapter2.pdf The anatomy of the grid: Enabling scalable virtual organizations The Grid 2: Blueprint for a new computing infrastructure 15 http://www.gridcomputing.com/gridfaq.html Grid computing Vision 16 Grid computing Actual picture http://kekcc.kek.jp/service/cc/uguide_en/10_1.system_tokutyou.html 17 Grid computing System components • Application execution tools • Information extraction • Multi-level scheduling • Runtime environments • Resource discovery • Security • Reliability • Data management • Quality of Services (QoS) • Interoperability • Resource allocation • Virtual Organisation • Metadata management Management System (VOMS) • …. • …. 18 Grid computing Virtual Organisation Management System (VOMS) • Virtual Organisation An abstract entity grouping Users, Institutions and Resources in a same administrative domain. • Virtual Organisation Management System VOMS is a system for managing authorisation data within multi-institutional collaborations. VOMS provides a database of user roles and capabilities and a set of tools for accessing and manipulating the database and using the database contents to generate Grid credentials for users when needed. Article: From gridmap-file to VOMS: managing authorization in a Grid environment http://toolkit.globus.org/grid_software/security/voms.php 19 Large Hadron Collider Grid (LCG) 20 http://www.isgtw.org/feature/isgtw-feature-mega-grid-mega-science Grid Computing Basic Workflow UI Input sandbox JDL DataSets info Information Output sandbox Service Resource SE & CE info Input Output voms-proxy-init Broker sandbox Job Submit Event sandbox Job Query + Broker Info Publish Expanded JDL Job Status Globus RSL Storage Element Job Submission Job Status Service Computing Job Status Element 21 Job workflow in gLite middleware: http://slideplayer.com/slide/2801198/ Grid computing at CERN • Large Hadron Collider (LHC) experiment at European Organisation for Nuclear Research (CERN) • The Grid runs more than two million jobs per day • Till 2013, system had 100PB of data and its growing 27PB per year • Expected to generate 400PB of data till 2023 https://www.youtube.com/watch?v=7k3VnWXOjP4 http://home.web.cern.ch/about/updates/2013/02/cern-data-centre-passes-100-petabytes http://www.hpcwire.com/2014/11/04/cern-details-openstack-journey/ 22 http://home.web.cern.ch/about/computing Grid computing Advantages • Seamless access to geographically distributed resources • Provide means to accelerate collaborative science • The concept of virtual organisations (VO) evolved with Grids • Each site in the Grid system is fully autonomous • Transparent access to the heterogeneous resources • Allows large scale batch processing capabilities 23 Grid Computing Disadvantages • Complex system architecture • Steep learning curve for the end user • Only allow batch processing, zero level interactivity • Difficult to attach a comprehensive economic model • The sites are autonomous but the softwares are tightly connected with the underlying hardware • Mostly available for academic and research activities • Lack of standard interface • Static availability of resources 24 Grid computing Current status • European Middleware Initiative (EMI) • Compute Resources: • gLite Middleware • Advanced Resource connector (ARC) • Unicore • Storage Resources • DCache • Castor • DPM 25 Grid computing Current status • Advanced Resource connector (ARC) 26 Grid computing Current status • Nordic Data Grid Facility (NDGF) • Storage/data grid based on DCache software stack • Data is distributed over many computing centres across Scandinavia • Secure data access using variety of protocols http://neic.nordforsk.org/about/strategic-areas/tier-1 27 Grid computing Short falls ̣ Tight coupling with hardware resources ̣ User interfaces ̣ Limited user community ̣ Weak monitoring and billing system ̣ Limited user level access ̣ Complex software stack ̣ Security model ̣ users and project management system Possible next steps A system that can address these limitations 28 Cloud computing NIST definition Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf 29 Example from SoVware Engineering Waterfall Model Spiral Model Grid Computing Unified Modeling Language (UML) Cloud Computing 30 Strength of cloud computing Cloud compu\ng reduces the gap between the concept and the implementa\on by defining roles and responsibili\es that allows: • level of abstrac\on • Service Level Agreements (SLA) • paradigm shiV from servers to *-as-a-service • possibility to a_ach economic model • on-demand resource availability 31 Cloud computing Roles and responsibilities • Infrastructure provider • Platform provider • Software provider • Network provider 32 Cloud computing
Recommended publications
  • Push-Based Job Submission Using Reverse SSH Connections
    rvGAHP – Push-Based Job Submission using Reverse SSH Connections Scott Callaghan Gideon Juve Karan Vahi University of Southern California USC Information Sciences Institute USC Information Sciences Institute Los Angeles, California Marina Del Rey, California Marina Del Rey, California [email protected] [email protected] [email protected] Philip J. Maechling Thomas H. Jordan Ewa Deelman University of Southern California University of Southern California USC Information Sciences Institute Los Angeles, California Los Angeles, California Marina Del Rey, California [email protected] [email protected] [email protected] ABSTRACT using Reverse SSH Connections. In WORKS’17: WORKS’17: 12th Workshop Computational science researchers running large-scale scientific on Workflows in Support of Large-Scale Science, November 12–17, 2017, Denver, CO, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3150994. workflow applications often want to run their workflows onthe 3151003 largest available compute systems to improve time to solution. Workflow tools used in distributed, heterogeneous, high perfor- mance computing environments typically rely on either a push- 1 INTRODUCTION based or a pull-based approach for resource provisioning from these Modern scientific applications typically require the execution of compute systems. However, many large clusters have moved to multiple codes, may include computational and data dependencies, two-factor authentication for job submission, making traditional au- and contain varied computational models ranging from a bag of tomated push-based job submission impossible. On the other hand, tasks to a monolithic parallel code. These applications are often pull-based approaches such as pilot jobs may lead to increased com- complex software suites with substantial computational and data plexity and a reduction in node-hour efficiency.
    [Show full text]
  • Introduction to Python University of Oxford Department of Particle Physics
    Particle Physics Cluster Infrastructure Introduction University of Oxford Department of Particle Physics October 2019 Vipul Davda Particle Physics Linux Systems Administrator Room 661 Telephone: x73389 [email protected] Particle Physics Computing Overview 1 Particle Physics Linux Infrastructure Distributed File System gluster NFS /data Worker Nodes /data/atlas /data/lhcb NFS HTCondor /home Batch Server Interactive Servers physics_s/eduroam Network Printer Managed Laptops Managed Desktops Particle Physics Computing Overview 2 Introduction to the Unix Operating System Unix is a Multi-User/Multi-Tasking operating system. Developed in 1969 at AT&T’s Bell Labs by Ken Thompson (Unix) Dennis Ritchie (C) Unix is written in C programming language. Unix was originally a command-line OS, but now has a graphical user interface. It is available in many different forms: Linux , Solaris, AIX, HP-UX, freeBSD It is a well-suited environment for program development: C, C++, Java, Fortran, Python… Unix is mainly used on large servers for scientific applications. Particle Physics Computing Overview 3 Linux Distributions Source: https://www.muylinux.com/2009/04/24/logos-de-distribuciones-gnulinux/ Particle Physics Computing Overview 4 Particle Physics Linux Infrastructure Particle Physics uses CentOS Linux on the cluster. It is a free version of RedHat Enterprise Linux. Particle Physics Computing Overview 5 Basic Linux Commands Particle Physics Computing Overview 6 Basic Linux Commands o ls - list directory contents ls –l - long listing
    [Show full text]
  • The Translational Journey of the Htcondor-CE
    Journal of Computational Science xxx (xxxx) xxx Contents lists available at ScienceDirect Journal of Computational Science journal homepage: www.elsevier.com/locate/jocs Principles, technologies, and time: The translational journey of the HTCondor-CE Brian Bockelman a,*, Miron Livny a,b, Brian Lin b, Francesco Prelz c a Morgridge Institute for Research, Madison, USA b Department of Computer Sciences, University of Wisconsin-Madison, Madison, USA c INFN Milan, Milan, Italy ARTICLE INFO ABSTRACT Keywords: Mechanisms for remote execution of computational tasks enable a distributed system to effectively utilize all Distributed high throughput computing available resources. This ability is essential to attaining the objectives of high availability, system reliability, and High throughput computing graceful degradation and directly contribute to flexibility, adaptability, and incremental growth. As part of a Translational computing national fabric of Distributed High Throughput Computing (dHTC) services, remote execution is a cornerstone of Distributed computing the Open Science Grid (OSG) Compute Federation. Most of the organizations that harness the computing capacity provided by the OSG also deploy HTCondor pools on resources acquired from the OSG. The HTCondor Compute Entrypoint (CE) facilitates the remote acquisition of resources by all organizations. The HTCondor-CE is the product of a most recent translational cycle that is part of a multidecade translational process. The process is rooted in a partnership, between members of the High Energy Physics community and computer scientists, that evolved over three decades and involved testing and evaluation with active users and production infrastructures. Through several translational cycles that involved researchers from different organizations and continents, principles, ideas, frameworks and technologies were translated into a widely adopted software artifact that isresponsible for provisioning of approximately 9 million core hours per day across 170 endpoints.
    [Show full text]
  • The Advanced Resource Connector User Guide
    NORDUGRID NORDUGRID-MANUAL-6 7/12/2010 The NorduGrid/ARC User Guide Advanced Resource Connector (ARC) usage manual 2 Contents 1 Preface 11 2 Roadmap 13 3 Client Installation 15 3.1 Beginner Installation . 15 3.1.1 Download . 15 3.1.2 Unpack . 15 3.1.3 Configure . 16 3.2 System-wide installation . 16 3.2.1 Installation via repositories . 17 3.2.2 Globus Toolkit . 18 3.2.3 Download the client . 18 3.2.4 Build . 19 3.2.5 Install the client . 20 3.3 Client configuration files . 21 3.3.1 client.conf . 21 3.3.2 srms.conf . 23 3.3.3 Deprecated configuration files . 24 4 Grid Certificates 25 4.1 Quick start with certificates . 25 4.1.1 Certificates in local standalone client . 25 4.1.2 Certificates for system-wide client installation . 27 4.1.3 Obtain a personal certificate . 27 4.2 Grid Authentication And Certificate Authorities . 28 4.2.1 Grid Login, Proxies . 28 4.2.2 Certificate Authorities . 29 4.2.3 Globus Grid certificates . 29 4.2.4 Associating yourself with a proper CA . 30 4.2.5 Friendly CAs . 31 4.2.6 Certificate Request . 32 4.2.7 Working with certificates: examples . 33 3 4 CONTENTS 5 Getting Access to Grid Resources: Virtual Organisations 35 5.1 NorduGrid Virtual Organisation . 35 5.2 Other Virtual Organisations . 36 6 Grid Session 37 6.1 Logging Into The Grid . 37 6.1.1 Proxy Handling Tips . 38 6.2 First Grid test . 38 6.3 Logging Out .
    [Show full text]
  • Facilitating E-Science Discovery Using Scientific Workflows on the Grid
    Chapter 13 Facilitating e-Science Discovery Using Scientific Workflows on the Grid Jianwu Wang, Prakashan Korambath, Seonah Kim, Scott Johnson, Kejian Jin, Daniel Crawl, Ilkay Altintas, Shava Smallen, Bill Labate, and Kendall N. Houk Abstract e-Science has been greatly enhanced from the developing capability and usability of cyberinfrastructure. This chapter explains how scientific workflow systems can facilitate e-Science discovery in Grid environments by providing features including scientific process automation, resource consolidation, parallelism, provenance tracking, fault tolerance, and workflow reuse. We first overview the core services to support e-Science discovery. To demonstrate how these services can be seamlessly assembled, an open source scientific workflow system, called Kepler, is integrated into the University of California Grid. This architecture is being applied to a computational enzyme design process, which is a formidable and collaborative problem in computational chemistry that challenges our knowledge of protein chemistry. Our implementation and experiments validate how the Kepler workflow system can make the scientific computation process automated, pipe- lined, efficient, extensible, stable, and easy-to-use. 13.1 Introduction “e-Science is about global collaboration in key areas of science and the next genera- tion of infrastructure that will enable it.”1 Grid computing “coordinates resources that are not subject to centralized control by using standard, open, general-purpose 1 John Taylor, Director General of Research Councils, Office of Science and Technology, UK. J. Wang (*), D. Crawl, I. Altintas, and S. Smallen San Diego Supercomputer Center, UCSD, 9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA e-mail: [email protected] P. Korambath, K.
    [Show full text]
  • A Comprehensive Perspective on Pilot-Job Systems
    A Comprehensive Perspective on Pilot-Job Systems ∗ Matteo Turilli Mark Santcroos Shantenu Jha RADICAL Laboratory, ECE RADICAL Laboratory, ECE RADICAL Laboratory, ECE Rutgers University Rutgers University Rutgers University New Brunswick, NJ, USA New Brunswick, NJ, USA New Brunswick, NJ, USA [email protected] [email protected] [email protected] Pilot-Jobs provide a multi-stage mechanism to execute ABSTRACT workloads. Resources are acquired via a placeholder job and subsequently assigned to workloads. Pilot-Jobs are having Pilot-Job systems play an important role in supporting dis- a high impact on scientific and distributed computing [1]. tributed scientific computing. They are used to consume more They are used to consume more than 700 million CPU hours than 700 million CPU hours a year by the Open Science Grid a year [2] by the Open Science Grid (OSG) [3, 4] communi- communities, and by processing up to 1 million jobs a day for ties, and process up to 1 million jobs a day [5] for the ATLAS the ATLAS experiment on the Worldwide LHC Computing experiment [6] on theLarge Hadron Collider (LHC) [7] Com- Grid. With the increasing importance of task-level paral- puting Grid (WLCG) [8, 9]. A variety of Pilot-Job systems lelism in high-performance computing, Pilot-Job systems are used on distributed computing infrastructures (DCI): are also witnessing an adoption beyond traditional domains. Glidein/GlideinWMS [10, 11], the Coaster System [12], DI- Notwithstanding the growing impact on scientific research, ANE [13], DIRAC [14], PanDA [15], GWPilot [16], Nim- there is no agreement upon a definition of Pilot-Job system rod/G [17], Falkon [18], MyCluster [19] to name a few.
    [Show full text]
  • Glite Middleware
    Enabling Grids for E-sciencE Overview of the EGEE project and the gLite middleware www. eu-egee.org EGEE-III INFSO-RI-222667 Outline Enabling Grids for E-sciencE • What is EGEE? – The project – The infrastructure • gLite middleware • EGEE applications • Sources of further information EGEE-III INFSO-RI-222667 2 Defining the Grid Enabling Grids for E-sciencE • A Grid is the combination of networked resources and the corresponding middleware, which provides services for the user. EGEE-III INFSO-RI-222667 Providing a Production Grid Infrastructure for Collaborative Science 3 The EGEE Project Enabling Grids for E-sciencE • Aim of EGEE: “to establish a seamless European Grid infrastructure for the support of the European Research Area (ERA)” • EGEE – 1 April 2004 – 31 March 2006 – 71 partners in 27 countries, federated in regional Grids • EGEE-II – 1 April 2006 – 30 April 2008 – EddtiExpanded consortium • EGEE-III – 1 May 2008 – 30 April 2010 – Transition to sustainable model EGEE-III INFSO-RI-222667 Providing a Production Grid Infrastructure for Collaborative Science 4 Defining the Grid Enabling Grids for E-sciencE • A Grid is the combination of networked resources and the corresponding middleware, which provides services for the user. EGEE-III INFSO-RI-222667 Providing a Production Grid Infrastructure for Collaborative Science 5 EGEE working with related Enabling Grids for E-sciencE infrastructure projects GIN EGEE-III INFSO-RI-222667 Providing a Production Grid Infrastructure for Collaborative Science 6 What is happening now? Enabling Grids
    [Show full text]
  • Pos(EGICF12-EMITC2)050
    A Science Gateway Getting Ready for Serving the International Molecular Simulation Community PoS(EGICF12-EMITC2)050 Sandra Gesing Center for Bioinformatics & Department of Computer Science, University of Tübingen Sand 14, 72076 Tübingen, Germany E-mail: [email protected] Sonja Herres-Pawlis1 Department of Chemistry, Ludwig-Maximilians-University Munich Butenandtstr. 5-13, 81377 München, Germany E-mail: [email protected] Georg Birkenheuer Paderborn Center for Parallel Computing, University of Paderborn Warburger Str. 100, 33089 Paderborn, Germany E-mail: [email protected] André Brinkmann Johannes Gutenberg-University Mainz 55099 Mainz, Germany E-mail: [email protected] Richard Grunzke Center for Information Services and High Performance Computing, Technische Universität Dresden Zellescher Weg 12-14, Germany E-mail: [email protected] Peter Kacsuk Laboratory of Parallel and Distributed Systems, MTA SZTAKI Kende Street 13-17, 1111 Budapest, Hungary E-mail: [email protected] Oliver Kohlbacher Center for Bioinformatics & Department of Computer Science, University of Tübingen Sand 14, 72076 Tübingen, Germany E-mail: [email protected] 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it Miklos Kozlovszky Laboratory of Parallel and Distributed Systems, MTA SZTAKI Kende Street 13-17, 1111 Budapest, Hungary E-mail: [email protected] Jens Krüger Center for Bioinformatics & Department
    [Show full text]
  • EGI Federated Platforms Supporting Accelerated Computing
    EGI federated platforms supporting accelerated computing PoS(ISGC2017)020 Paolo Andreetto Jan Astalos INFN, Sezione di Padova Institute of Informatics Slovak Academy of Sciences Via Marzolo 8, 35131 Padova, Italy Bratislava, Slovakia E-mail: [email protected] E-mail: [email protected] Miroslav Dobrucky Andrea Giachetti Institute of Informatics Slovak Academy of Sciences CERM Magnetic Resonance Center Bratislava, Slovakia CIRMMP and University of Florence, Italy E-mail: [email protected] E-mail: [email protected] David Rebatto Antonio Rosato INFN, Sezione di Milano CERM Magnetic Resonance Center Via Celoria 16, 20133 Milano, Italy CIRMMP and University of Florence, Italy E-mail: [email protected] E-mail: [email protected] Viet Tran Marco Verlato1 Institute of Informatics Slovak Academy of Sciences INFN, Sezione di Padova Bratislava, Slovakia Via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] E-mail: [email protected] Lisa Zangrando INFN, Sezione di Padova Via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] While accelerated computing instances providing access to NVIDIATM GPUs are already available since a couple of years in commercial public clouds like Amazon EC2, the EGI Federated Cloud has put in production its first OpenStack-based site providing GPU-equipped instances at the end of 2015. However, many EGI sites which are providing GPUs or MIC coprocessors to enable high performance processing are not directly supported yet in a federated manner by the EGI HTC and Cloud platforms. In fact, to use the accelerator cards capabilities available at resource centre level, users must directly interact with the local provider to get information about the type of resources and software libraries available, and which submission queues must be used to submit accelerated computing workloads.
    [Show full text]
  • Experimental Study of Remote Job Submission and Execution on LRM Through Grid Computing Mechanisms
    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms Harshadkumar B. Prajapati Vipul A. Shah Information Technology Department Instrumentation & Control Engineering Dharmsinh Desai University Department Nadiad, INDIA Dharmsinh Desai University e-mail: [email protected], Nadiad, INDIA [email protected] e-mail: [email protected], [email protected] Abstract —Remote job submission and execution is The fundamental unit of work-done in Grid fundamental requirement of distributed computing done computing is successful execution of a job. A job in using Cluster computing. However, Cluster computing Grid is generally a batch-job, which does not interact limits usage within a single organization. Grid computing with user while it is running. Higher-level Grid environment can allow use of resources for remote job services and applications use job submission and execution that are available in other organizations. This execution facilities that are supported by a Grid paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of middleware. Therefore, it is very important to preparing test Grid computing environment that we use understand how a job is submitted, executed, and for experimental testing of concepts. This paper presents monitored in Grid computing environment. experimental testing of remote job submission and Researchers and scientists who are working in higher- execution mechanisms through LRM specific way and level Grid services and applications do not pay much Grid computing ways. Moreover, the paper also discusses attention to the underlying Grid infrastructure in their various problems faced while working with Grid published work.
    [Show full text]
  • Pilot-Job Provisioning Through CREAM Computing Elements on the Worldwide LHC Computing Grid Alexandre Boyer, David Hill, Christophe Haen, Federico Stagni
    Pilot-Job Provisioning through CREAM Computing Elements on the Worldwide LHC Computing Grid Alexandre Boyer, David Hill, Christophe Haen, Federico Stagni To cite this version: Alexandre Boyer, David Hill, Christophe Haen, Federico Stagni. Pilot-Job Provisioning through CREAM Computing Elements on the Worldwide LHC Computing Grid. 34th European Simulation and Modelling Conference (ESM), Oct 2020, Toulouse, France. hal-03191075 HAL Id: hal-03191075 https://hal.archives-ouvertes.fr/hal-03191075 Submitted on 6 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pilot-Job Provisioning through CREAM Computing Elements on the Worldwide LHC Computing Grid Alexandre F. Boyer1,2, David R.C. Hill1, Christophe Haen2, Federico Stagni2 {alexandre.franck.boyer, christophe.haen, federico.stagni}@cern.ch, [email protected] 1 Université Clermont Auvergne, ISIMA, CNRS, LIMOS, Clermont-Ferrand, France 2 European Organization for Nuclear Research, Meyrin, Switzerland Abstract The push model, used to manage Computing Grid resources, raises several issues that prevent employing the resources at their full capacity and, thus, limits the Grid throughput. While the push model remains necessary to get access to the resources, this paper aims at addressing some of these issues to make better use of the Worldwide LHC Computing Grid.
    [Show full text]
  • Workload Management in the EMI Project
    International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing Journal of Physics: Conference Series 396 (2012) 032021 doi:10.1088/1742-6596/396/3/032021 Workload management in the EMI project Paolo Andreettoa, Sara Bertoccoa, Fabio Capanninib, Marco Cecchib, Alvise Dorigoa, Eric Frizzieroa, Alessio Gianellea, Aristotelis Kretsise, Massimo Mezzadric, Salvatore Monforted, Francesco Prelzc David Rebattoc, Massimo Sgaravattoa and Luigi Zangrandoa a INFN Padova, Via Marzolo 8, I-35131 Padova, Italy b INFN CNAF, Viale Berti Pichat 6/2, I-40127 Bologna, Italy c INFN Milano, Via Celoria 16, I-20133 Milano, Italy d INFN Catania, Via Santa Sofia, 64, I-95123 Catania, Italy d Research Academic Computer and Technology Institute (RACTI), Patras, Greece Abstract. The EU-funded project EMI, now at its second year, aims at providing a unified, high quality middleware distribution for e-Science communities. Several aspects about workload management over diverse distributed computing environments are being challenged by the EMI roadmap: enabling seamless access to both HTC and HPC computing services, implementing a commonly agreed framework for the execution of parallel computations and supporting interoperability models between Grids and Clouds. Besides, a rigourous requirements collection process, involving the WLCG and various NGIs across Europe, assures that the EMI stack is always committed to serving actual needs. With this background, the gLite Workload Management System (WMS), the meta-scheduler service delivered by EMI, is augmenting its functionality and scheduling models according to the aforementioned project roadmap and the numerous requirements collected over the first project year. This paper is about present and future work of the EMI WMS, reporting on design changes, implementation choices and long- term vision.
    [Show full text]