VIBRATION OF STRESSED SHELLS OF DOUBLE CURVATURE

by -

Paul Aw Eboper

Dissertation submitted to the Graduate Faculty of the

Virginia Polytechnic Institute

in candidacy for the degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING MECHANICS CN = | APPROVED: / en’ v7 dork Chairman, Prof. Daniel Frederick

1¢ imistion tang dee \hoe aw

Prof. . L. wate Prof. . 1, Johhéon EP iabagea' a ( —_ Yeo lt ( r LL? Ly Ay

Prof. . Maderspach Prof. R. McNitt

Blacksburg, Virginia

June 1968

5

4 LD 5655 Y856 19628 Coz

C. 2,

’ ’

oy oy

he he

} }

od od

eels eels re re II. TABLE OF CONTENTS

CHAPTER PAGE

IT. TITLE . 1. 1 1 ww ww ww we we ew we ee ew ee ee

II. TABLE OF CONTENTS . 2. 6 2 © 2 © ee 8 eo we ee il

III. ACKNOWLEDGMENTS . 2. 2. 6 6 2 © © ee ew ew ew ew ws iv

IV. LIST OF FIGURES AND TABLES . 2. «© © «© © © © we

V. INTRODUCTION . . 2. 2 © © © © © © © ew ww

VI. SYMBOLS . 2. 2 2 2 6 0 ew ew ew we ew ew ew we

VII. NUMERICAL ANALYSIS OF VIBRATIONS OF GENERAL PRESTRESSED SHELLS OF REVOLUTION . . 6 2 6 © © © © «© © we ww

A. Development of General Equations of Motion

1. Governing nonlinear equations ...... 11

2. Vibration equations . . 2. « « « «© «© « © «© « 16

4%. Reduction to ordinary differential equations. 2d

B. Closed Form Solution for Cylinder Vibrations 26 on . Development of Numerical Solution ...... e.

1. Development of difference equations .... et

2. Numerical solution ...... -. «© «© «© » 2 eo 32

VIII. APPROXIMATE SHELI EQUATIONS . 2. 2. 2 6 2 © © © we we we wo a9

A. Derivation of Approximate Shell Equations ... D9

B. Solution of Approximate Vibration Equations . OL

C. Solution of Approximate Vibration Equations for a Freely Supported Shell .....e 2. «es 60

D. Membrane Solution of Approximate Vibration

Equations e e e e Cd e Sd e * . e e e e ° e e ° 61

ii iii

CHAPTER PAGE

1. Solution of membrane vibration equations for a freely supported shell ...... 63

2, Characteristic roots from membrane theory .. 65

TX. RESULTS AND DISCUSSION... . 2 ee ee wee ee eee 69

A. Shell Configurations Investigated ...... +.- 69

B. Accuracy of Solutions « « «6 2. +e © © © ee we ew © [2

C. Effects of Meridional Curvature ...... 80

D. Membrane and Pure Bending Analysis ...... 85

E. Prestressing Effects of Lateral Pressure ..... 90

F. Effects of Edge Restraint ...... -e ee eee

X. CONCLUDING REMARKS . 2. 2 2 6 © © © © @ © © we th ew ew ew ew et OD

XI. REFERENCES . 2. 2. 2 2 0 © © © © © © © we ow we ew ew we hw wl el eC LOL

XII. VITA. www we ee we ee ww we tw ww we we tw ww we LOK

XTII. APPENDIX A. 2. 2. 2 2 0 6 © © oe ew ew ew ow tw we ww ww ww ew LOD

XTV. APPENDIX B... 2. 3 2 1 2 0 © ee ew ew ew ew ew ew ew ew ew wl ew LID

XV. APPENDIX C . 2. 2 6 2 ew ee we ew ew eo we we ew ew we ew LY

XVI. APPENDIX D. 2. . 2 0 ew ww ww ew we we et wt eh wh eh whe LLL

XVIL APPENDIX E ° » ° e e e e e e ¢ e e . e cf se e e 6 e ° 124 IIT. ACKNOWLEDGMENTS

The author wishes to express his thanks to the National

Aeronautics and Space Administration for permitting him to perform this research as part of his work assignment at Langley Research

Center. He also wishes to thank Dr. Daniel Frederick, Professor of

Engineering Mechanics, Virginia Polytechnic Institute, and Dr.

Manuel Stein of NASA, for their council and guidance, and Mrs.

Nancy Sykes, Mrs. Martha Robinson, and Mrs. Cornelia Dexter for developing the computer programs and finally, his wife Marilyn for her patience and consideration throughout the course of the research.

iv IV. LIST OF FIGURES AND TABLES

FIGURE PAGE

1. Shell middle-surface geometry . .. 6. 6 «© «© © © © © «© «© © IO

2. Middle surface quantities . .. 1. 1. 6 26 «© 6 «© © © © © ew © LD

(a) Stress resultants and displacements ...... - 15

(b) Moment resultants and rotations ...... - 15

3. Geometry of class of shelis investigated ...... +8 YO

4, Comparison of minimum frequencies from approximate analysis with those from,numerical analysis for freely supported shells (5, = 40.053 5S = 3;

a= =_ 10001000) ° ° e ° ° o ° ° e e e e ° e . . e e e ° . e e {34

5. Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells (ky, = 20.1; S = 3; R 4 = 1000 } e e ° ° ° . e ° ° e . ° ° e ° e . . . e e . «6 Th

6. Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells (,, = 40.15; S = 3; R 4 = 1000 ) ° ° . . « ° . e@ ° ee 08 « e © @ » o e . ° e e «6 15

{. Comparison of meridional modes for several for successive degrees of curvature, e = -0.05, -O.1, -0.153 3=3; F=1000).. 6.00.0... .0006. 77

8. Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells (, = 10.05; S = 10; 5 = 1000). 78

9. Meridional modes of w for several successive n (, = -0.05; S= 10; R =1000) ...... 79

iO. Effect of meridional curvature on the fundamental frequencies of freely supported unstressed shells (+ = -) percent to +5 percent; S = 3; - = 1000] oe « « 82 vi

FIGURE PAGE

ll. Effect of meridional curvature on the fundamental frequencies of freely supported stressed shells for various lengths and thicknesses (1 = -5 percent to +5 percent; S=1, 5, 10; : = 100, 200, 1000 ) oe 84

1e. Effect of meridional curvature on the natural frequencies of freely supported unstressed membrane

shells (sy = ~0.5 to +0.5). ° « . e e ° ° e ° e ° e ° 86

13. Effect of meridional curvature on the fundamental frequencies of freely supported shells subjected to a constant circumferential tensile and compressive prestress (+ = -5 percent to +5 percent; S = 3;

h =— 200)200 e e e e e ° e ® e e e * ° * e es s e e e e e . 91 14, Pressure stabilization of freely supported shells (+ = -5 percent to +5 percent; S = 3; - = 1000 } o 8 99

15. Effect of constant circumferential prestress on the fundamental frequencies of freely supported shells = -3 percent to +3 percent; S = 3; A = 200; Ne -4 ~4 yp =72 x10 to +2x 10 ceeeh ee 99

16. Effect of edge restraint on the natural vibration of unstressed shells (x, =+0.1; S = 3; : = 1000 } 2 8 96

TABLE

Comparison of characteristic roots obtained from membrane and bending theories (n=4)...... 89

it. Comparison of the effect of edge restraint on the natural frequencies of a negative curvature shell R (sy = -0.05; 5 = 45 a => 1000 | o «© © e «© © e© # «@ 97 V. INTRODUCTION

In the design of shell structures for launch vehicles, planetary atmospheric entry probes, or similar structures, knowledge of the natural frequencies and mode shapes of the systems is of fundamental importance in determining their dynamic behavior. Shells of double curvature are common structural elements in aerospace and related industries, but due to the complexity of their configurations and governing equations, little has been done to classify their general dynamic behavior. Reference 1 gives a survey on the present state of the art in the area of analysis of free vibrations of shell struc- tures. The subject of this dissertation is the determination of the effect of the meridional curvature on the natural vibrations of a class of axisymmetrically prestressed doubly curved shells of revolution. Two methods of approach are used in this analysis. [In

Chapter VII the exact equations of motion are solved using approximate techniques of solution, while in Chapter VIII approximations are made to the exact equations so that closed form techniques of solution are possible. Both of the above methods are used in this investigation to complement one another.

Since the shells are too complex to allow closed form solutions of the exact equations, numerical techniques are used in Chapter VII to analyze the dynamic behavior. Several numerical methods have recently been developed for static stress analysis and unstressed free vibration analysis of general shells of revolution. Static stress analysis is considered in references 2 to 5 and unstressed vibrations are considered in references 6 and 7. Membrane and flexural vibrations of toroidal shells are treated in references 8 and 9 on the basis of the numerical approach of reference 2. In the present investigation, differential and difference equations that govern the asymmetric linear vibration of a general class of pre- stressed shells of revolution are derived using the nonlinear shell theory of reference 10. A finite difference procedure similar to that of reference 2 (utilizing and extending the ideas of references 8 and

9) is then formulated to obtain solutions of the equations.

Numerical methods yield accurate results; however, it becomes impractical to attempt an extensive parametric study of the behavior of shell systems even with high speed computers. Rapid closed form techniques of solution are possible when approximations are made to the equations of motion; however, the range of application is restricted. These techniques are used in Chapter VIII. The solutions are limited to shells of revolution with shallow constant meridional curvature with no shallowness limitation in the circumferential direction.

By perturbing the geometry of the cylinder and referencing the zero strain state at this new configuration, a set of nonlinear homogeneous field equations governing the dynamic behavior of doubly curved shells with positive or negative constant shallow meridional curvature is developed. The procedure used in developing these equations is similar to that used in references 11 and le where

Donnell-type equations are developed from flat plate equations. The nonlinear cylinder strain-displacement relations from reference 10 are modified slightly in the twisting curvature relation and small

nonlinear terms are deleted from the middle surface strain relations.

The linearization and geometric perturbation of these equations

coupled with the assumption of constant prestress rotations result in a set of strain-displacement relations which have corresponding equilibrium equations with constant coefficients. These equations govern the natural vibrations of prestressed nearly cylindrical shells of revolution and are solved here for the natural vibrations of shells with freely supported edges similar to that which was done previously for cylindrical shells, see for example references 13, 14, and 15.

Results from the shallow shell analysis of Chapter VIII are

compared with those obtained by the use of techniques and equations

of Chapter VII to indicate the range of application of the present analysis. This simplified analysis is then used to investigate the effects of meridional curvature on the fundamental vibrations of freely supported shells as the length and thickness parameters are varied.

The equations described above are also solved for the natural vibration of membrane shells and inextensional shells with freely

supported edges. The characteristic roots of the membrane field equations are also investigated and compared with the corresponding characteristic roots of the bending field equations to show the dependence of frequencies on shell membrane resistance. The solutions to the membrane theory afford a simple method of determining shell configurations of negative curvature for which bending action pre- dominates during vibratory motion in certain modes.

The approximate analysis is then used to investigate the effects of meridional curvature on the fundamental vibrations of shells as the length and thickness parameters are varied, and to determine the degree of stabilization afforded by the application of constant directional lateral pressures to the shell systems. Finally, the approximate solution is used to determine the unstressed fundamental frequencies of clamped shells and to determine the stiffening action due to the additional edge restraint. Me Ne N n | oO QO g7 Ng sMg

Al 8 My Ne gsNggrQp2Qy goMg, Young's bending moment modified modified modified nondimensional reference functions extensional displacement number nondimensional in-plane central number total shell station eqs. perturbed perturbed (eq. number thickness VI. variable of of (19)) (75)) modulus rise number, stiffness moment displacement prestress stress length defined axial circumferential SYMBOLS stiffness state state of amplitude of prestress curvatures half-waves of the resultants i intervals resultants (see by = (eq. elasticity stress 0, shell equations eqs. amplitude (eq. 1, coefficients (16)) parameters meridian waves 2, along resultants (20)) (eqs. associated associated (16)) «++, (77) the coefficients (12)) N meridian (see with with surface loading

nondimensional radius of cross section, p/a

radius of cylinder

principal radii of curvature (see fig. 1)

total meridional arc length

total nondimensional meridional arc length,

s/a; s/R

time

displacement variables in meridional (&),

circumferential (8), and normal directions,

respectively, of undeformed middle surface

defining perturbed state

nondimensional meridional coordinate

ratio of the circumferential to axial wavelength

length of interval between stations, S/N

modal normalizing factor

cofacters of 4 x 4 matrix given in eq. (51)

middle-surface strains associated with the

perturbed state

MD MD circumferential coordinate in undeformed shell

KerKo keg middle-surface bending strains associated with

the perturbed state

characteristic roots

thickness parameter, a ; rol rol

Poisson's ratio

mass density

meridional coordinate in undeformed shell

cross-sectional radius (fig. 1)

percent ratio of meridional rise to length

middle-surface rotations associated with

perturbed state

prestress meridional rotation

natural frequency 2 am ay (1 - *)

Q7 = z frequency parameter

Notations Used to Identify Load and Deformation Variables:

Unmarked variables indicate variables associated

with perturbed state only

indicates modified variables associated with

the total deformation measured with respect

to an unstressed shell

“N indicates variables associated with total

deformation measured with respect to an

unstressed undeformed cylinder

indicates modified variables associated with the

prestress state only

indicates physical stress resultant quantities The before a subscript denotes differen-

tiation with respect to the following

subscripted variable. A dot over a

indicates differentiation of the quantities

with respect to time.

1x 4 column matrices:

Z. dependent variable i 1 x 8 column matrices:

A. amplitude coefficients J 4 x 4 matrices:

A, 2B, sC, sDysDyrEy5B N difference-equation coefficients ts, boundary-equation coefficients

equilibrium-equation coefficients Ba Oj? Ay

recursion coefficients a,8 boundary-condition-selection matrices

8 x 8 matrices:

Noi boundary stress coefficients

Yay boundary displacement coefficients

2, boundary-condition-selection matrices VII. NUMERICAL ANALYSIS OF VIBRATIONS OF GENERAL PRESTRESSED * SHELLS OF REVOLUTION

A. Development of General Equations of Motion

In this section, the linear equations of motion are derived for a symmetrically prestressed shell of revolution with an arbitrary meridional configuration. The nonlinear shell theory given in reference 10 forms the basis for all analytical work done in this and subsequent sections.

The shell geometry is illustrated in figure 1. The location of points on the middle surface of the shell is described by the principal coordinates (&,9), where & is the meridional distance measured on the middle surface from one boundary, and 98 is the circumferential angle. Since the shell is axisymmetric, it is completely described by the meridional shape parameter o(&) which is the radial distance from the axis of revolution to the middle surface of the shell.

The principal radii of curvature of the middle surface, R,(§) and Ro(), are given by: 1 -(@e) ap ae=

¥ Most of the material covered in Chapter VII has been pre- published in the report "Vibration and Buckling of Prestressed Shells of Revolution" NASA TN D-3831, March 1967. 10

Normal

“2 Middle surface

Figure 1.- Shell middle-surface geometry.

11 | Jo)

The shell is assumed to have a constant thickness h measured along the normal to the middle surface and boundaries at §&€ =O and

€ = s, where s is the total meridional arc length. The material is assumed homogeneous and isotropic with mass density v, Young's. modulus of elasticity E, and Poisson's ratio u.

1. Governing nonlinear equations.- General nonlinear shell

equations in which strains are assumed to be small and rotations, moderately small, are given in reference 10. For a shell of revolution, these equations become, when inertia terms are added,

~ ~ do ~ Oo 1/1 1 \~ (of, | é + Neove 7 ae Ny + Re Qe + 3 ( - = Mea .e

? 7

Le

- Gar . ( Pat¥o , + pP = phvW (2c)

? 3

(oii, + _ © H - of, =0 (2a) E £ 60,9 d& 8 E 3

oM &0 +M 0,0 °+ 2Rgd—~€9 eQ, 8 = 0 (2e 26 ,

where the comma before a subscript denotes partial differentiation with respect to the succeeding subscripted independent variables

(€ or 98) and dots over a quantity denote differentiation with respect to time. The equilibrium equations (2a), (2b), and (2c) represent the sum of forces along coordinates of the undeformed surface, and the perturbed displacements of the middle surface JU,

V, and W are measured in the direction of the coordinates of the undeformed surface with W measured positive along the outward normal.

The boundary conditions considered on the edges € = 0 and

€ =s may be chosen from any combination of the following four pairs of quantities in which either quantity (but not both) of each pair is prescribed: a)

N or U 2 ° | | | Neg (ake ~ ake | Meo 3 (Be +H) 8 or V | ©) 0 +i - 0,N, - ,N,. or W € p £6,9 gE eo E9

Py or Me ;

The equations have been derived by use of the Kirchhoff-Love assumptions, that is, normals to the undeformed middle surface remain normal to the deformed middle surface, normal strain is zero, and the normal stress is negligible. Rotary inertia terms have been neglected in the moment equations. Modified stress and moment resultants have been used in the development of equations (2) and (43) and are defined as follows: \ Oo Ne = Np - R,

Oo M N. = N -— 8 9 Ry

Oo ~ _y Oo] Moe

g6 ~ “£8 Ro

Oo N =N Oo] Meg 6& “GE R E

~ Oo M, =M E E 14

| 0 | U = mae | | ~ Ne L oO Meg == Mog = = 3 (Meg + Moe } | i (4)

The modified transverse shear stress resultants , and Qq may be found by applying the definitions in equations (4) to the moment equilibrium equations (eqs. (2d) and (2e)). O The quantities Neos Neos N Nog» Qe and Qa represent go ? the total middle-surface stress resultants (fig. 2(a)), and the quantities Mes Ma Megs and Moe represent the total middle- surface moment resultants (fig. (2(b)). No attempt is made to relate these stress and moment resultants to the distribution of stress through the thickness of the shell. The equations of reference 10 have been derived without dependence on such a relation- ship; thus, any formulation consistent with thin-shell theory is acceptable. According to reference 10, the addition of terms iike

M°/R to the N° quantities in the stress-strain relations does not introduce errors any greater than those already introduced by neglecting transverse shear flexibility in the Kirchhoff-Love hypothesis. Consequently, the N quantities may be treated as stress resultants without introducing an inconsistency in the thin-shell analysis.

The sum of the moments about the normal direction is M 0 0

Neg o_ 88Ry Ly GE Oo 4 R$9 _ 15

Normal

(a) Stress resultants and displacements. cb.Normal

3 hm 9 ee E (Du 9 9

(b) Moment resultants and rotations.

Figure 2.- Middle surface quantities.

16

Hence, from the definition of the modified stress resultants sr sr

Noe = Neg mee em em

Therefore, the sixth equilibrium equation, that of equilibrium of moments about the normal, is identically satisfied by symmetric modified stress resultants.

2. Vibration equations.- In the derivation of the vibration

equations, the total rotations and total stress and moment resultants are separated into the parts associated with the initial axisymmetric prestress and the parts associated with the infinitesimal perturbed time dependent displacements about the prestressed state. Symbols with bars represent those quantities associated with the prestress conditions and symbols without bars represent those associated with the perturbed state. Thus, the total stress state may be completely described by these quantities from the relations:

N, = Ne(€) + N,(8,9,¢) .

Ng = No(£) + No(£,9,t)

Neg = Neg (£59,t)

Q, = O,(€) + Q,(8,9,¢) \ Qy = %(E,9,t) 17

rae rae = Ti, (£) + Mp(£,,¢) i i

ae ae My(€) + Mg(&,9,%)

rae £9 = Mp g(£»9,+) | (6)

The total rotations are

= ] ,(€) + ,(6,9,%) 3 une

= ! Pg \ €,9,t) (7) Be

D

@ = o(£,9,t) and the total surface loading is described by

H re B,(t) (8)

tl De P(E)

since no additional surface loading is assumed to be associated with the vibrating state. Substitution of equations (6), (7), and (8) in equation (2a) yields

oeae Fve Lp kayade ~ ae *o* +£R, Q Oe -27 Ry 56,5MeN +P P, +1 SP Ne ++ ONoN

dp p l/l 1 p *Ngo,o de No * Re * a(R -iy ) "42,0 “oR, Pee 18

op — Pga Peg - 5kh c (Ne + *) \ + ‘ a 7) gE 9 . > = ~ =\l_ vs { my ON, - 5% 4 (Ne + nh = pvhU (9)

where Q-derivatives of barred quantities vanish as a result of

axisymmetry of the prestressed state. The prestressed shell is in

equilibrium, thus, the sum of the terms enclosed by the first set of braces in equation (9) vanishes identically. Furthermore, the perturbation of the shell away from the prestressed configuration is

governed by linear theory. Therefore, the nonlinear terms enclosed by

the second pair of braces are neglected.

The term in equation (9) enclosed by the third pair of braces

(i.e., the interaction between the prestress deformation and the perturbation stress resultants) is usually neglected in the procedure followed in the classical linearization process for a cylinder. If

this term is neglected, the general assumption is made that the prestress rotation is uniformly zero throughout the shell. The error

introduced is usually negligible, but for certain boundary conditions

or for sharply varying surface loads, this term may be significant and is consequently retained in this analysis. If oe and Pee are neglected, the problem may be reinterpreted as that of a pre-

stressed but undeformed shell of revolution perturbed about the

undeformed state. With this term retained, the equilibrium equation

in the meridional direction (eq. (9)) reduces to 19

do p ( Ong b)| + Nig£0,0 9 - aE d& NG8 t Re 003)1f/_ (F -LR Meg 8a, Ne: Q

-51/5. (Ne + +5Ng) Pg _28 ON.ON, == phvwphvu (10a)10

By the same procedure, the remaining equilibrium equations

(eqs. (2b) to (2e)) are linearized, and reduce to:

- Re NgPq +5 (% + >| - Re 8,Neg = ohvV (10b)

Pe) + Q g-P f e, + =|8\ - (Pee)(= - Nog= 9 - (PM) =

- OeNegg = phvw (10¢)

(me) + Meg 9 - se M, - pa, = 0 (10d)

Meo) +My9 + SE Meg - P% = 0 (10e)

Solving equations (104) and (10e) for Qe and Qo and substituting for them into equations (10a), (10b), and (10c), eliminates these quantities from the system. The parameters defining the geometry of 20

the middle surface can be nondimensionalized by using a reference

length a, as follows:

x= a (12)

r= a and nondimensional curvatures can be defined as

a kK =-=— x R Me oe (12) 8 Ry

Upon completion of these manipulations, the following equilibrium

equations result:

dr dr ar dr a(S Ny + TNs x + Neg,e - ax Ne) + kL ax Me + THM, x - kK ax My

+i 3k -k,\ M -a|rk NN. +i(N, +5 D 2 x 6} ~£0,8 ere Ove 6} *,8

+ rk_O,N, | = ra hv (13a) xe &

NMI el

2 d dr d -ar Gar + KN +=, +2 ax M + rM - a € Ex * E Xx

OU ax 1

+ M g0,0 * Meo xo + > Me a0 * (- KEN RIS

Bi E — dr — 8 ~ F—~ Oe - Noo 9 ~ Gx Pee 7 R

— Om - FNgo9 ) > ra hyW (13c)

Similarly, the boundary conditions (eqs. (3)) are given as

Ne O or Us=

1 lL f= = Neg + 3e (3g - i.) Meg + 5 (Ny + No) ? or

OM

1 1 dr £6,080; — — oO a a * 5 a (Me - Mo) * |. NePg ~ Pee II or

i: or

The modified stress-resultant—strain relationships, if physical linearity is assumed, are Ny = B(e + <9) Ng = B(eq+ Hey) Neg = BIL - u) gg Ny = D(my + tg) 22

2 Mo = D(kg + Hig) = WM, + D{1 - wu } Kp

Meg = D(1 - pu) Keg (15) where

Eh B= l- um (16) D= —_ 3 12(2 - i )

The linearized strain-displacement relationships, from reference 10, reduce to

‘\ cpg 1 (Ux tM + _TAU - _OM)

V 1jidrwv 8 =siu{joe_. —2— £9 a & r + r + ay

1 U 9 V x drv Q E Q E =| uw22 2 OO —. - — “e¢ a (2. +3 dx Br + B Kev er We)

1 . me = a Ux te U- V xx (17)

_ oi fay, Sey | 00 ar x 6” 2\a&r r ,0° #O "dr. a r 22 BK - a) _ CX -*) L& = 3k) ar |

_ W 1x0 , dr W *,8

r + ax 2 r ~

2)

The middle-surface rotations are given in terms of displacements as

5 1 (x0 - Wx)

W 9

® = = oy -— (18)

U _1l dr V 39 o-b(v +E. 2]

The prestress terms are given nondimensionally as

Ne = Be, (x) Ng = Be, (x) (19)

4. Reduction to ordinary differential equations.- With equations

(13) and (15) to (19), the equilibrium equations can be reduced to three partial differential equations with the displacements as the unknown dependent variables where the highest order derivative in x is a fourth-order derivative. However, since the solution, in general, can only be achieved by numerical techniques, the procedure of reference 2 is followed, where dependence on 9 is removed by assuming a solution of the separable type and introducing M, as an additional unknown. This procedure yields a set of four second- order ordinary differential equations with variable coefficients.

The fourth equation is simply the equation for M, E in terms of the displacements. This reduction in order is essential for the numerical treatment that follows. ey

A solution is assumed of the form

~ U = u(x) (cos né) ei

V = v(x) (sin n@) ett (20) W = w(x) (cos n@) elt

M,(72= =~Eh? m,(x)m,(x) ( (cos n@) 8) e Lot |

Defining the perturbation displacements in this manner assures compatibility in the 9-coordinate.

Performing the operations indicated and utilizing the following geometric relationships

ae g * 51 aedr (& > *s)

(21) 2

<

which are the Codazzi and Gauss equations, respectively, yields the governing equations, as follows:

Fie tf + G,4u t + Hu + G3 oY t + HL ov + BW '1 + Gj3W { + HW

+ Gym, | + Hy My = 0 (22a) 2

Gou + HU + Fyo¥ tt + Gov $ + HooV + Poa 14 + GozW too HW

+ HM, = 0 (22b)

Fay¥ ft + Gz4¥ to HeyY + oY tty Grav Soo4. Ha pV + F 33% a a 33 w'

+ Hy sw + Faye tf + Gym, 5 + Hj My = 0 (22c)2

Gul + Hu + Hyov + Fy aw" + Gy gw + Hy 3W + Hyym, = QO (22d)

The same procedure yields the boundary conditions, as follows:

! q 2 iW iW

e,,ul + fjjut fv + e,3¥ + fw i O or u=QO (23a)

oO oO

i i

ut ut

< < 4 4 f.u+e_¥wyv'21 22 +f4v22 +e 23 w' + fiw23 © 0 (23b)

Cn! + fu + CzoV" + fo + en5W + 330 + &5)My + Foye = 0

or w= 0 (23c)

fy jut ey 3W" =O or m, =0 (23a) E

Primes denote total differentiation with respect to the nondimensional variable x, and the coefficients are subscripted for convenience in subsequent matrix manipulations. The coefficients F G H jk? “jk? “Gk are given in appendix A in terms of the parameters 7Y and A, where 26

(24)

the frequency parameter of occurs in Hy Hoos and Teas where

22 2 2. Swit 4!) (25)

B. Closed-Form Solution for Cylinder Vibrations

The vibratory characteristics of a "freely supported" cylinder

(simply supported but unrestrained in the axial direction, i.e.

Ne =Ve=We M, = 0) with prestress deformations neglected are well

known. (See refs. 16, 17, and 18.) Thus, these known results can be used as a check of the validity of the governing equations and

of the accuracy of the numerical techniques to be suggested

subsequently.

When prestress deformations are neglected and the in-plane

stresses are constant, the equations (22) reduce to ordinary differ-

ential equations with constant coefficients which, for freely

supported boundary conditions, have a solution of the form

mmx u(x) = A, 08 =

v(x) = B, sin = (26) wlx)(x) = C, sin mie

m,(s) =D, sin >max m= 1, 2, ««. ey

where S is the length-radius ratio of the cylinder (a = cylinder radius). The classical procedure of neglecting prestress deformations to ensure constant coefficients in the field equations implies that the cylinder is initially prestressed as a shell with free edges and then subsequently supported for vibration.

Equations (26) are substituted into equations (22) to yield a

set of linear homogeneous algebraic equations. For a nontrivial

solution to exist, the determinant of the coefficient matrix of the resultant set of equations must vanish. This procedure leads to the

characteristic equation

,(a®) + a,(a°) + A, (9°) + Ay = 0 (27) where the coefficients A, are given in appendix A.

C. Development of Numerical Solution

i. Development of difference equations.- A numerical procedure

is needed for those shells of revolution and loading conditions which do not admit a solution in closed form. The meridian of the shell is divided into increments and a three-point central difference method

is used to reduce the differential equations to algebraic form. The

distance measured along the meridian between adjacent stations is

constant and is represented nondimensionally by A where

(28) 28

and where the subscript i on symbols and matrices indicates the

evaluation of the subscripted variable or matrix at the ith station,

i =0, 1, 2, ***, N and where

S total meridional arc length of the nondimensional shell, s/a

N total number of intervals

The three-point difference formulas, when applied at the ith station for some function 2z(x), are

(29)

Reference 43 indicates that this simple approximation leads to suffi-

ciently accurate results.

The governing equations (22) may be written in matrix form at

station i as

F,Z,'' + G,Z,' + HZ, = 0 (30) where

[" Fy O Fis Oo |

| 0 Foo Fos O

Bo = r (31a) 31 P30 F353 *5 | o O Fis O | eg

[ Gy Gio G3 Gay,

Gay Goo Coz 0 G, = (31b) Gy Cx Cas Cr, [Sia ° Cys ,

at ho 5 Hy

Hoy Hoo Hos Hoy H, = (31c) ty Tso Has Foy Ai Typ His | = a, and Ze = (414) W m B) 4

Similarly, all the boundary equations (243) may be written ir

matrix form at the boundaries, 1 =0 and i=N, as

Lye_%g | + (cnt, + Bo) Zo i oO oO (32) Oye yay’ + (Agfy + By) Zz = © where 30

11

OQ 22 (33a) “oN = al 32 “sh

0 0 L Jon

TON ~ (33b)

and where 6 | 1% O 0 “o,N = 0 “33 0 0 “yl O,N re 5 7 (i - a4) 5 - 0 (1- O55) 0 O,N 0 O O (2 = 4s) J0,N |

take on the value 1 or O depending on the The elements a Jd prescribed conditions.

31

The a~ and f-matrices (eqs. (34)) are used to select the prescribed boundary conditions. If, for example, u = 0 is prescribed

at i-=0O then (11), =O andif u tis not prescribed at i=N

(i.e., if the u displacement is unrestrained in the meridional

direction of the undeformed shell), then (“11) =1. If desired, the present theory can be extended to allow for elastic and directional

supports in the boundary conditions by appropriate redefinition of

the a- and Bp-matrices.

When equations (29) are applied to equations (40) and (32), the

governing equations become

Wy i eF, Fy G, q2 bs

(i= 0, 1, 2, ---, N-1, N)

and the boundary equations become

%Kko Xoo - “BR 21 + (aipfy + By )Zq + aR =O (36)

BR Nn * (ayy + By | Zy + i Zany =

Equations (36) can be solved for Z and Zy,, ond the results -1 can be substituted into equation (35) to yield, at i = 0, e. of /F Fo Go % \rt OF 0 XH 3(2-2| fi, = 2) #2) #8 Ao

ae F G -1 F G +sO-O (330 - 2) 0 Beg} 0 0 Z, = 0 (37) 32

-1 | e FE G. or | N; N N N 1B Se By Bo) AN} PP

yey | f Fy Sy - By Sy

A A where

1 0 O 0

0 1 OQ O T= 0 0 1 0

Lo 0 0 1

The difference equations (35), (37), and (38) constitute a complete

set of field equations governing the behavior of the perturbed state.

2. Numerical solution.- The problem is now one of solving a

set of homogeneous equations (eqs. (35), (37), and (38)). This set

constitutes an eigenvalue problem such that the mode shape is the eigenvector and the frequency parameter oF is the corresponding eigenvalue for the vibration problem.

The fourth equation, being simply the definition of ma in terms of displacements, will not contain an eigenvalue. For a nontrivial

solution to exist, the determinant of the coefficient matrix must vanish.

The coefficient matrix will be a 12-element-wide band matrix. A

convenient technique for solution of this problem can be formulated D3

by modifying the method of references 8 and 9. Such a modification

is presented herein to handle the free vibrations of a prestressed

shell governed by four second-order difference equations with two-

point boundary conditions.

Define the following (4 x 4) matrices:

F, G A «2+. i Ac oA

eF, B. = - — i i Ae

F, G C,=—=+—i 1 i A cA

e roa. oF D, =a, |arx|0 0s>-a-] 0 [H-—)+2,]/+8 0 0 O | 2A A oN | 0 AS 0 0 (39)

Qn fFy Sy\ oFy = ——| — + — —_ eee

now e,{ (Bea)(F -l/F(S-Bles «G

Equations (35), (37), and (38) may now be written as

A454 + B,4, + Ci Zsa = O (4 = 1, 2, eet, N - 1) (40)

Dozo + Eo = 0 (41)

Pyen-1 * PyAy = 0 (42) 34

For such a set of homogeneous equations, a recursion formula for 4; may be written as - (i =1, 2, +--+, N- 2)

and Gs Z, + P.Z,.. = 0 3 tot dd (1 =0 if Z #0) (l=N-1 if 2 #0) NM where P, isa (4 x 4) recursion matrix. To find P,, combine equation (43) and equation (40) to obtain

z, + (B, -~ A.P ae ) -1 CaZ 0 (i = 1, 2, «++, N= 1) (44) 1441 7

Comparison of equation (44) with equation (43) shows that

-1 P, = (3, - A,P,_,) Cy (i = 1, 2, «++, N- 1) (45)

Comparison of equation (41) with equation (43), the latter written at i = 0, shows that

P =D -E (46)

From equations (45) and (46), P, may be found at all points with the exception of the point i =N. This process of determining all required values of P, in terms of Py is in essence a Gaussian elimination process.

Equation (43) written at i =N- 1, in combination with equation

(42), yields (Py - ByPy-i) 2 = © (47) 5?

If Zany # O, then for a solution to exist,

[Dw ~ ByPya| = 0 (48)

Therefore, any frequency parameter af which satisfies equation (48) contains a natural frequency of the system. The natural frequencies can be found by trial and error by selecting successive values for a, calculating the matrices of equations (39), and using equations

(45) and (46) to evaluate the determinant in equation (48). This procedure is continued until the desired zeroes of the determinant are found.

The method must be slightly modified for the case aN = 0.

Substituting equation (43) written at N- 2 into equation (40) written at N-1 yields

(Byer - AveaPuee) Zen = ° (49)

If Z Nel = 0, then Z = 0 from equation (43), and the solution is 1 trivial. Therefore

[Byea > An-aPy-2| = ° (50)

Consequently, for the case Ay = O, equation (50) is used in place of equation (48) in the elimination process.

After the natural frequencies have been found, the corresponding mode shapes are determined from equations (43) and (47). Equation

(47) is used to find a normalized Zy: For the case where ay = 0, 36

equation (49) is used in place of (47) to solve for Zn 3" The remaining Z,'8 are then determined by using the recursion formula, equation (43). To find a normalized Za it is noted that the components of an are proportional to the cofactors of the elements of a dependent row of the coefficient matrix in equation (49). If

Oa is defined as the cofactor of the jth element in the kth row, where row k contains the coefficients of a linearly dependent equation, then the normalizing factor 5S can be defined as

5 = V@rx) + (Oo) + (85,)° + (Sux) (51) so that An may be given as ork Coie

il i (52) Ole a om 3k € Ohi

The index k indicates any row which is a linearly dependent row of the matrix (Dy - EyPyaa):

This numerical procedure is particularly well suited for use with a large number of stations since only the band elements need be retained during the computation process. References 2, 3, and 5 give further advantages in using this general method of solution.

Although equation (48) (or eq. (50)) contains all the roots of the system of equations (40), (41), and (42), this method of elimination introduces spurious singularities in the determinants of equation (48) or (50). For some shell configurations and boundary a{

conditions, it is found that the roots and singularities very nearly coincide, and the usual root searching methods fail to indicate a root if the increments given to the frequency parameter are too large.

Moreover, some of these singularities are associated with a change in sign in the value of the determinant even though no zero exists at that value of the frequency parameter. The technique used in this investigation for avoiding this difficulty is presented in Appendix B.

A set of linear equations governing the infinitesimal vibrations of axisymmetrically prestressed shells has been developed and both the in-plane inertia and prestress deformation effects have been retained in the analysis. The equations derived are consistent with first-order thin-shell theory and can be used to describe the behavior of shells with arbitrary meridional configuration having moderately small prestress rotation.

A numerical procedure has been given for solving the governing equations for the natural frequencies and associated mode shapes for a general shell of revolution with homogeneous boundary conditions.

The numerical procedure uses matrix methods in finite-difference form coupled with a Gaussian elimination to solve the governing eigenvalue problem.

Accurate results can be found for specific shell structures with this procedure. However, even with high-speed computers, it becomes impractical to attempt an extensive parameter study of the behavior of shell systems. To achieve a more rapid analysis of the effects 38

of the different parameters governing the dynamic behavior of shell systems, an approximate set of equations of motion is developed in the next section. The equations are limited to cylindrical like shells having a shallow meridional curvature. The finite difference solution of the general shell equations developed in this section can then be used to determine the accuracy of the approximate solutions. VIII. APPROXIMATE SHELL EQUATIONS

A. Derivation of Approximate Shell Equations

In this section, a set of linear homogeneous field equations is developed which governs the dynamic behavior of doubly curved shells with positive or negative constant shallow meridional curvature.

The nonlinear strain-displacement relations given by reference (10) are specialized for a cylinder and modified slightly. The cylinder is given a small axisymmetric deformation, then, by removing the strains caused by this initial geometric perturbation, an unstrained state is established in the deformed configuration. The nonlinear equilibrium equations corresponding to this unstrained state are developed and linearized.

The first approximation nonlinear strain-displacement relations developed in reference (10) based on the assumption of small strains and moderately small rotations become, for a cylinder with radius R,

« 2 ~ “~é = n~ tz1 “ 2 1 a 79 p= Ue ta (*,) + +3 4 -——s

n~ “ oO Vy “A u “a _ 9 W iL A a 1 A 26

£4 = z + R + ope (®59°- V + a (@,, - R |

1] 2 Yxg Woe 7, a fey = 5 V 7€ + R +t (4, - # —

a9 ho

Ro ~ = (#4 ~ ¥) 9

A t| (3 a0 Usy “ea = R (5, - o)e "TR (53) where the symbol “ is introduced to indicate quantities measured with respect to an unstressed cylindrical surface.

To permit the method of solution which follows, the term Reg is modified so that the term - 3 is eliminated. The quantity Reg may be written as ‘ (*s0) ®eo = - (he > *) 2 - aR 0%) where (® 0) contains only the linear terms of Egg. It is shown L € in reference (19) that linear terms of the type = multiplied by a numerical factor of the order of unity may be added to the linear expressions for bending strains without introducing an error greater than that originally introduced through application of the Kirchhoff-

Love hypothesis. Hence, K E9 is sufficiently defined by

Reg = (#5, - +) (55) lh lh

To increase the manageability of the strain-displacement relations, only the Von Karman type nonlinear terms are retained (i.e., non- linear terms composed of products of derivatives of the normal Ay

displacement). The final form of the cylinder strain-displacement relations reduces to ,

A A lL osa 2 é, ge >= Ye += TB (¥ 6) 5 A 9 W 1 A 2

e = 2 + —- + — Ws 8 R R DRO ( 5}

~ _1lfa 9 la a»

(56) Keg ~ 7 Mogg

“A 1 nN “~ fg = 7 73 (Hog - ¥) Og R

”~ 1 NN Os Reg = - F(%-*) J

A set of strain-displacement relations governing the behavior of a shell of revolution with a shallow meridional curvature is developed in a fashion similar to that of references (11) and (12) by the introduction of an initial displacement wo(§) to the cylinder middie surface. Let

W(E,8,t) = w(E,8,t) + wi(§) (57) where w is the displacement measured from the initially deformed

surface along the normal to the cylindrical surface. Since the ho

meridional curve is assumed shallow, it is sufficient as a first

approximation to represent the initially deformed curve by N ur | CO WI wo(8) ~ DR o~ uve

where R, is the constant radius of curvature of the initially E deformed meridional curve. This representation restricts the

subsequent analysis to shells of the form shown in the sketches in

figure 43. The axial displacement u may be represented by

6-0 + He (59) uw where for a shallow meridional curve (i.e., R, large), u is the E meridional displacement measured along a tangent to the initially deformed surface. With application of equations (57), (58), and (59)

the strains caused by the total deformation can be written as

~ 2 ao = ”™ W 1 ¢~ 2 1 /fé )

“A ~ 2

@ = "6 + W + L “8 Bm 8°” R R eo R eR, R

u Wy. W A lfa 7g 7€ "78

Seg -3(%, + R + R (60) A ~ 1 K é = “ee _ ER——

“nto <= 4s1 (og~ - 9).gnw R “ 1 ~ “A “eg -- § (%, -¥) J 43

The strains caused by the initial deformation Wo are

2 E 40) £ 2. oS eR, R

€ £8 = 0 (61) Ko eek E Re

Ke _ 0

oO

K £8| = QO

The initially deformed system is now taken to be in an unstrained

equilibrium state. Any deformation u, v, Ww away from this new

equilibrium state introduces strains given approximately by

€=ae. €,, thus, from equations (60) and (61)

~ > ° “Geta te (me)

~ ~ a ~ Vs 78 ,-w,1;~ 78 “e= -R F2(%)

~ze uily~ ye,u; W, Ws ewe gO 2 \7E OR R \ yy

Ke = 7 Woge (

Ry g = - =aRe (Wo 6 - ¥) ,9

~ --2(q - ¥) Keg = R Woo Vv st / (62) where & is now a length measure along the meridian and where the quantity v = ¥ is introduced for convenience in notation. Equations

(62) are the strain-displacement relations for a shell of revolution with a shallow meridional curvature. To obtain a set of equilibrium equations consistent with equations (62), the principle of minimum potential energy is applied.

The total potential energy for an isotropic, linearly elastic, homogeneous, vibrating shell acted on by a uniform lateral conservative loading p is

76 ~\2 Tl = oa E 2) Je,re 2 f fP™ P 7B n ( (nw ¢ +2 ~\2re | + (E, + Z Ro)

2

+ Ou (E + Z Fe] (Z, + Z %) + 2(1 - yu) Ge + Z Rye) paaaoa

fFe penn 1 D pen Pde Jo Faaoes = By 8 i , [Gs

+ (74) + fF Rdzdodeé (63) 45

Performing the integration over z and allowing the variation of the energy to vanish yields

r§5 pen ~ ~ we ~e Ne ~ M “ne oll “Uy J Ne Of + Noy SE, + Neg OF eg + M, Sk, + 9 Sk 4

1

~e ne ne ~ ~N ne “we ~ + Me g OF eg - pow -- vh (i, Suy, + Voy OV», + Woy si )} 9 dé = O

(64) where . W, = B(E_,+H &)

No = B (E, + e, |

Neg =B(1- 4) Eg (65)

Me = D (Fe + Rg) Mg = D (Fy + | Mpg = D (1-4) Keg J

and where B and D are defined in equation (16). Integration by parts in equation (64) leads to the following nonlinear equilibrium

equations 46

N ~ E9,9 ~ _ ° Ee + - vh Usiy = QO

N M OM 0,8 ~ 6,0 EO,E ~ ~

A * Neo, 7 2 * R - vhv,,, = 0 (66)

M + ag6, 66 + N8,68 - ne - a + N w + N we | E, EE R R D- - RORE e Wee * Neg R 9

1 (5 Woo ~~ nw ~ we + = Ny z + Neg Woe 5 +p-vh Wop = O ? a with the following prescribed at the € constant boundaries

Ne or u

OM, .

Neg + = or Vv \ (67) 2M w ~ £9,909 nN ~ ne 79 ~ Mee + 2 + Ne Woe + Neg RO or WwW

M, or Ws 7

These equations parallel equations (2) and (4) in Chapter VII. The

equations are linearized for prestressed linear vibrations by the

same procedure as that used in Chapter VII. Let 47

Ae = N, (8) +N _ €,9,t)

Ae = G9) + N,(§,9,t) 4 = M,(6) + M,(£,9,t)

me me = M)(&) + My(6,9,t)

ne

Also let

= u(&) + u(£,9,t) ae

v = v(€,9,%) we

= w(t) + w(&,9,t) He ) where the barred terms are associated with the stresses and deforma- tions due to an axisymmetric loading and the unbarred terms are associated with stresses and deformations due to a subsequent linear vibration about the prestressed state. The equations governing the linear vibration about the prestressed state are found by applying 48

equations (68) and (69) to equations (66), applying equilibrium of the prestressed state, and neglecting vibration terms. They are as follows:

N ~ Neve 0,9R - vh Use _= 0

N 6,8 M 6,0 OM E9,& R + Nove + —L— as: 2- - Vb Voi, = =O (70)

M + e888 + Ho,99 _ 78 _ 0 +N, wy,, + “e Ww g,&& R Re pRe " D_R € 7 > && “aae > 99

- vh Wei = 0 J

where the classical assumption Woe = QO has been made and where it is assumed that the prestress loading is such that Neg = 0.

The corresponding boundary conditions are

(71)

49

The underlined terms would be omitted for a Donnell type approximation.

The corresponding terms which would be omitted as a result of this

approximation are similarly underlined in all subsequent calculations.

If these terms were omitted, the system of equations would reduce to

those given in reference 11. Equations (70) and (71) parallel equations (13) and (14) in Chapter VII.

The vibratory stress and moment resultants are found from

equations (62), (65), (68), and (69). With the prestress deformations

neglected, the resultants become

W Vig W

= | B oe + Ey tu (2 += : utr utr

Vig .

9 { =| Ete (oetk), =

B(l - p) fe Neg = Haw) (6 * ve) (72) Me = - Df woes +3 (¥ +6 - Xo

My = - o| % (We - v) 6 + ou “ee

M Lo = = PU =u) (Ho -¥) J]

With the aid of equations (72), equations (70) are written in terms of displacements as 50

(Lae Wg 0° W999) (2- yA 4 R R,} R je 32 12 7 £E0 E R

vh B tt= ° 73)

ioyh u.,. t+ L,u\ 28 ey aM(2 =) Ry R|R ~? E R Re R ~ 12 n° ee” le EE 8

A 2 [s 2 1 Ou +——

N Ny w +o5\w-—w,1 E -—-—>~t+—v¥W,9 ~798 vh = 0 ts B gE 8B Ro B tt J) where now A= = . Similarily, the corresponding boundary conditions at €& = constant are

D1

ne3 - - u) Viggo t Ro 2 Wage, + (2 - up) ¥, a4] Bowe,Ne =O OF w=

Wee tsH (6 - x) 57 = OQ or wy, = 0 R ’ (73d)

With prestress deformations neglected, the prestress stress resultants are defined by

N, = N E (74)

where N is an applied meridional stress resultant and jp is an applied constant lateral internal pressure. Equations (73) are constant coefficient partial differential equations. If prestress deformations had been retained, additional terms with variable coeffi- cients would occur and approximate methods of solution similar to those used in Chapter VII would be required. The solution to the prestress equations are given in Appendix C.

B. Solution of Approximate Vibration Equations

Equations (73) are satisfied by a solution of the form

AX u-=zA. h, e J sin ng eit J od Ax jot V= A, g, e’ cos nde (75)

Asx w-=A.e J sin n9 eit De

where A, are the characteristic roots of equations (73) and the

nondimensional variable x = : has been introduced.

Application of the assumed solution to equations (73) yields

—— le > MA FFL HA, fs, hy A, 0 )

fd fod 4+ fon +f ge. A -lo\ 25 4%; 5 6°93 7 fy

2 4 2 fA35 f 6s +f, fa A, + fy A, * “10 A, 0) Ne” ~ - (76)

where »

- & 8” 12

fe no né _ N 9°” ~~ 6 "8B

a2 4 N Non ) 8 2 2 fio _ 3 + (KO + Qu +1) + _zn - 9 y (77) where » = ana 92 - O_#oO We v(1 - us)2

x Re EB

The characteristic equation is found by setting the determinant of the coefficient matrix of equation (76) to zero. This yields the biquartic 8 6 4 2 A; + ae A; + a), A, +a , ta =0 (78)

where

f,(2fnf. - f3f,)- 2 fitpt, “(£7 ° +f fofotty EE +f,f,- (f, "| fy 3 (79) f, (7Fafe - tty) - f, (Pf, +f 1°6) +f if5%g + fy s +f,f, +63) fy P56 f, fg

- (8) + fo I, +f, f, - 2] + fy fg

Ae Py tp 54

The amplitude coefficients hy and 8; may be found from any two of the equations (26). From the last two equations of equations

(26), they become )

ne - (#6 ry + t,) + (tg r," + £9 ry + £45) (ty re + £5] J tA, (t¢ ry + £.,] - fA, (fy, reo + f| | (80)

at f (fg r," + fy re + F) +f, (26 ro + £,) J fy (f6 ree + £.| - f, (A, reo + 5) a“

In general A, can be complex. Since the displacements u, v, and w are real then A,» Ay and g are complex whenever A, is complex.

Since the complex roots A, occur in complex conjugate pairs when complex roots do occur, it can be shown that the corresponding quantities Ay» Ass and B, will also occur in complex conjugate pairs. For axisymmetric vibrations (n = 0) the terms g vanish and the circumferential equilibrium equation uncouples from the remaining equations so that the procedure must be modified (see Appendix D).

The complete solution for u, v, and w is found by summing the contributions from each characteristic root thus li

c U(x) sin né eit

v = V(x) cos né eit (81)

w = W(x) sin nO ett D2

where

U(x)

V(x) UJ > (82) ba

ce” VW VW W(x) @ oP

[Jo jal

The stress resultants are found from equations (72) to be

Lot td n(x) sin nO e x

“Ol

Lwt

bd ny (x) sin n9 e Po

Lot bd ng (x) cos nd e

Ol

De m, (x) sin nd ett

m, (x) sin no ei”

m, (x) cos nO e Lwt &9

where 56

Ax ng =),= Ay j [B= - may . tuktH +uh,tH A,NS] le J j=

8 Lew Asx no > ), ( B ) AsCas + 8s Ay) e j=l (84) 8 5 Aj

B B aLB c (7 - 85) 7] « j=l -

[: 5 Ajx

= | A nme a)-w ry) « Oo £8 [P 8) 8% J=

8 A.X sa> ), O-8) 5 [(8 79) | ed

J= J

The boundary conditions may be found in terms of displacements from equations (71) with the use of equations (72) and with the solutions (81) and (82) may be written in general at two edges as

(fm +H] ®)-© (85)

af

where {ay is an 8 element column matrix whose elements are A. and where N, Y, ®, and are 8 x & matrices whose elements are given by A. S J 2 N.1j = ( 1 - ng 5).) tk x +h. prpeaA,

A. 8 n > N53 = nh, + 8; += (8) - 4) s}

A, S Je 2 =H nm, 2 3\ a Na, {8 (2- uw) n (85 - n) - ;| A, + TD A, e

r,s My, G (e; - 2) + | ef

A, So - ~_ toy = (u(t ~ ag) 4K +8 ry} e e

A. S no | -$— Nes = a +[eF @- 9], “

A. S

2 = 2 ._ J _( |AL N A 3 2 Nos {8 (2 - uw) n (8; - n\ - H A, + TD Aj | e 58

A. S eo o Co NV = n ~- niyta e 83 Gc }

r, S

yd Y.. =h,e 13 J A, 8 _J [email protected] 2 "94 8 5 A. S J e Y.. = 33 “ A. S J

Y,. =A, e 2 4 j A. S .~ J 2 Y_. = h.e Dd J A. 8 ~ Co Y-.63 ~= 53 e vA. 8 ~ 2 eo Y_. =e 73 A. S _ J Cc ¥g, =; & J (86) where S = = is the total nondimensional axial length of the shell, and

®, O for 144

Vi; =0 for 1¢j (87) Vig 72> 255

D9

The elements V5 take on the value 1 or O according to the pre- scribed conditions. The 9%_. and ¥05 matrices are used to select bd the prescribed boundary conditions in a similar fashion as in Chapter

VII with the a and BB matrices. If a stress-free condition is desired, the corresponding ° 44 term is set equal to one. If a displacement variable or meridional slope is constrained such that it must vanish at the boundary, the corresponding P55 term is set equal to zero. The ® and W matrices may be generalized to enforce linear elastic or directional constraints.

For a particular set of homogeneous boundary conditions and a particular circumferential harmonic mode number (n), the natural frequencies of the system are those contained in the frequency parameter 82 which cause the determinant of the coefficient matrix in equation (85) to vanish, that is,

jon + wy] = 0 (88)

Due to the highly transcendental character of equation (88), a trial and error procedure must be used to find the natural frequencies.

The procedure is exact in the sense that the frequency parameter can be found to any desired degree of accuracy.

A trial value for & is selected and the quantities in equations

(77) and (79) are computed. The characteristic roots are determined from equation (78) and h, and g, are found from equations (80).

The values for ®., which give the desired boundary conditions are 60

selected and the determinant of equation (88) is evaluated using equations (86). The value of the determinant is then compared with

zero. The frequency parameter is then increased by fixed increments until the determinant of equation (88) changes sign, indicating the presence of a root. The root is located to within the accuracy desired by successive halving of increments.

The residual in equation (88) is in general a complex number, but since the characteristic roots occur in complex conjugate pairs, the determinant must have complex conjugate columns and thus its value must be either real or pure imaginary. This facilitates the automatic

search procedures in the root searching operation since only one number must be corrected to zero.

The success of this method as a rapid means of obtaining

solutions hinges on the investigator's ability to make good initial estimates of the frequency. To aid in the selection of an initial estimate, a closed form solution is obtained in the next section for

the vibration frequencies of a shallow doubly curved shell with freely supported edges. The solutions to this system may be used

to select initial trial frequencies for systems with other boundary

conditions.

C. Solution of Approximate Equations for a Freely Supported Shell

A direct solution to equations (73) is available for the freely

supported boundary conditions (Ne =Vewe=M, = 0). Assume a E solution of the form 61

mr iwt u= U cos —— sin n@ e fs 5

v == V,, sinin Mtmmx=> cos n@ 8 e iwmt (89)8

wi W sin max sin n8 eet fs 5

where m is the number of meridional half waves. This solution

satisfies the freely supported conditions at x =0O and x= 6.

Equations (89) are substituted into equations (73) to yield a set of linear homogeneous equations. For a nontrivial solution to exist, the determinant of the coefficient matrix of the resultant set of equations must vanish. This procedure leads to the characteristic equation -0 +5, 0-5, oP + -0 (90) where the coefficients A, are given in Appendix A. Hence the natural frequencies of a freely supported doubly curved shell of revolution with shallow meridional curvature can be found for any

specific mode by solving equation (90). This equation leads to

three frequencies for each set of m,n considered since in-plane

inertia terms have been retained.

D. Membrane Solution of Approximate Vibration Equations

It is of value to inspect the extreme case of zero bending

stiffness (D = 0}. The vibratory behavior in this case is associated 62

with only the extensional properties of the shell. The membrane equations are found directly from equations (70) by deleting all moment terms, yielding

N £6,6 Nee + +R =O

N 8,8 + = ‘1

N N w é 8 — = 78 _ R + zr Ne Woee - Nog + yh Woot = 0

where for convenience in this limiting case the in-plane inertias have been neglected in the first two equations. The first two equilibrium equations are identically satisfied by the introduction of the stress function wt defined by

) Ne— =—Vs 96 > =U,u.. +¥— ru(se+¥)—_— a B Ro E Re R R

N Vv 8 76 W Ww

Bo RO (4) Yee 7 R J

in terms of the nondimensional variable x, the third equilibrium equation becomes

63

KYSE ¥eg9 RTVox BaNy. 7 BeeNo FBvh Re ge =O (99)

It can be seen from equation (93) that for a negative Gaussian

curvature (kK negative) unstressed membrane shell, the governing equation has a hyperbolic character. The equation for the cylinder has a parabolic character and for the positive Gaussian curvature shell has an elliptic character.

1. Solution of membrane vibration equations for a freely supported shell.- Equation (93) is satisfied by

y = Vi, sin.. —5=MAX cos n@ e Lot

(94)

w-=W_ sin — cos n@ ert m S where it follows from (92) that

a= U_ecos mix cos ng oot m S (95)

v= V_ sin mx sin n8 eit m S

This solution satisfies the freely supported boundary conditions.

With the application of equations (94) and (95) to equations

(92), equations (92) may be written matrix form as an ( | [75 mx un k et + U tn ~ ne | ym 1 + uk 4 (88) (96) po BST n WAX m " R “VS \ | ra en (=)mr -n — O W tl -u 8 J hn ae 7 men

a Vv =< (97) men R (4 _ 2 (2) . 2 ,

Substitution of equations (94), (95), and (97) into equation (93) yields the following membrane frequency equation 2 2 (a - u®)2 (x, + 8°) 2 =Hy =ER a\ 2 (2 ) = + — Bp n (98) mem, (1+9?) D 2

mr where 8B = ns is the ratio of the circumferential to the axial wavelength of the vibration mode. The frequency determined from equation (98) vanishes for an initially unstressed membrane for neridional curvatures given by

k= - 8 (99)

Thus, for certain mode shapes the vibration of a negative curvature membrane shell with freely supported edges is not sustained by the membrane stiffness of the shell. 65

2. Characteristic roots from membrane theory.- The membrane

characteristic equation is found from the exponential solution forms

x NXe > y = V5 ed cos no eet

+H AX2 we W, e J cos ng etdt , (100)

x 2X u= U; e J cos nég elt

% Ax. v= V5 e J sin n@ eit J

Substitution of this solution into equations (92) yields 2 7 x vi (a,° - n°) Gon) y (a - a") (x, no my

Substitution of equations (100) and (101) into equations (93) with prestress terms deleted yields the biquadratic characteristic equation

c - a) - | r;" + One [a - ky, @ - 2)| ry

ent [G2 -u8) a - = 0 (102)

This equation may also be found from equation (78) by deleting in- plane inertia terms and products of rn in the functions given by 66

equations (77). Solution of equation (102), yields the following membrane characteristic roots

2 = —*n—s |, (. -u°) - 0% 20 (0 -x,) he J membrane (a - un) (103)

E. Pure Bending Solution of Approximate Vibration Equations

The extreme case of pure bending is considered in this section.

The vibratory behavior in this case is purely flexural and the middle surface extensional strains are assumed negligible. By assuming that the extensional stiffness B remains finite, the pure bending equations are found directly from equations (70) by deleting all vibratory stress resultants. The displacement formulation may be written down directly from equations (73a) by retaining all terms containing rn“, v and w inertia terms, and membrane prestress terms. The following equations result:

2 2 AN 1 -u\ .2 AY (2 -u) ,2 i2 799 * (ee) A Yoxx 7 TS W999 7 qa Wo xx 2 2 _ VR Vig } v, = 0 E tt » (204) a M(2-ud) Ng 12 "7600 12 xx@ ~ 7D V7 BO Wexx 7 BW g9

2 2 + VR (4 - = 0 67

The meridional displacement u and the meridional curvature KE do not appear in equations (104), thus in the approximate formulation the pure bending state is independent of u and Ke

The freely supported boundary conditions are satisfied by

mmx iw be w=W b sin —s— sin n8 e Pp B (105) iw. t v= V sin art cos nO e pb pb 5

If the Donnell approximation was made, the v inertia term would vanish and the natural frequency of pure bending would be equivalent to the natural frequency of a simply supported rectangular plate and would be given by

2 2 N N =a5_N ( (8 2 +1) } a 4 +( SBx ,2 +g 6) jn 2 n #0

()Pp Donneil bh

(106)

Substitution of equations (105) into equations (104) yields the following pure bending frequency equation

2 _ 2 7+ 8 820 a, 11 *ta,,\e #22 5 2 Q pb = a et = —___—2 ) ~ an B20 -~ (2) | (107) where ~

o> Q4=5 E + 2(1 +u) B 2 | n 2

holt

Pr a= 7 ts l2+ (2-H) 2°] n? ) (108)

2 Sop = es Donnell J and where again

Equation (107) gives two pure bending frequencies one of which

is close to zero. This frequency is associated with a predominant

in-plane v displacement mode and is usually several orders of magnitude higher than the frequency associated with a w predominant mode. These frequencies being associated primarily with in-plane motion are governed almost entirely by membrane action, thus, the pure bending theory cannot give a reasonable estimate of these frequencies since its stiffness contribution is negligible, so that frequencies close to zero are expected and can be ignored. Further- more for n> 3 the pure bending frequencies found from Donnell theory which are associated with the w inertia term only (equation

(106)) will closely approximate those found from equation (107). IX. RESULTS AND DISCUSSION

Vibration calculations have been made for some simple shell of revolution configurations to determine the accuracy of the approximate analysis developed in this paper and to determine the influence of meridional curvature on vibration modes and frequencies. The accuracy is assessed by comparing the results of the approximate analysis with results obtained from the more accurate numerical analysis presented in Chapter VII. The influence of meridional curvature is assessed by performing a parameter study for shells with differing meridional curvatures as the length-radius and thickness-radius ratios are held constant. Results of additional calculations based on membrane theory and pure bending theory clarify the relative roles of membrane action and bending action and their dependence on modal wavelength ratios during the vibration of these shells. The results obtained are for a specifie class of shell configurations; however, the effects determined many provide insight into the general behavior of more complex doubly~-curved shells of revolution.

A. Shell Configurations Investigated

The class of shells of revolution with constant shallow meridional curvature was elected for investigation since it has the simplest configurations for fulfilling the parameter study of interest. The equations defining these shells are given in Figure 3 and are used whenever the more accurate numerical method of Chapter VII is

69 70

Positive Gaussian Curvature Shel] R70

\y k= Rp

i

‘I

+ =

—_

4 Zero Gaussian Curvature Shell (Cylinder)

s=SR kK = 0 1 r =] l _ } kK, = 1

Negative Gaussian Curvature Shell Re < 0

Equations same as positive shell with

R. € taken as a negative number

rot

Figure 3.- Geometry of class of shells investigated.

1

employed. Since the approximate theory is limited by shallowness in the meridional direction, it is sufficient to represent the meridional curve of this class of shells by equation (58) when using the approxi- mate theory (see reference 20). The effect of curvature is determined for both the approximate solutions presented here and the more accurate numerical method of Chapter VII by varying k while holding the length-radius and thickness-radius ratios constant. The mass distribution varies slightly as KL is changed, but if meridional shallowness is maintained, the effect of change in mass distribution on the natural frequencies is negligible, and any change in natural frequencies can be attributed solely to the change in Gaussian curvature of the shell and the resultant shell stiffness change.

When the numerical procedure of Chapter VII is employed, 200 equally spaced intervals along the meridian are used. In all cal- culations, Poisson's ratio is taken to be equal to 0.3 (i.e. wu = 0.3).

The central rise of the shell meridian (c in figure 3) is given by

c= Re (2 - cos Zr, | (109) where s is the total meridional length. The shell meridian can be approximated by the first term of a series expansion of the right- hand side of equation (109). ‘The percent ratio of the central meridional rise to length can thus be represented by Sk T= = (100) (110) (2

This quantity is introduced as an auxiliary parameter which is used

to give an indication of the degree of shallowness of the meridian.

B. Accuracy of Solutions

Before a parametric study is performed using the approximate

theory, a level of confidence in the accuracy of its solutions must be

established. To make an assessment of the errors involved when using

the approximate theory, the results obtained with this theory are com-

pared with corresponding results obtained with the more accurate

numerical method of Chapter VII for several specific doubly curved

unstressed shells in figures 4, 5, and 6. In these figures, the lowest

frequencies are plotted for successive circumferential mode numbers for both positive and negative Gaussian curvature shells. The cylinder

results, found using the approximate method, are repeated on each

figure for purposes of comparison. Since the only approximation made

for the cylinder results was the neglect of small nonlinear terms before linearization, only terms related to prestress would be

effected; thus, the unstressed cylinder results presented in these

figures are exact.

For the slightly curved shells (tr = #1.87) of figure 4, the approximate theory is shown to be quite accurate with a larger percent-

age error evident for the negative Gaussian curvature shells. The

accuracy diminishes as the curvature of the shell meridian increases as is shown in figures 5 (Tt = 3.75) and 6 (Tt = £5.62). The positive

curvature shell results never differ from the more accurate results by more than 8 percent. The negative curvature shell results have larger

errors but still indicate the general character of the actual solution. 13

1.0

S=3 # =1000 o numerical solution k,=+. 05 ot o numerical solution k=— 05

: e— approximate solution a Cc wo => D i i) 2c c ® = ec S 01 k, = +.05 5 & "\, & ™—~ = oe —_——— ‘os cylinder .

‘o ‘N

"S xX ‘ 7Je \ m=2 k= — 0 ye a

m=]

al Joy ft tNve py ty

a if 2 4 \J 6 8 10 12

o Circumferential Mode Number, n

Figure 4.- Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells (x, = + 0.05; S = 35 &R = 1000). 7

1.0

S=3 ’ RL

a o numerical solution ky=+.1 S o numerical solution k,=-.1 =. —— + approximate— solution = rc S 2 ky = +1

ws S OeGa = 01 E cylinder 2 oo

£ = m=

e o

® . & oF ? eo ° °o eee OF 5 27 m= ”

Cm, -° o”

. A n=?

on LL tt | | | | | | t |] | J 6 8

Circumferential Mode Number , n

Figure 5.- Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells R (%, =+0.1; S = 3; i 1000). 19

1.0

S=3 R _ _ 1000

so numerical solution k. =+.15

o numerical solution k=—-15 2

—~ «— approximate solution Frequency, Frequency,

0.1

Nondimensional Nondimensional vo

/ N Minimum Minimum ' ° 4

\ Leoo 4 7 “en, . a” g \ nS

i

gph _-L_—_1 1 tb tb tt

0 2 4 6 8 10 12

Circumferential Mode Number, n

Figure 6.- Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells R (x, = % 0.15; 8 = 3; a= 1000) . 76

The lowest natural frequency for the axisymmetric vibration mode n=0O is associated with a pure torsional mode and is independent of the meridional curvature in the approximate theory. The more accurate results, however, indicate that this frequency is dependent on curvature

40 a small degree as can be seen by inspection of figures 4, 5, and 6.

The approximate procedure has a modal solution of sinusoidal form

along the meridian (see equation (89)) whereas the mode shape in the

numerical procedure is calculated once the frequency is determined and

need not necessarily be sinusoidal. Plots of the minimum frequency

normal displacement mode (w) determined using the numerical procedure

are given in figure 7 for particular values of n for the negative curvature shells of figures 4, 5, and 6. In each case, the number of

axial half-waves (m) determined by the approximate theory agrees with

the modes given in figure 7. As the curvature increases; the mode

shape begins to deviate from sinusoidal form, thus the sinusoidal

modal solution of the approximate theory becomes a less accurate

representation of the true modal configuration.

A comparison of the results found by the approximate theory and

the numerical procedure for a long negative Gaussian curvature shell with a rise-length ratio greater than 6 percent is given in figure 8.

Large percentage errors are evident, with the approximate theory in

general overestimating the lowest natural frequencies. The

corresponding normal displacement modes given in figure 9 are found

using the numerical procedure and exhibit noticeable deviations

from the assumed sinusoidal form of the approximate solution

especially as n increases. Nevertheless the approximate solution

Displacement

W

Meridional Distance

‘Figure 7.- Comparison of w meridional modes for several n for successive degrees of curvature, (*, = -0.Q01, -O.1, -0.15; s = 33 ¢ = 1000).

(All calculations based on numerical analysis) 0.1 ae ae Ys \\ ~ \\ SW"

G Xt o Cc o = s in % Cc 2 c 0.01 £ Cc 2c & ~ £ £ = $= 10

f=R 1000 KR= RW TT

*-—— approximate solution

° numerical solution

jt | [| [| jf Jj [| | Jf J 0.001 2 4 6 8 10 12

Circumferential Mode Number, n

Figure 8.- Comparison of minimum frequencies from approximate analysis with those from numerical analysis for freely supported shells (, = 40.05, S = 10; 5R = 1000}.

79

2 —

COC

ME n=9

n=l0 n=l

Meridional Distance

Figure 9.- Meridional modes of w for several successive n R (&, = -0.05; o = 10; B = 1000}. (All calculations based on numerical analysis) 80

still exhibits the general shell behavior with respect to both the modes and frequencies. The radial displacements are larger near the ends of the shell as these areas behave as regions of low stiffness due to the larger crossectional radius. Since the approximate theory can only admit a sinusiodal solution, it cannot reflect this property of the shell. In positive Gaussian curvature shells, the region of low stiffness is in the center of the shell meridian and the modes calculated by numerical procedure (not shown) would generally yield larger radial displacements in this area.

Based on the comparisons made in this section, it is believed that the approximate theory gives reasonable estimates of frequencies and predicts trends adequately for values of T between +5 percent.

All analyses in the remainder of this report will be limited to shells contained within this range.

C. Effects of Meridional Curvature

The natural frequencies of a shell structure are closely related to the effective stiffness of the structure in the sense that as the effective stiffness increases, the fundamental frequency increases.

The positive curvature shells exhibit a strong stiffening character with the lowest natural frequencies increasing as the curvature of the meridian increases. For example, the fundamental frequency of the positive Gaussian curvature shell in figure 4 is 150 percent higher than that of the cylinder, while in figure 6, the lowest natural frequency is over 300 percent higher. On the other hand, negative 81

curvature shells exhibit rapid losses in effective stiffness and the minimum frequencies seem to be highly dependent on the circumferential mode numbers.

The lowest frequencies for each circumferential mode number always occur at the simplest meridional mode m=1 for positive and

zero (cylinders) Gaussian curvature shells. However, the negative

curvature shells exhibit lowest frequencies at higher meridional modes in the higher circumferential mode number range. This is well demonstrated in figure & where the fundamental frequency occurs for m= 2 and higher meridional modes are associated with lowest frequencies for n> 3. This figure shows an interesting phenomenon in the spacing of the frequencies. As n increases, the spacing between frequencies associated with successive meridional mode numbers

decreases. This behavior suggests that experimental resolution of

individual natural modes would be difficult to achieve at the higher

n range.

The results of figures 4, 5, and 6 do not show a well defined

trend in the behavior of negative Gaussian curvature shells, thus a more extensive parameter study is necessary. The fundamental

frequencies and modes of a series of freely supported shells with a

length-radius ratio of three (Ss = 3) and with the rise-length percent

ratio varying from -5 percent to +5 percent are presented in figure

10. The fundamental frequencies for the shells of figures 4 and 5 are

located by the vertical dashed lines. The horizontal dashed lines will be discussed later. As the positive curvature increases, the 82 | nN Ww | Aa WN en A = 1000 n

Frequency,

Perey Perey oq oq

Nondimensional

Minimum 01 001

Percent Meridional Rise

Figure 10.- Effect of meridional curvature on the fundamental fre- quencies of freely supported unstressed shells (7 = -5 percent to +5 percent; S = 3, a = 1000).

The meridional mode m=1 unless otherwise noted, the circumferential mode n is given on curves. (A111 cal- culations based on approximate theory.) 83

fundamental frequency and circumferential mode number increase monotonically. As the negative curvature increases from zero, the circumferential mode numbers decrease and each branch associated with a particular modal configuration has a distinct minimum. That is, for each branch of the envelope of fundamental frequencies in the negative curvature range, there are specific values of curvature at

Which a large decrease in effective stiffness occurs.

The fundamental frequency of cylinders and positive curvature shells occur for m= 1. However, an m= ce meridional mode is associated with the fundamental frequency for shells within a small range of negative curvature.

Figure 11 is a compilation of nine plots of the same type as figure 10. The length-radius ratio ranges from 1 to 10 and the radius- thickness ratio ranges from 100 to 1000. The minimum frequencies in general decrease as the length increases and as the thickness decreases

The reductions in stiffness in the negative Gaussian curvature range are more prominent for the thinner shells, but the effect is notice- able to some degree for all the shells. The minimum frequency for each branch of the envelope in the negative curvature range occurs at the same rise-length percent ratio for a given length regardless of the thickness of the shell. This suggests that the curvatures at which the minimums occur are related to membrane action. The degree of decrease in effective stiffness on the other hand is highly dependent on the thickness, thus bending action must be a prominent factor in the effective stiffness of the negative curvature shell in the region of these minimum frequencies.

84 tt] tt]

3 £1000 7 5 A 2

6 oot oot Ol

4 ay ay

Von

© © (Q) (Q)

, TTT) TTT)

0.1 7 . oO Frequency 6 5 5 R 4 7200

TTI TTI 3 2 .O1

Nondimensional

TUTTI TUTTI f f | , -O0| . |

Minimum

retry retry TTT TTT ~ D wn tT ; Rg

<< ph 100 43

no Ol

TTI

“TOP : : ; Lo ba a O01 | on wn

o oO 5 -5 Q 5 ©

Percent Meridionol Rise

Figure 11.- Effect of meridional curvature on the fundamental fre- quencies of freely supported unstressed shells for various lengths and thicknesses (« = ~5 percent to +5 percent; 5 = 1, 5, 10; = = 100, 200, 1000).

The meridional mode m=1 unless otherwise noted, the circumferential mode n is given on curves. (All cal- culations based on approximate theory.)

85

D. Membrane and Pure Bending Analysis

The results of the previous section imply that membrane behavior is closely related to the large reductions in effective stiffness observed for negative Gaussian curvature shells. The membrane equations which correspond to these shells have been solved in closed form for freely supported edge conditions. The solution for membrane natural frequencies is given in equation (98) in terms of the non- dimensional meridional curvature (Ky ) » modal wavelength ratio (B), circumferential mode number (n), and prestress quantities. This solution is plotted in figure 12 for particular wavelength ratios for unstressed shells. The membrane frequency is a continuous linear function of KL for a given wavelength ratio and decreases to zero as KY approaches the negative value given by equation (99). Since the total mass and mass distribution are essentially constant as kL is varied, this decrease in frequency must correspond to a decrease in effective membrane stiffness. Therefore, for a given modal wavelength ratio, there exists a negative Gaussian curvature membrane shell with a nondimensional curvature k given by equation (99) which vibrates without developing any effective membrane stiffness (or for that matter any membrane stresses). As the meridional curvature increases negatively from this critical value, the membrane shell regains its stiffening characteristics.

To show how this membrane behavior is related to the previous results noted in figures 10 and 11, the modes (m = 1, n = 3) and

86

peytoddns peytoddns G G

(8+ (8+

v" v"

ATaeary ATaeary

, ,

(9+ (9+

% %

¥) ¥)

yt yt

1) 1)

Jo Jo

€ € } }

(Arosy}

sazsuenbaxzy sazsuenbaxzy

“uu “uu

*(S*0+ *(S*0+

Xo, Xo,

= = _

¥ ¥

wou wou

cul cul Z Z

suBrqmeu

‘aNJeAIND ‘aNJeAIND

4 4

04 04

Tem4eu Tem4eu

G*O- G*O-

I I

T T [eUOIPIaW [eUOIPIaW

ayeutxordde = =

x,

+) +)

0 0 3} 3}

Jeuol Jeuol

STTeus STTeus

Uo Uo sSUaWIPUON sSUaWIPUON

t+ t+

uo aum4eAINO aum4eAINO

peseq sUBIqMeM sUBIqMeM

¢* Z- Z-

suoT}eTNoTeO

TeuoTpTiem TeuoTpTiem

pessa.r4sun pessa.r4sun

€~ €~ JO JO

TTY) p- p-

oar oar * * ae SS

-*2T -*2T ams ams Neth ‘Aquanbas4 auesquiayy |eUOlSUalW|PuON 87

(m = 1, n = 4) are investigated for shells with a length-radius ratio of 4 and a radius-thickness ratio of 1000 (shells of figure 10).

The wavelength ratios for these modes are 6B = 0.349 and 8B = 0.209, respectively. From equation (99), the meridional curvatures at which no membrane action is developed are k, = - 0.1218 and k, = -0.0685, respectively, which for the length-radius ratio in question are equivalent to the percent meridional rise ratios T = -4.57 percent and T = ~2.57 percent, respectively. These rise ratios very nearly coincide with the rise ratios locating the minimum frequencies in figure 10 at the modes in question. Hence, these reductions in fundamental frequency occur at curvatures for which the membrane theory predicts no membrane action. This can be shown to be true for the remaining minimums in figure 10 and all the minimums in figure ll.

The higher fundamental frequencies on either side of these minimums must be due to the reinstatement of membrane stiffness for that wavelength ratio as the curvature changes as indicated in figure 12.

The preceding suggests that membrane action is not developed in negative Gaussian curvature shells for certain wavelength ratios and that this accounts for the radical reductions in frequency observed in figures 10 and 11. This would further suggest that at these critical combinations of wavelength ratio and meridional curvature only pure bending action exists. If this be true then the fundamental frequencies found with a pure bending theory should yield frequencies near the observed minimums. To verify this, the pure bending theory 88

was solved. The pure bending solution given in equation (107) is independent of curvature and is in general a poor representation of shell frequencies since membrane stiffness is usually a quite prominent mode of resistance. The pure bending frequencies associated with predominant w displacement for a shell of length-radius ratio of three, radius-thickness ratio of 1000 and modes m=1, n = 3; m=l,n=4;n=1, n=5;m=1, n=6; m=2,n=7 are plotted in figure 10 as horizontal lines at appropriate places for comparison with general shell results. In each case, even though the pure bending results are independent of meridional curvature, the pure bending frequency closely approximates the minimum frequencies obtained using the approximate theory for corresponding m, n modes. Hence, it may be concluded that the reductions in frequency observed for certain negative curvature shells are due to a loss in membrane action and that for these critical combinations of modal wavelength and meridional curvature the shell is very nearly vibrating in a pure bending mode. Furthermore these combinations may be predicted from a simple membrane equation (equation (99)).

Further insight into the relative role of membrane action and bending action in the vibration behavior of doubly curved shells may be gained by inspecting the characteristic roots of the governing equations. Table I contains a tabulation of a sample of the character- istic roots found from the characteristic equation (78) for a particular circumferential harmonic mode number as the meridional 89

sue

Ggg°O-

161°0

9¢°G

Qty

gO°T 90°¢

on’

On’ OL*

G6°G~

2X

c

qusem

T-

en

e~

50°

TOOES

TOOES TOOES

TOOES FOOS£469°9¢

Su

QT" 96°C

60°¢

2T6°O

GTg°O

66°C"

COT

On Gt’

Clee

2

Tpuaq

FES"

THO’

FHO°

EG" UNVEGNW

c

th

TO

*

eo

62

LE

SE HE

sue

604°0 WOU

Teh’

60°S

OS"

06°¢-

41°

c0°2

LZ

¢6°

z*

g9e°Gr

t

quem

2

On

an

To CHNIVLdO

Gz0"0

(c°o

FEOEEFLIO’

FLOSS TEOSS

TLOSEFTO"9E

TEOSEFTH’

SUTpuaq

=

GT’ 06°c~ 26° 92°47 LE°G-

Bch’

60°S

64"

Gled

z 1

60°

FT FTO’ SLOOY

*

To

fh

On

O

2"

H

6S

Le

Ze

=

HE

U) OILSTYRLOVEYVHO

suerquem

99T°O OLT°O-

SHIYOSHE

89°F

20°

92°

cb" 4G°S

09°¢- To° QG*

z

c

*

ao Go

4

en

TO"0

ONIGNGE

THOSE

EROS’ TOES THOSE FOSS

SutTpuaq AO

66°47

T9°

9ST"O

QGT*O- QG*°

Co°o"

89°

92°2

T6"

z

CG°2

FOH’

70g" eC

FOC" FOO’ FOO’ NOSTYVdWOO

X

a"

er

4

INV

62 2S

Le

HE

suBIqueM

Aduenbaay

+90°0-

STqEssod

€90°O

Azepunoq

qh 99° LASS

z

Cos

ZOoy

G*e~ G°an

t

* -°I

4

S000

¢°0- aTEVL

st

FOSS

FHOESFOH’

FtO€S

THOSE

10

Ternyzeu

SUOTY

= BUT

02470° L9O4O°

GOO"’O

oy Le*o-

Gers

GQ" Gr?

GL"

*H

2

pUusq

g

FOO FOO’

t

FO?"

*

on

TpUuod

4

0

O-

sue

oz

*

He

JO}

on

62

LE

2S

GT’O-

GT’°O

¢*0-

.

c°0

*y

0

90

curvature is varied from positive to negative values with particular

values of frequency maintained as constant. The roots are a function

of the governing field equations only and are thus independent of shell

length and edge boundary conditions. The character of the equations

changes radically with the sign of the curvature. A comparison with

the roots of the corresponding indicial equation from membrane theory

given by equation (103) shows that this change in the characteristic

behavior of the shell is associated with membrane (i.e. in-plane)

rather than bending terms. Moreover, the membrane roots are very

nearly unchanged by the presence of bending terms and in the shell

theory roots associated with bending terms are very nearly insensitive

to changes in curvature. Thus, in general, differences in the dynamic

behavior between negative and positive curvature shells are associated

with membrane behavior.

It should be noted that every negative Gaussian curvature shell will vibrate in a pure bending mode for some particular wavelength

ratio, however; if the m or n number its large, there may be

enough bending stiffness present to maintain a frequency well above

the fundamental frequency of the shell.

E. Prestressing Effects of Lateral Pressure

Figure 13 indicates the vibration behavior of a shell subjected

to a small internal and small external constant directional lateral

pressure. The prestress deformation is assumed negligible so that

the circumferential stress is constant and the governing equations 91

1.0 —

L. - S =3 a R L > 200

Ca 6 0,] ua > E

Ss . = ' 5 wm tc - = L 5 No r 2 an) =5 L 2x10 5 3 =z = 0 = = 01 — 5 = F 2x 10

.

oo. [ot yg Jf J ft 4

. -5 ~4 3-3 =-2 =] 0 1 2 3 4 5

Percent Meridional Rise

Figure 13.~ Effect of meridional curvature on the fundamental frequen- dies of freely supported shells subjected to a constant circumfer- ential tensile and compressive prestress (7 = -5 percent to +5 percent; 5S = 3, é = 200).

The meridional mode m=i1, the circumferential mode n is given on curves. (ALL calculations based on approximate theory.) 92

retain their constant coefficient character. The internal pressure develops a constant positive stress in the shell wall which introduces a stiffening effect. This effect is more prominent in the negative curvature range causing the fundamental frequencies to increase slightly. The same small level of negative circumferential stress produced by an applied external pressure causes a radical deviation from the unstressed behavior in the negative curvature range with complete loss in stiffness (buckling) occuring for shells with a percent meridional rise in the vicinity of -4.7 percent. Only a slight decrease in frequency is evident for the positive curvature shells. This demonstrates the highly unstable character of the negative curvature shell in the vicinity of curvatures at which membrane resistance is ineffective and bending stiffness is small.

The introduction of large internal lateral pressure is a possible method of stabilizing the negative curvature shells. Figure 14 shows the effects of the application of a large internal pressure on the minimum frequencies of doubly curved shells. The fundamental frequencies are raised on the order of 1000 percent in the negative curvature shell so that the large reductions in stiffness at critical curvatures are no longer evident. The envelope of fundamental frequencies has flattened considerably with the result that only a small difference exists between the stiffness characteristics of negative and positive curvature shells. ‘93

1,0 = -

[ $=3

= Reh 1000

~ 28 —~ BT 001 a 4 No.B = 0.0 : a e 0.1 a L. 3 10 eo> TP 5@ Lo s L 9 Li = L 5 =a s 8 o E oa _ Cc o = Ee E e OF => s _

- }-

__ | | _I 1 | 4 | 4 001

Percent Meridional Rise

Figure 14.- Pressure stabilization of freely supported shells G = ) R percent to +5 percent; S = 3; A= 1000).

The meridional mode m= 1 unless otherwise noted, the circun- ferential mode n is given on curves. (All calculations based on approximate theory.) Oy

The general result of varying the lateral pressure may be determined from figure 15. This figure is a plot of the fundamental frequencies for a series of shells as the circumferential stress varies. The fundamental frequency occured for m=i1 for all shells inspected in this investigation. The rate of reduction in stiffness as the compressive stress is increased is larger than the corresponding rate of increase in stiffness as the tensile stress is increased. The intersection of a curve with the abscissa yields the compressive buckling stress. The curves show that the negative curvature shells are considerably more susceptible to buckling at low compressive stresses than are the positive curvature shells.

F. Effects of Edge Restraint

The effect of edge restraint on the vibration frequencies of specific positive and negative curvature shells are shown in figure 16 and in Table II. The figure shows an increase in minimum frequencies of clamped shells (a =Ve=ewWwWe= Y x = 0) over those of freely supported shells (N,. =V=W=m = 0) for all curvatures examined. The boundary effects had a sizeable influence for moderate values of n but diminished in influence for high and low values of n. The clamped positive and zero curvature shells have an m=i1 type mode at the lowest frequency for each n whereas the negative curvature shells exhibit more complicated modes at higher n. Since in the approximate theory the lowest frequency for the axisymmetric mode

(n = 0) is the torsional frequency which has been shown to be 95

13 [~ +3% Rise 5

Al +2% Rise 10 09 +1% Rise

08 Frequency Frequency

07

.06 Nondimensional Nondimensional

.05 Minimum Minimum 04 Rise

03

01

N Nondimensional Circumferential Stress =z 10*

Figure 15. Effect of constant circumferential prestress on the funda- mental frequencies of freely supported shells (7 = -45 percent to N - - +34 percent; 5 = 3; f= 200; = = -2 x 10 + to +2 x 10 +),

The meridional mode m=1, the circumferential mode n is given on curves. (All calculations based on approximate theory.) 96

1.0 —— r

——«-——= freely supported ———o— = clamped

S kK =+,] ~ a X > eo cS ‘\ S . Li 3 a 2 . “Stic ae © eg cree 5 eerreee bs wn c 0.1 beers @ 5 — kK =—] s = ‘ “=o 2° ° = = . TT ONw ae ‘“, ~ _ € _ , OS mo eRe s - m=4 = cylinder S . ‘ = 8

OL it ft | J] Jj [| J | | Jj | J 0 2 4 6 8 10 12

Circumferential Mode Number, n

Figure 16.- Effect of edge restraint on the natural vibration of unstressed shells (x, = 40.1; s = 3; - = 1000).

(All calculations based on approximate theory) 97

O= (ream) §4

JO 6190° 9G170° 9¢40° +2,470" L2ZS0° 940° T960° O¢O0t°O 9G¢e° O94T’ =

SHIONENOGMA A= (ooot

TVEAIVN

O=- (pea = 5 fodans *W=AMA=A=N

AHL {6 620" 9¢t0° 6GHT* 9G40° 970° ae ZQHT" Gace" 0960° 9zZG0° +),470° @1,90° =

NO ky 8 0 duyzs

INIVELSHY “Gor Gi ) =

aya]! (JUTBIYSeL x)

ADGH o= ou TISHS Mana

AO W374 = Q17600°

LOMITA 69T0° HEGE°O 90Z0" T9Z0" 2GcO" ¢620° 90¢0° 1L160° THNLVAUO 2 pedweto) TBuoTpTiom a=

FHL iy

FO TALLVOAN

NOSTYVdWOO

O= (peacoadns V *W=h=A= L6300° HEGE°O SQHT’ LLGO° g9TO" g0z0" T6Z0° Gtc0" cO¢0* €G20°

-°II AT8245)

WIVi “*N “*N

OT W T g i 9 ¢ G L 6 Q

independent of u, w and the meridional curvature Ke the minimum

frequency curves have the same value at n=O regardless of the boundary conditions (as long as v =O is maintained on each edge) and curvature.

The clamped negative curvature shells do not have the large reductions in minimum frequency which occured in the freely supported

shells. The results for different combinations of edge restraint of u- and Woy given in Table II show that the condition u=0O and not Woy = O caused the increase in frequencies above those of the freely supported shells. Thus, the membrane constraint condition u=0O has apparently prevented a loss in membrane stiffness for the negative curvature shells. The slope restraint Wy, = O was essentially ineffectual in its ability to raise the fundamental frequencies. Results similar to these have been given in reference

13 for circular cylindrical shells. X. CONCLUDING REMARKS

A set of linear equations governing the infinitesimal vibrations

of axisymmetrically prestressed shells is developed from Sander's

nonlinear shell theory and both in-plane inertia and prestress

deformation effects are retained in the development. The equations

derived are consistent with first-order thin-shell theory and can be

used to describe the behavior of shells with arbitrary meridional

configuration having moderately small prestress rotations.

A numerical procedure is given for solving the governing

equations for the natural frequencies and associated mode shapes for

a general shell of revolution with homogeneous boundary conditions.

The numerical procedure uses matrix methods in finite-difference form

coupled with a Gaussian elimination to solve the governing eigenvalue

problem. The solutions obtained by this method are used to determine

the accuracy of the approximate solutions used in the vibration analysis.

An approximate set of governing equations of motion with constant

coefficients which are based on shallowness of the meridian are

developed as an alternate more rapid method of solution and are solved

in an exact manner for all boundary conditions. The membrane and pure bending equations which correspond to this approximate set of

equations are solved for a specific boundary condition. The character

of the characteristic roots of these membrane equations are also

inspected.

99 100

The effect of the meridional curvature on the fundamental

frequencies of a class of cylindrical-like shells with shallow meri-

dional curvature is investigated. The positive Gaussian curvature

shells have fundamental frequencies well above those of corresponding

cylindrical shells. The fundamental frequencies of the negative

Gaussian curvature shells generally are below those of the correspond-

ing cylinders and evidence wide variations in value with large

reductions in magnitude occuring at certain critical curvatures. The

corresponding membrane and pure bending equations are also solved for

the same edge conditions. Comparison of the membrane, pure bending and

complete shell analyses shows that these critical curvatures represent

configurations at which the fundamental mode of vibration of the shell is

in a state close to pure bending. The membrane theory affords a simple method of determining the modal wavelength ratio at which the pure bending state exists for a given negative Gaussian curvature shell, while the pure bending theory gives a good estimate of the magnitude

of the frequency for this wavelength ratio. Meridional edge restraints

and internal lateral pressure reduce the wide variation of the

natural frequencies in the negative curvature shells and in general

raise the natural frequencies. External lateral pressure accentuates

the reduction in natural frequencies of the negative curvature shells and causes instability at low compressive stress levels. XI. REFERENCES

Kalnins, A.: Dynamic Problems of Elastic Shells. Appl. Mech.

Reviews, vol. 18, no. 11, Nov. 1965, pp. 867-872.

Budiansky, Bernard; and Radkowski, Peter P.: Numerical Analysis

of Unsymmetrical Bending of Shells of Revolution. ATAA Jd.,

vol. 1, no. 8, Aug. 1963, pp. 1833-1842.

Sepetoski, W. K.; Pearson, C. E.; Dingwell, I. W.; and Adkins,

A. W.:

Symmetric Thin-Shell Problem. Trans. ASME, Ser. E.: J. Appl.

Mech., vol. 29, no. 4, Dec. 1962, pp. 655-661.

Kalnins, A.: Analysis of Sheils of Revolution Subjected to

symmetrical and Nonsymmetrical Loads. Trans. ASME, Ser. E:

J. Appl. Mech., vol. 31, no. 3, Sept. 1964, pp. 467-476.

MN MN Radkowski, P. P.3; Davis, R. M.; and Bolduc, M. R.: Numerical

Analysis of Equations of Thin Shells of Revolution. ARS /d.,

vol. 32, no. 1, Jan. 1962, pp. 36-41.

ON Kalnins, A.: Free Vibration of Rotationally Symmetric Shells.

J. Acoust. Soc. Am., vol. 36, no. 7, July 1964, pp. 1355-1365.

Cohen, Gerald A.: Computer Analysis of Asymmetric Free

Vibrations of Ring-Stiffened Orthotropic Shells of Revolution.

ATAA J., vol. 3, no. 12, Dec. 1965, pp. 2305-2312.

Liepins, Atis A.: Free Vibrations of the Prestressed Toroidal

Membrane. ATAA J., vol. 3, no. 10, Oct. 1965, pp. 1924-1933.

LOL 102

Liepins, Atis A.: Flexural Vibrations of the Prestressed

Toroidal Shell. NASA CR-296, 1965.

Lo. Sanders, J. Lyell, Jr.: Nonlinear Theories for Thin Shells.

Quart. Appl. Math., vol. XXI, no. 1, April 1963, pp. 21-36. li. Stein, Manuel; and McElman, John A.: Buckling of Segments of

Toroidal Shells. ATAA J., vol. 3, no. 9, March 1965, pp.

1704-1709. le. McElman, John A.: Eccentrically Stiffened Shaliow Shelis of

Double Curvature. NASA TN D-3826, 1967.

13. Forsberg, Kevin: Influence of Boundary Conditions on the Modal

Characteristics of Thin Cylindrical Shells. ATAA J., vol. 2,

no. 12. 1964, pp. 2150-2157.

14. sobel, L. H.: Effects of Boundary Conditions on the Stability

of Cylinders Subject to Lateral and Axial Pressures. ATAA

Je, vol. 2, no. 8, 1964, pp. 1437-1440.

Hu, William C. L.; and Wah, Thein: Vibrations of Ring-Stiffened pu or

Cylindrical Shells - an "Exact" Method. SwRI Tech. Report No.

7, Oct. 1966.

16. Arnold, R. N.; and Warburton, G. B.: Flexural Vibrations of the

Walls of Thin Cylindrical Shells Having Freely Supported Ends.

Proc. Roy. Soc. (London), ser. A, vol. 197, no. 1049, June 7,

1949, pp. 238-256.

17. Arnold, R. N.; and Warburton, G. B.: The Flexural Vibrations of

Thin Cylinders. J. Proc. (A) Inst. Mech. Engs. (London), vol.

\ 167, no. 1, 1953, pp. 62-74. 103

18. Fung, Y. C.; Sechler, E. E.; and Kaplan, A.: On the Vibration of

Thin Cylindrical Shells Under Internal Pressure. J. Aeron.

Sci., Sept. 1957, pp. 650-660.

19. Koiter, W. T.: A Consistent First Approximation in the General

Theory of Thin Elastic Shells. Proceedings of the Symposium

on the Theory of Thin Elastic Shells, North-Holland Publishing

Co., Amsterdam, 1960.

20. Novozhilov, V. V.: Thin Shell Theory. P. Noordhoff LTD.,

Groningen - The Netherlands, 1964.

ol. Stein, Manuel: The Influence of Prebuckling Deformations and

Stresses on the Buckling of Perfect Cylinders. NASA TR R-190,

1964. XII. VITA

Mr. Cooper was born on June le, 1940 in Boston, Massachusetts.

He graduated from Boston Technical High School in 1957. He attended

Northeastern University receiving a B.S.M.E. degree in 1962. While

an undergraduate he was a member of Pi Tau Sigma, ASME and ASM. He

held a cooperative work assignment with Artisan Industries in Walthan,

Massachusetts from 1959 to 1962. He received a teaching assistantship

appointment in the Mechanical Engineering Department at Northeastern

University in 1962 and taught undergraduate courses until August 1964.

In June of 1964 he received an M.S.M.E. degree from Northeastern

University. In August of 1964 he joined the National Aeronautics and

space Administration at Langley Research Center where he is currently

employed. He is an associate member of ASME and is the author of two

technical papers, one in the field of metallurgy and one in the field

of shell dynamics and stability. He is married and has two children.

Gaul Ao Cuper—

104 XIII. APPENDIX A

COEFFICIENTS OF EQUATIONS (22), (23), (27), AND (90)

A. Coefficients of Equations (22)

The coefficients of terms in the governing equations (22) are defined as follows;

Fy, =2

Fig = 7 9

P (z-u) , ae (1 -y) 3k k ea, l 548 22 "3 96 ( @ 7 x) ye ( Eg)

2 XN (1 = p)n Fo3 = “Bir (3k - * )

Baa = Fy3

“30 = tos

PO NO 5 Ee u ry > I we oo one \N

105 106

11

(1 +u)n | An (1 - yp) (3%, - Kg) (3% - &) - nS (e + €,) Le er 96r

i i Kt uk, + X= w) (l+u)7 k,+ 13

(1 =u) 7% +e, 32 - at

Cay i M (2 =u")

el - Gis

2c

2d

31

1- dk x an 32 Bie 7K7 Kg (5 + Bu)- er (1 + u) ?. 2 | Ma)- a + u) (27K, ky + 77) + “y Dd 2 _ _ a * 7, + 20, =

LO7

- Sy

ne (a - uy

2 (1-4u)n e (1 = wp) 2,2 thy ~ HK, Kg - 7 - Dre 12 (1 +4) 7 K

n 2 (2, - Kg) 2 ob. pel ee * 2 Ke & 7 (e,, * eg] 8r Lr

dk x|— cor

+ la - 2) vk, + =| Pe ~ ky —(-uny 2 - ny | OX he er ler 3

+#(L4u) k kyl -%(e46,)- 88x 5, + Sewn | ee x *8 Ar ( x a)" pr Xx Pe Or @ Ve

oy + ¥(k k n° (1 = w)néy (3%, Ko) + (1 ) sale u dx ( x” ) ~ Lore 2 FH) kK

2 - KE (Ky + ul, | =Pe ,+ (1se -y)n =Pe hy x (a - a) (l-u )7k,, 108

log =

2 42 (1 - u) nm AX (1 -u)]{(L+u)n~, 2 22 "Gon + eo KL Rg - Te B Kg r r k_k =x 8 (3%, - “JF 2 +5 Yaffe(=, + _ea) -ky a €, - ZK,1 Kg

(1 5- wy (5, + 2k) ~Pe (i-y),2-2st ky” 9,

x (l= wy wey 62 2 8 ax

2 dk n N (1 - w)n Xx 2 2(1+ u)n 2) r (Ky + 4K) + oly Ya, 7 ey 2

(3k - k,) (7 2 + Kg) - ok,n _€y + (1 5-u)ny —

(1_- un, 5.24 (i= u)n Oe Br g Pe Dr ax

2 2 a w(a-u2)n Toy = 109

Hy = - 7 (Ky + HK) + no (17m =u) (lt+u)7| 7 kL - 7 o-- ak,one

2 ne dk, | + 2k Ma )* aa ry - 3 ay] - rk, +=] er

de (1 - p)n 2 2 , | dk x) 3,2 -R& +. Ore Sx | Peo mL + aR Pe

do - (2k O, + U7) oe E

Ho =~__ sRy (Kg t HK) + X (15 -p)n fata +) Pi 2 yk,

+ 27 2 Ky 2p)no te”di, 2 (Kg - k,) +k, ky O¥e - 5)

o.° un 9% - ~k,¢ *o € £9 , (h=u)n7By 5Pe _ 2 -u)n,Or ee "ry &

2 2 H.. =- kK 2 - Qik k, - ko”2,n + (1 -y)n (2 + unl, Ky = 8n + 2")2 D3 x x 6 9 or’ Q x

2 ne dk) _ +2(7 +k Kg] ~ Be - [7 (l + yu) + a= Pe

do - G-wn 3, - (Kk + uk) ae + 0 er é

H, -- (1 2) (1 )k_ k unt By ~ ~ He BY Ag T BT r

Hy - r= (2 - a) (= + 74, L1O

His = Hoy

nn (2 - 2) un’ i an,

irae D SN |

ae = 10n* @ - 2) f= ao

Coefficients of Equations (23)

The coefficients of the terms associated with the boundary conditions (eqs. (23)) are defined in the following equations:

ll 7

22 * D

"25 _é= ate A un (Fo x)

“31 > 13

Cx0 = C53

MN MN

hm hm

i i ! !

Sah >

! !

c c

ee” ee” co co Lid

uy +k, OD,

un r

kK + UK,

2 _ (1 =n _A - )n (3%, _ kg) (3%, - K,) + i (e,, + ee)

| M7 (Lo 8) (51, +E (E+ %) + Fe ae - Ue?

NY2 (1 - un (1 - p)n- - — tie —— (Pe ~ k,. | + —<3R .

2 (1 - up) 2 n 2 _ 12 fa ea yk tts Gx, - %) ~ kK &, er

-u7 B, =k, By

A - war P53, - k + 2(1+ 4) ky | - 3, 32 Me

A 2 (i - yu) ny2 _ 33 EEG 4) BE > (ty)

Poh Me (1 = yu) (2 - u)y

dle

fs == n @ - i) k,

C. Coefficients of Equation (27)

The coefficients of equation (27) are defined as follows:

Ky = oe : 5 4(855) 20(%15) - a55(®)o) + ecto A),

Fp Ay Boo 8s) F £8, AnzAoy, + (a5) Az ~ each as)

* (213)° = 4155] (24)

A= 822855 F 817859 7 817833 - (2) - Can - (3) | Buy

- (a2,)" (41, * 853) 7 (25) Crm Bop) + HB Pos)

aA aA NM

t t

i i i i

ta ta

~ ~

WH WH

HH HH

fo fo fB fB

cal cal

NN” NN” aN aN 113

B59 > Hoo - Foo (

A), = Hoy a55 7 Hes - Fog (3*) - " as, = Hay - Fy (EF) ayy = Hy

D. Coefficients of Equation (90)

The coefficients of equation (90) are defined as follows:

2 >i >i o = Puy Yosh - (%3)*| - Pip eaoPss - bashes

+ bis s2%es - b3Peo|

= Bopbss - (P55) + Pasha - (>43)° * DypPop - (40) url 114

where

m7 by - (=

_fltu bp =( D )

ma %3--(F

2 A

Boz =

b S|(z 344° 12 S

APPENDIX B

REFINEMENT OF THE NUMERICAL PROCEDURE OF CHAPTER VIT

The method of Gaussian elimination used in Chapter VII introduces

spurious singularities into the determinantal equation (48). These

singularities are associated with sign changes of the determinant

even though no zero of the determinant exists for these values of 2.

This causes difficulties in the search procedure for finding the

frequencies. The actual value of the determinant of the coefficient

matrix of the set of equations (40), (41), and (42) may be written as PLP] A= AFo] >» Pane Fae Fe Fea (BL)

where the zeros of R are contained in the last determinant if

2a # O and in the next to last determinant if Zong = O (simply

supported). The last determinant is infinite at the frequencies of

a simply supported system since P is found by inverting a null N-1 matrix in equation (45). Similarly, the determinant containing the

zeros for the simply supported system tends towards infinity as the

frequencies for a simply supported system of length S-A is

approached.

To remove the singularities, equation (Bl) is used in place of equation (48). Although individual terms in (B1) will increase

115 116

without bound for certain values of the trial frequencies, R will remain bounded since there will always be corresponding terms approaching zero at the same rate. If Zu = QO, the last term in equation (Bl) is dropped and the modified R is used in place of equation (50). This procedure does not increase the time for calculation appreciably since the determinants required in equation

(Bl) have been found during the computational procedure followed in determining P, with equation (45). APPENDIX C

SOLUTION OF PRESTRESS EQUATION FOR CHAPTER VIII

The equations governing the axisymmetric prestress deformations

are found by applying equations (68) and (69) to equations (66) and

retaining the prestress terms aR, ) a = ° 2M d |= E98 Sra + at} == 0 >on

2 _— — d M, Ne No _ aw 2 7 R OR Me Tote 0 dé gE dé 7

The corresponding boundary conditions are ~

Ny -N or u-v

_ eM, _ _- - Neg + R = T or v=Ve=O from symmetry (C2) & — dw -— —- = ae + Ny aE = Q or weHW

—- = dw dW Me = M or ae ~= ae

dw where N, T, Q, and M are applied edge forces and U, V, W, and aE are applied displacement conditions.

The first of equations (C1) and (C2) and the second of equations (Cl) and (C2) yield

117

118

N, = N E (c3) _ 2M co = Neg + n= T

for all €

If no shear loading T is applied to the edges then

N . ee _ for all £9 R (C4)

The stress resultants may be written as

2, WW, = Ny =B(l- 4") g + HN

and the third equation in (C1) becomes with the introduction of the nondimensional variable x

ea 4b De 2 2 — XN dw Naw 2,-— _ pR (1 - ut) N Tee Bet hw) we eeGH) BG (C6)

Equation (C6) has the same form as the Foppl equation solved in reference 2l and in fact reduces to this equation when KL = 0. If the boundary conditions are the same on both edges of the shell, the solution to equation (C6) is

119

Ww . S 5 | Fea sina, (x -§) sima, (x 5

S S P - + Ao COScos & (x ~ S|2 cosh a 2 ( - 5)2) + “> _ 2 (C7) where

P= Rp (1 ~ un) ~-f{k tu N (c8) — Eh x B

and >

4 2 3N = = I - Lu +-_ — oy \2 -B (C9) _ ,]2 7 a5 = RK yp- ue - 2b NB J

For a simply supported boundary condition (W = M = 0)

BD 2 eo 5 S . Do, 2 A -( P \ a cos a, = cosh Bn 5 7 ea, an sin a, 5 sinh —-

1 Ll-u } 2 S 2 aSBp 2 § 2 aSBp 2 35 (sin = sinh = + cos a) 3 cosh “= |

(C10)

2 2 ~9 Bo 5 S ano2 A -P (a, -~ ay } sin a sinh 5 + 2a, a, cos 5 cosh a

° i - Le 2a a So sin’ “1°a § inh” f2P2 + cos se aBe cosh*SOSh #2°3 120

, - (2 a. 2 c 08 4 38 Sinh B2P ae sin “12& cosh a 228 ) ~ S . i - un a. 2 sin aeD cos a?a + Ay sinh Be?D cosh 2. 2

> (ca)

ao . fe) a. 2A?cos sinh 2 +a. 2 sin “2 8 cosh a 228 7 1 a S aS as a5 a. sin a cos = a sinh > cosh —5-

This solution could be used to determine the prestress quantities in the numerical solution of Chapter VII, in order that the effect of prestress deformations on the natural frequencies of the doubly curved shallow shells may be investigated. If there is no axially applied load (N = 0), then from equation (C6) the deformations and rotations are independent of Ke APPENDIX D

AXISYMMETRIC VIBRATIONS

For the particular case of axisymmetric vibrations (n = 0), the circumferential equilibrium equation, that is, the second of equations

(73), uncouples from the remaining equations hence the torsional frequency is independent of u and w. This equation, written in terms of the nondimensional meridional length x, becomes

2 2 1 -u N vhR _ ( 5 Gad)y, = Be Voz_ = 0 (D1)

Since KL does not occur in this equation, the torsional frequency will be independent of the meridional curvature.

The general solution of equation (Dl) is

. Qx Qx Lot vVo=j)v., sin "WC + v,. CURRcos e (D2) so that for the circumferential boundary conditions the torsional vibration frequencies is given by VAe4) (+) =ixn tle=tl1, 3; 5;

The minimum axisymmetric vibration frequency is thus given by

121

lee

ACEO) _

« orsion S

The remaining two equilibrium equations of equations (73) reduce to

uu, + (, + u) WwW, - yn” Uy, = 0

(kK, + u) us, + x Ws coe * (Ke + Qu k + 1) w- ne Woy (D4)

+ vn Wore = 0

These equations are handled in the same manner as were equations

(74). The characteristic roots of equations (D+) are determined from a sixth degree equation formed by equating the determinant of the matrix which results after deleting the second row and column of the

coefficient matrix of equation (76) to zero. With these modifications,

the terms B53 vanish as they should since there is no longer any inter- dependency between w and v. Since only six roots are present, the

sum of linear solutions in equations (82) range over six rather than

eight terms. With the dependence on v removed, the boundary

conditions in equations (85) associated with v and Neg must be deleted, that is, Noy Ney? Yay? and XG; leaving three boundary

conditions on each edge. The solution of the axisymmetric frequencies

is determined in the same manner as is indicated in Chapter VIII.

XVIT APPENDIX E

Printout of the three computer programs with sample output and flow diagrams used in the analysis.

1. Computer program for numerical method of solution of the deep

shell equations of Chapter VIT.

Computer program for general method of solution of the

approximate (shallow meridian) equations for Chapter VIII

for several boundary conditions.

Computer program for method of solution of the approximate

(shallow meridian) equations of Chapter VIII for a freely

supported shell.

123 12h

FLOW DIAGRAM OF MAIN PROGRAM FOR

NUMERICAL METHOD OF SOLUTION

OF THE DEEP SHELL EQUATIONS

START

Output

Constant Delta

Compute Variable Deltas

y

Output Variable Deltas

Begin loop on

mode numbers + DO 2500 IT = IX, IY

7,

125

Choose

a search Ngee“

Calculate OMAGT

Print Output

Are both Yes < IPLOT and >_> MODEPR = 0 No

Y

126

; ?

CALL COOPER

Is Yes [ IJ = IFREQ(IK) 2500 Continue} —

No ' Read i Define AA( IK) new and BBB(IK) case to find next frequency

127

A. Main Program Variables

NCON - indicator for constant or variable delta values. IK - subscript associated with each frequency interval. IJ - counts the number of successive frequencies for a

Wh particular circumferential mode number. MAN - indicator for search method used.

* OMAGI ~ final interpolated value of the frequency. IPLOT - indicator for use of plotting routine. MODEPR - indicator for printing mode shapes.

COAATIAWF IFREQ - array containing number of frequencies desired for each circumferential mode number. AA, BBB - interval in which ITR2 subroutine searches for \o value of frequency.

B. Subroutines and Function Subprograms

1 NANCY - a user-written subroutine which supplies all geometry, prestress conditions, boundary conditions, and other input to the main program. 2. RAN - subroutine which calculates modified coefficient matrices of the differential equations and the difference equations. These matrices are independent of the frequency. ITRe - a NASA Langley Research Center library subroutine which, given F(X) = 0, searches for a sign change in a specified interval (A,B) and converges on X, using an interval halving procedure. ITR2 calls function sub- program FOFX, which in turn serves as a vehicle for calling COOPER. MANUAL - subroutine which calculates the residuals when given a frequency interval and a constant frequency increment. MANUAL calls FOFX, which calls COOPER. COOPER - subroutine which calculates the recursion matrices, the final characteristic determinant, and the mode shapes (if desired). Subroutines used by COOPER: a. MATINV - a NASA Langley Research Center library subroutine which finds the inverse of a matrix and calculates its determinant. b. ODDIPLT - a NASA Langley Research Center library subroutine which generates plots on tape to be processed off-line on film or oscillograph paper. 128 SNOTEVNOS

OuUu 3 wOd

*(€T0Z

S(SPIVISNS VISHS EXAL

*XJQNE‘IOATdI Yad009

HLidd*

COS d3aG

“CoS

(T2AdV

*€2)1304(2)9VWOS NI

*(4*e

(CTOZIVETSOS

INAS

S) &

(102

UdICOWNVWS JHE *V

ILS

HHS AYNOTA

Advi

(HSH

INdLNO=SIAdVL* *d

(7S

1Xd3* 40

(o*

‘NS

7 —

(HF

ZVHA

>) NOTLATOS

DOTE SIXAS 33S)

CTO7

SOF

HILIV

sdd

*(TOZ)XQTHdG*S

(SD

(4ZIWX

LONI

TV4E(E

(HPV

INDUS

Ait!

6

VXOHXG* AASAGNIINI

XO

(Sy)

INI “d

Cot

IHdG

DELES 40 $3003

INUNI=S3dVELS

LES

SE

‘OIUST

13 *N

4

COZTIXV

WX*IXVWZA*

S

o)uVd

dd

DMCVHE GOHLAW

34S

*

(TO2

*VHd

(4

FHd

Ee

1

WYHSLSTCISISNS

SH

(102)

GNV LNdINO

SNOIN

84S

HVE

*

TV

TV

*

Slo

ICVHI

HLS

11S

44007

XOHAS0

EOS

SENDYAd SHHH

2VHd TWOEYSWAN

*SU3LIWVUVd

tddd‘O*E*3GIA)

ed)

FHd

TOVWOSGIS3Y

SZNXS

ETOZ

(Hoo)

TV

XOWNXGSHLSAXSVWHVD

END

SSN

TAS

102)98G INdNT

1Vds AWS "¢€iNdind

(CIWHS

SHH

19S

TVS

*

(S)T3Q*

C4

INXS

CVHd

(802

XOXIG*HIda*

INOS

XVIL

ddd‘3@IA

Vad‘

INXS

SNN

f

66

TVWHd

44S

*

(ZS)

454944948

YT

LIGSOVWOSWI/SDdIVESS

SS

TSG

)XOH139G* ONV

TAWX WHT

NUNIT)

CTOZFVWWYS CEVTH

£00214

*

X93*

WH‘

Q@NST YOs

EVISNE

4

COZ)

VHd

TWW/ONAOG/

14

SNWX

(GPIVIST*

Sada

JIVALIVE

XFONTS

INdNI sO *£

/OZAVT/ AYEFWOID

THSSAVSO/3AVS/8

49)4S

*2WV WYYDOUd

XdOS

CxaWwV

TddOdI/

ST)

SCE

WW

VV NOSTYVdWOd

AVTUSAC

/309/ /SNS/ Y31ldVHI

OW

V1

NWX—*

Xdd/ULSAUNd/T

LVE

|

(T02)xXax3aay

VV

4

Z2VHd

NX/4041LV9/9

IX/NVULV

(444 *TOZ

(02

IX

V/EDINVUSS

=NOISNIWIG

TIG/IVdS

S3TLIL

*

(4)

SU /YLINOD/Y

TX

WNUFLXKS

SC

196

UV

WVUDDUd

/SESNOD/Z

(9)

=CWV

NOWWOD NOWNOD

NOWNOD /SWOSI9ST

LOATdIS NOWWOD

TOC)

1dd04/6 T=TNWX

)O3NSTT

4002

VSAVSES

WW=LSN YAINdWOD YOd

DDHHHY

T1V9

19"Uv~ 40

LVI

SSL

1X

SLTYM

Se IVE TIVO

JE

ft

32 3 35 92 3 129

2NX*INX*Z3‘4TS //#3NTENOUGNS ES3Ud

dD

IM Tud

TVHOXG/8

S=(E*EVSVHd

(8°9OTIe=SSAYISAUd

Z2ULT

YOA

//#Z2N1T /2°8sa*=le

//#S3dVHS

//#SVATIG

*=FOVINSIUISd

YOS

wOd

T

*X9/S=XOHG/Z2

°9TAI=HLINIAT

T

//#SINIOd

SSSMIVA

NI

2

(S°T=TP

(2°SA=NWHEXET*S*

TWH

“CINVYUPWAW)

2)

ZULT

SYdSCOW

SHDYUVIS (HS

G3SN

JT@VIUVA 3GQW

TVHd

THT

SXH/2°

3dVHS

(TIDHOT*X

YOI

CLP

SISFTL TVHST

TVNOTOIYIWs

3SFHL

AQ

SCL °

BAS

IWIXVHETXE

TVWANVW

NWX

TWIGS

SIXVW

S1LO%d SNOTLVYFLI

SE

=19'

YOS

JOOW S45

SNOIS3SY

SSIYISSYd

VCVHA

SO

JINIDYFANOD#X$

X%/2°

LV

CIVEVEST

*S

HSS

=C7S

HITVHdD

64=SH2XG/GI=STVAUMSINI

T

‘NYW

YOA YOd

JO

SAIIUVONNGE

FNN

XGS*

£V1T30

PSTIS=AITISHS*X9/(T

TW)

S44 CV

{8°9OTSe=aSLIWVUVd

*S°64=VOGWV

INDELNIYd

NI

CVHA

4/0°%3xOL

T T

SVHdTV S10TdI

COTVESXT/OTVE*SXT/OTVS‘

EYS

TAdG(EVETSOPALTIUM

WHZTS

4Q =(

CTP

LNVISNOD

/SNOTLIGNOD

SSIOTd

*Z2YLI

SVLTIG

TST)

(/2°84*=to

YIGWAN

LNVISNOD

WHT

THT

(o2°T=I*SCEIWX)

ANDU3d

(F—ITVLVESN-CTYLVISN=CTDEVIST

tat

64°

X%/2°

NOTIAMSXE

TVHd

SONATAS

SNODON

O°OOTe

ONISN

ON

CL

ON

WddOs) THLXS/AYLAWOFISOHS)

XH

TTA

0982 JTAVIYVA €°O°4S2SI

ST)

YOA

WOWIXVWEXe

YOS

WHT

4

/7°

84S

YOA

CTP

%=ZI

YOF

IVHd

SIVISN

YOS AYVONNOGOHOZ) Y)ZVHATVHCT

4/%$3009

S(T) T—-CTIIVISN=(TIIVIST

4WV

CIV

OL

TIUV)

O¥XE OFXE

8S

=(E

INGIDIYOHOTILVWYOS

SETS

GVO

SNOTIVWYOSIO

OFXE

SX

aXe

O*XE*ZI*=NOINSEXHZ

AINIMAd=(TPINIYAd

IX

SONHYTXZ

TVD

FHC

0910°D3°NODN)

4¥/0=XOHY

OFXE*S

(MIVLTIG=(1)730

SED

(T°O3*

INDAd=C1)

JLTYUM

T#X+20e)

A/*INOINIUd

STI

S72

CL2TT59)

G*‘T=I *

G*T=I

S‘2z=I N

//*WIHL

TST

(298T‘SP3LTUM

CT78TSODSLIUM (0287249) SCE

(O48T

Hl

SC

T-CDILVISN=»

TVHd

T*=YdIGOWSX¥L

THI)

x=TddOdT

JO

ZI

TT

e=1V

Tx=1TXVWRX59

#//)}

R=LO

CVHd

TddOJI

SS x=NVWEX

GNV Ae=TIeX46

JONVUXXST

WHT

9D

SX

OS82

0482

TddOSI*T

O€82

°6S=VHT

ISNSXHT

LVWHOS IVWYOS

LvWwHOod AVWHOS

LVWYOA

VWI

/2°

ONTING

ALTUM

JLIUM

ILIUM

WWHeTZ

3INdWOD

WV

SS

eXxXo2

eXVE

SP

)

JI

Xe

OG

HLS

OC

OO

BSE

AI FUE

YY

T

0582

O€8Z

0782

0282

CHET OFBT

TH8T LLTT

£

YET

JD 150 ViT3SQ LNVISNOD )

(O3NST

*=39VINADUId *=39VINADUId

*SsJOVINSDUSd *SsJOVINSDUSd S=JOVINIDUSd S=JOVINIDUSd

*=JOVINADYSd *=JOVINADYSd (YADWNN (YADWNN HLIM VOIWE

HLIM IWAUSLNI

AO JCOW) JCOW)

JYVdWOD LNSAGNSdSONI

JNTWA

(S)PDHOTSXS*B8°8T3I*=1S (S)PDHOTSXS*B8°8T3I*=1S

(HIDHOTSX4S (HIDHOTSX4S

(EMDHOTSX4*O°BSTA*=(E (EMDHOTSX4*O°BSTA*=(E

(ZOHOTS (ZOHOTS N N YSAO

OL) JO JO

INOLINIYd AYSAR

/B*STIS=(ZIVLTIGHG /B*STIS=(ZIVLTIGHG

JB JB

SAN SAN

/B°STA*=( /B°STA*=( /B°STAS=( /B°STAS=( (8°ST3*=(6 (8°ST3*=(6

N X44 X44

OALNIYd °STIS=CTIVETIQHG °STIS=CTIVETIQHG

SAIDIYLIVW TVA TVA

HIVZ

BP BP B°8TI*=tZ B°8TI*=tZ

£V

B13 B13 HLIM HLIM VULxXa ENOLNT

(S*84=V1ITSO0

YOS

EVV EVV

HI HI S=t4)SHSSX9/ S=t4)SHSSX9/

SANTVA

VL VL

VL VL Y3Z9NSINI Y3Z9NSINI JLVINDIVI

GILVINIIWI

LI LI

ISHS ISHS ISHS ISHS

Ud TIGHE TIGHE

ON

TZQHGAXS TZQHGAXS

TIGHE TIGHE SHS SHS (ddd*O*T*39IA} HLIM G3SN HLIM

*G3SN

*X9O/ *X9O/

*X9/(5 *X9/(5

*X9/02 *X9/02

4 4

S S

SX SX

Xe Xe

XH XH X74 X74 N

INVISNOD

CTIVETIG

ONTINNOD ONTINNOD

SOT SOT

TE TE

(4 (4 f9OTS f9OTS 40

G3ISN

SOLS SOLS SOT SOT OTS OTS

OL LON

INOIDNANOHOT INOIDNANOHOT

INOTOIYOHOT INOTOIYOHOT INOIDIYOHOT INOIDIYOHOT

SIFINANDAYA INOISIYOHOT INOISIYOHOT

ViTaq QOHLIW

SSANTVA

SHS SHS

SHE SHE

HIZINHSS HIZINHSS =ET =ET

AI*XI=LI H=EY)NHS H=EY)NHS SNIINOYENS SEF SI ST

HOT///)IVWYOS NHS NHS

(COTSSSIOITLIUM

NHS NHS

INHSS INHSS V V AVTYIAO cuLI 2@uil 2uLI

CLIN) INVISNOD

NO

O° SSJLVIDOSSV

O° O° oos¢ oos¢ HIYVIS

4X4 4X4

PX PX OXY OXY

XH XH

XO XO T+INX=XI T+2NX=Al

LVOTSI=NX

0062 dOOT

T-LI=1N

T+HI=HI

THF

SB SB 48S 48S *B°B *B°B O=NVW 2=NVW SINNOD

T=NVW SB SB

BETTI BETTI OL OL

NYY O=TTT

°RTST °RTST O=HI O=HI o=ft O=W1 TIVI

T=FT *BTIST *BTIST

ISCOHD TST TST

NI9OIG OS OS

Oa

SLTUM TIT TIT

TIVI

T T

T T Tt Tt

JI JI T T JI

0082

0982 OT82

XI XI OOT? rt rt 3 2 9 2 WWUuUO 131 NV 3 GITVISHOXESANTIVA OTS=LIWIT ONISN

HITHM) (30031 (84V)

AINANDAYS “SUAIWWVUDONd /L°OTS** YAddNHZTXTTS2°OTS=GILIAMSNI

WAHL CC(TILIO-C2ILIAD/ SIXvw*e3* TWAUSINI

INTYd VIOIWOHTTX+*S TOVWOS

YUVINITLYVd H2*L°OTS=AININOIYA A/B°ST3IS

YO 13‘ (XSOS*ONPIXVITIG* NI AJTTONVTI (/IVNGTS3SYHEX8 (8° (ZILIGS XdOdS

LOTd €Z°OTA=WAYAINI OOE€? X C4IXVETZIG TTS=AINANOIYA (ET#=SNOILVYSLI CCT SALVINIWI * NOILVUSL

YOI

GNV HESE*STSI=STVNGISAY ENT YOA OL ISVWO-—€ (CTILIGS IXVLTIGS

SSdVHS

SAdVHS OD JTAVITIVAV FH6EX9///9T="ON SENT

CCTIV¥ (O°ODA°YdACGOW * 2 TVWNIS "ANYNGAIOUNd CO ONT AINANGSYA 00s2 ZIOVWOS(TIOVWO 4O=€X)4 DOVWO) (CAININDIAYS CEETTSOPILIUM(E°OS"3I009T CT6ETTAODALIYM(T°S3°I009T) (dddSO0*2*3GIA) (V6OTTSOdVSLTUM(4°03° (Z6TTSOIVAILIUM(7°0F°AGCODT)SI IGGE

AGOW SJGOW CHT CIVNIA) NI oOoSs¢e Baas 3O IEGES OL Tee€y YOS

SV T2ey Det) GASN GNV YIEWNNAX8/////FLVWHOS

JLVINIIWVI JEIVINIWI fOHNTIVV CHT 09 NBATIO OL

INdNI SONNOGHZZXZ2/)LVWYOS DHT O1 INIATWH TVILINITHEZIIVWUOS OL GALVIOdUAINIHTEX8T2 INIGNOdSAIYYOIHY2 JdVI CNTIVVSXIZYLI °GNVO°OATLO IVV TI LNAWAYMINTHL LIG—( OD Wi (0 OD OD IN(888849)43L1UM JTGOWOHOT)LVWYUCS TX9 SX

SVM °0F3 *HOIHM (O°3N* NO €688849)3LTUM (288849 (068849) €6BBStOIALIUM TISVWO=IIVWO AVINSAD SYIQWANHOXL (O°OA°NVW)ST (2°03A°NVW) (MTIVV=19VWO

OL

OL IWANVW 00S2 SI IWAYSINI *101dI) 3CO3T)

Y3d009 Y3d009 3009T)JI SNILNOYENS 3NFLNOVENS CX T=8NSI TdT T=8NSt ALTIUM OL SLTUM 2/2 TTV9 1109 TID )SAT SI AI SI XST AI O95 JI /T °T

FIV TIVO BESS £888 6888 0688S Tze4

3D 3 39 3 I 2

132

IS3UY IS3UY

GNV GNV

SNOTLVINDWI SNOTLVINDWI

WWNISHZEXEZ/AYOASYSHI WWNISHZEXEZ/AYOASYSHI

JdVHS JdVHS

(T30339X3 (T30339X3

JGOW JGOW

(8°9OTI=TVNGISIY (8°9OTI=TVNGISIY

(s031101d (s031101d

(O (O

‘AILSANBAY ‘AILSANBAY

*IVAYAINI *IVAYAINI

= =

SNOTIVYUSLT SNOTIVYUSLT YO YO

(@ (@

NVHL NVHL 00S2

N339 N339

NVHL NVHL

(G3SSAIuddNS (G3SSAIuddNS

LON LON

(268849 (268849

NI NI

(ddd‘O*2*3GIA) (ddd‘O*2*3GIA) ONIGNOdSFYYODHEZSXET) ONIGNOdSFYYODHEZSXET)

OL

SS371 SS371

JAVH JAVH YALVAYD YALVAYD

OGNNOS OGNNOS S3dVHS S3dVHS

OD 40 40

(O3LVINIWI

ST ST

ALTUM ALTUM S3dVHS “ON “ON (FI*OS°CNTIOSYSI)

CHT

N3IAIG N3IAIG

WHS WHS

XLTAGHOH9Z XLTAGHOH9Z LOO LOO

X+OHT

STI STI

JAGOWHIEXTZ) JAGOWHIEXTZ) XVWOHTE XVWOHTE

XVETI0+

VOHO? VOHO?

(O°IN*°LOTWdI) (O°IN*°LOTWdI)

ONOHSS) ONOHSS)

FAVH FAVH

3CGOWOx) 3CGOWOx)

(T6889 (T6889

(6666°9 (6666°9 AVIYSAG AVIYSAG GEG=(NTIEGga

LON

OOT2 toEee toEee

X= ONILEOTdT ONILEOTdT ANNTLNOD

STI

)IVWYO0S )IVWYO0S T

}LVWHOS }LVWHOS JLVWYOS JLVWYOS

OOTY

IVWUOS IVWUOS

LVWYOS LVWYOS

Lywyos Lywyos

LVWYOS LVWYOS

ALTIUM ALTIUM

ALTIUM ALTIUM OL OL OL

OL 11V9 11V9

What

ONZ

ST ST OD OD 09 SI

O9 46TT 46TT

00se c6TT c6TT

6666 6666

€6TT €6TT O0E2 O0E2 2688 2688 TOL? TOL?

T688 T6TT T6TT 153

Woo OVO

YSHLONV

SONITIVI

AG

3SQdyNd

SNILNOY

JHL

NOTLIVYSLE

YO

AWWNA (ddd*O*Z*3GIA) (ddd*O*Z*3GIA)

Zell

V

ddd‘3qGIA ddd‘3qGIA 1*ZQ 1*ZQ

ATIVIANASSI

INTINOYVANS

woud

NX/4SOSLVG/ NX/4SOSLVG/ ONST ONST

(¥y)xXdOI /OZY¥3A0/ /OZY¥3A0/

G3ITIVI

AVTYSAO AVTYSAO /aGNS/ /aGNS/ /309/ /309/ NOT

SI

IDV

7Q=X404 7Q=X404

NOWWOD NOWWOD

NUNLsaAy NUNLsaAy NOWWOD NOWWOD NOWWOD NOWWOD

O=8NSI O=8NSI NOWWOD NOWWOD

NOTLINAG LINAS

LI T1V9 T1V9

Qn Qn vel vel

3usH 2 3 3

134

G3uIsad G3uIsad

ST ST H2YV3S H2YV3S

(xs0s‘O*E WONVW WONVW

SV

SX

OOT OOT N3HM N3HM

TVANVW

OL OL

G3TIVI G3TIVI OD OD

ANI

t9*37°X) t9*37°X) (X)XJOS=A (X)XJOS=A

LNOYENS

SNIENOWENS SNIENOWENS

NUNLIY NUNLIY

Q+X=X Q+X=X

ONS ONS v v

SI SI

=x =x

OOT OOT 9D 9D

155

JYNGAIOYNd JYNGAIOYNd

ddd*3€IA ddd*3€IA

JVWIAIYHI/ JVWIAIYHI/

AVTIYAAO AVTIYAAO

JEIATIE/SAGIA JEIATIE/SAGIA /309/ /309/

Viva

NI NI

ddd ddd

NOWWOD NOWWOD AUVSSAIDAN AUVSSAIDAN

490719

VIVO VIVO VLIVG VLIVG

ONJ ONJ JD JD

136 AV1dSIG AV1dSIG

“WA

(AVUNVY SHL SHL

SWAN? *GLSEGLSLGLGLGIGLSGLGLDSGLGIGISEGIGIGISGIGLILO/ O8F357 O8F357 GYOM

WX

WAdVd WAdVd

30 30 SUAWNVUIONd SUAWNVUIONd

®WXN

JUV JUV S3AYND S3AYND

2) HdVYSOTIIISO HdVYSOTIIISO

AVUUV

SO

NOTLVITSTINIGI SANIVA SANIVA

XVWASNIWA

AVURV

(OOTILOTdI LSYTA LSYTA

JOVSSAW AGLGEGLSEGLSISGLSSO99LO *GLGLSLGLSLEESS *GLGLGLGIGLOCSS9E0Z *GLGLELGLGLYSSS9ECOZ9LO *GLGLELGLSLOYSSSENZILO ®GLSLSLSLSLSTSS9ENZILO *“GILGLSLSLSLOTSSIENZ9ILO *GLSLGLGLSLETSS9ENZILO *“GLSLGLSLGLI9GS9IEOZ “GLGIGLSLSELYETSSIEOCTILO *SLGLSLGLSLZESEIEOZILO *GLGLGLSLGLZS6SS9E07Z9L0 *“GLELGLSGLGLYESS *GLSOLSESLSLESSS

G3LIOTd

ATTINVT ATTINVT JDVSSAW

JAI JAI NO NO

SXVWXSNIWX

°Q3L101d °Q3L101d GANIWYSLIG GANIWYSLIG

SCOOT

SALVNIGYOOD SALVNIGYOOD

YO YO SSLVNIGHYOOD SSLVNIGHYOOD

WINOZIYOH (CWS

GUvd

WITS WITS

SOF HOS HOS 3B

TWOILYSA LOW OL

ONV

JIGVIIVAV JIGVIIVAV 3G 3G

ASX “(TIGVEST NO NO WVYUNOdd

(3dLTQQ*WAST JLITMWOD SINIGd SEOZCFLO/(YTST=ES SE0Z9LO SENZ9LO

* OL OL

JLITdWOINT 3G 3G

COPLINIS ONELLOTd ONELLOTd STIVILINI

SN

X X NI NI A A

JOVSS3IW 920

FLD

JONVY JONVY TIIM TIIM

ONT

SONINEVLNOD SONINEVLNOD ONINIVINOD ONINIVINOD 3G03

JOVSSIW

SGYOM SGYOM

SOSED VIVG

NI GNV GNV IGLGLGLGIGIGLSIGLSISZON

AVIdSTOA SONVY SONVY CEVGTSEZINE SENDA

GNA VIVO VIVO

3009 JWYN YOd YOd YSWWVYd0Nd

TVINOZIYOH IEF

Viva 3dVi 3dVi 40

43O 4O

LTD TWIILYAA AVIdSIGQ

YSEWNN

YSGWNN T=1*

s¥2 s¥2 ANILAOUANS ANILAOUANS

YSEWNN 3dVLl «ex «ex

TOEWAS

SENDX

AVUYV AVUYV AVY AVY

IGG

CIIGVIST)

xt xt

ore ore NO NO (IT)

ANILNOYANS SI SI 0 JdLIGC T NOTSNAWIG NOTSNAWIOC

WASI WS)

XVWA XVWA

NTWX NTWX XVWX XVWX NIWA NIWA

WXN

WAN SNILINOUSNS SNILINOUSNS Jat NI

WX

WA

N

x x A A

Viva ABTONVI ABTONVI VIVO

T SAIN MATIN Oh DOH AN OH +

Oo WIVYVWOVUVOVOOGOVUOUUUOOUYL

137

LSLGLGSLLILEETYEOYILO LSLGLGSLLILEETYEOYILO

GLGLSLSLGLOS GLGLSLSLGLOS JYVOOOLSLSEGLSLGLSIGLOSOO*SLLELTLEZTTYS9OLZZOO9LZO/( JYVOOOLSLSEGLSLGLSIGLOSOO*SLLELTLEZTTYS9OLZZOO9LZO/(

T

=

J0ODF

OOS OOS

EOTIISALSOOTIISXISEVTIISAS EOTIISALSOOTIISXISEVTIISAS

(OTIGIYSATS (OTIGIYSATS SLSISGLGLITIEE SLSISGLGLITIEE

L3S

/GLSLGLGSEGLGLSIZZ009LO/SWVIN* /GLSLGLGSEGLGLSIZZ009LO/SWVIN* fOOS fOOS

YO GLSLSGISLIELEECTHEOVOLO/(6*T=T4CIPLINID GLSLSGISLIELEECTHEOVOLO/(6*T=T4CIPLINID

OZTtT

(T=QN3T)

(YTICIYOXIS (YTICIYOXIS (QTUDAT (QTUDAT

OL TVEO79LO TVEO79LO

AD

SQTUOA}S SQTUOA}S (DSATSISADSCISXT*9SX)

AVIdSTIG JWVUS

(O°

S004 S004 ESTIGIYOA ESTIGIYOA

O°B3A*XVWX*GNV°O°O°O3°NIWX)

(TECZILINIS

(T*CH)LINES CYT CYT

OOT

NOTIVSISIINIOI OVSGLSESLGLGILGISLSGISLO‘SOO'SST OVSGLSESLGLGILGISLSGISLO‘SOO'SST

SANTVA (CGIYOXTSGI49X) (CGIYOXTSGI49X)

MAN ISOdXI ISOdXI

OTT

AVIdSIa (1OTdI*L01d) (1OTdI*L01d)

AYVLNI OL

AO /T/ONAIS/0/39VdN /T/ONAIS/0/39VdN

OD OL SC4TIOTYOX SC4TIOTYOX

NIW-XVW

S S LUVIS

CTINID

CZINT) ES ES

OD

LSUYTIA (TPISX (TPISX QI

(O°O3°ECILINID

V T=IS( T=IS(

WYIN

WOd Jd Jd

(T*D3°O0N3T)

t3dLIGd)

T+239V

(2.

HOS

WILINT LIOG LIOG

JINAWAINGZ JINAWAINGZ AUVOO9LSLSL NO

GIESIC JINATVAINGS JINATVAINGS GIBSIG

X

JINIIVAINGSA JINIIVAINGSA TOI) TOI)

1LEINT=(2)01 =

JZIIILINI

YOA NOFSNAWIC NOFSNAWIC

OFT NOISNAWIG NOISNAWIG

Set

YIASNVUL

NIWX=NWX YSASNVUL dN=J9V

XVWX=XWX

(1)

(T)LONdI YAIDFILNI YAIDFILNI

O=L9d7

X=NWX

OL

JLTUM

IIH OL

VIVO VIVO viva VIVO

ON3S

TIV9

TIVO

T= e=%

dN

09

O9 SI STI SI

2?

O2T

OOT OOT OTT OTT

OO Ovo YOOoOvu ONO Ovo 138 GOOOOT «(MO

MOTI TI

+900 EZT EZT

+900T

TSHOTHI OL OL

#HOTHI+98000000007Y9LSLGLSLSA=(NILOTdI

OD OD

AVIdSIO AVIdSIO (O°O°DA*XVWATONV"O*O°DI°NIWA) (O°O°DA*XVWATONV"O*O°DI°NIWA) )+98000000 (WXNS

(WANS

ASVSSIW ASVSSIW

SINTVWA SINTVWA JSVSSAW JSVSSAW

CI)X=NWX

(I1)X=XWX CTYA=XWA

CTPA=NWA CTPA=NWA YOF YOF (4)

(4) 000991

NWX 101d

LO

SAINTVA SAINTVA NIW-XVW NIW-XVW

GO¥RHOTHI-SOdI=MO

GOveHITIHI-SOdI=M0 (XP (XP

Td

€LNWX‘T*OT)

SISGZSGISL=UN) CAV CAV

* TIVINOZIYOH TIVINOZIYOH

CNWX°LTTOLIIX) E€XWXTLO"CIYX) *WA)

CXWATESSCT CXWATESSCT CNWATE CNWATE WX) OVeWXN-O75=SOdI

O¥RWAN—-O7SG=SOdI

B0%/SOdI=HOIHI IVITEYSA IVITEYSA GO7/SOdI=HITHI

(

N‘z=I

N*Z=1I N*Z=1I A A ADGSIAG

GDESTC

TPCT TPCT

YOS YOS

O€T O€T NIWA=NWA NIWA=NWA

SNNTINOD XVWA=XWA XVWA=XWA JONILNOD JONILNOD

(TX

(T)A=XWA (T)A=XWA (T)A=NWA (T)A=NWA WXN45=>

WAN+)=> DAD DAD

¢c2Tt

DAY DAY 621 621

3JCOIN3 LV¥WYOS

YIFHD YIFHD

dNL3s dNL3s

O1 O1

LOIdI +=) dNL3s T+¥=> 3Y0IS 3Y0IS =X WIvd

11V9 TI WX

OG IT

SI

SI SI O00 O00 09 09

SI SI ST ST

ST 6cl 6cl

Let cet cet o€eT T

QONO OW Woo OwWo 139

Ly¥T 2¥T 2¥T

S3N1IWA

OL OL OL

O09 OD OD

NIW-XVW Ou3Z Ou3Z

(O°O°AIN*XVWA (0°O°3IN*XVWX (0°O°3IN*XVWX

4ST O9T

AV1dSIG SAT SAT

LSAFOVY

9ST

OL OL OSTSL9ZT

Asnrav Asnrav 2ST NWA NWA

SINTVA

SINTWA

09 OL OD

OL O°

YwOd

*UO°O°O°AN* *UO°O*O°AN°NIWX) *UO°O*O°AN°NIWX)

ONV

09

FO°O°3SN°SAONVUA)

CO°O"SN°SONVUX) (INWAST*OT) (INWAST*OT) OT/

O9TO*O°OA"NWX) *39NVu *39NVu OST

NIW-XV¥W

VIVO NIW-XVW

(O°O°DS°NWA)

NWA* NWX—XWX=JONV NWA-XWA=J9NVUA NWX%T XWX¥T

INSWSYONI

XWAXT E(NWX—XWX (23009I)

T° VEVG VEVG

IVWNOTLIGQV

°

+ST

S¥T S¥T o9T OSt OSt

°+XWX=XWX °+XWA=XWA NIWA) NIWA=NWA

-NWX

X X NIWX=NWX NIWX=NWX 0° -NWA=NWA

XVWA=XWA O° 0=c37003!1 0=c37003!1 T=235009! T=235009!

0° 0°

X A VWX VWX

T-=NWA 3COINZ 3COINZ T-=NWX D=INIX

O1

O1

YOSHI YOSHD T=XWA

OL OL YIAHD OL OL

T=xXWX

=NWX

ONTS =XWX =XWX O=!I

UX

O09

O05

OD OD 09 09

JI SAI SAI JI

AT JT JI JT

o9T

¥ST ¥ST

ST Lot OST 9ST

O*vT 2st cot cot

whe HF UUO QOOYV OW oO 140

GZT Z9TT 89T +9T

9LT 99T 99T Z9T INIX—UX=4X JNIX+UX=4X

OL L 09 OL L OD OL

OL OL INIX*

OL INIX&CINIX/XWX OL OL

OD

OD

09 09 09 OD O° CLISELTATLIT

OT/ENWA—XWA)=INIA

CO°OT*LIPINIA) CONEX/NWX

LOOT (0°S*L9*® (O°T*AI9O°INIX) (O°T*AI9O°INIX) (CO*TPSID°INIA) CO*T*OS°INIX) (O°?°LO°INIX)

O°OT/INIA=INIA

O°OT# O°OT# O*OT2INIA=INIA O° O° O° CUX"LI°XWX) ENWX*LITUX) ° OT O°

O° OTXINIX=ONIX OT/INIX=INIX OT/INIX=INIX LT"INIX) OT*XWX=XWX

OLT LT +9T +9T 69T OLT

69T 69T O°

291 291 INIX=INIX INIX=INIX PENT O° =NWX O° INIX) 0°S=INIX DLINIV=4X OT=INIX UX=X UX C=INIX T=INIX CT)

OL

OL O1 O1 O1 O1 OL OL OL T-I=!I

O1 T+IT=F

T+I=!I T+I=!I 1-I=!I T-l=1I T-l=1I T+I=] I=X V=UX =NWX =NWX

O=! TI?

O09 WX

09 09 O9 QS 09

GI GI O9 JT O09 O09 O09

SE JI SY ATI SI GI

SY AT ¥LlT ¥LlT GLT

69T OLT 59T 59T

99T 99T LOTT L9T elt ELT ROT T2T 29T

11 o8T o8T

98T OL OD OD OL OL

LLUIt

ZLT

INIA~MA=UA INIX+€1~XT INIA+ BLT

INIA+HA=HA

OD 942 942

OL GiIyud GiIyud OL OL

INTAS(CINTA/NWADINIVEUA INIARECINTA/XWA)DLNIV=UA O° O° O°

EXWATLTITCATIGTYSA)

(XWX*TLTTOXTIGTYOX) (XWX*TLTTOXTIGTYOX) (T-ATIOTUYSA=CATIOIYIA

OL OL €86/ €86/ €B86/S €B86/S

O09 OD

O9

ZOTSESTAIST

09 09

A A VOI VOI

(O°S*LOSINIA) (I (I

CO*T*OS"INIA) (O0°Z*°LO°INIA)

(NWX—-XWX (NWX—-XWX

GNV GNV NWA-XWA NWA-XWA

CYHASLOSXWAD

(O°OF°QN3I) (O°OF°QN3I) YSX=C€XT YSX=C€XT

NWATESSUA)

O°OTsNWA=NWA OT#INIA=INIA NWX=(T)OTYUOX NWX=(T)OTYUOX NWA=U(T)IQIUIA

0° X X

OT

6LT

O8T ¥Q4 611 6LT

Ost Sit

OSOT=INIA =I =I

*XWA=XWA O°Z2=INIA O*T=INIA

O°S=INIA ) =3 =3

T+AT=AlI T+XT=XI T+XT=XI

YA=NWA YA=XWA

(1) GTYOX GTYOX

O1

OL 379Vi OL

OL BL OL

T+1=I T-I IVOSA 1VISX 1VISX

I=ATl T=XI T=XI T=Al

=I

09

O09 AI

09 O09 SI AT 09 O09 SI

SI AI

Al Al SI AT 6LT +8T SET

O8T LLIT ilt cSt 98T elt EBT T8T

OOo 142

S6T

9TZ

AL

OL

OF

OD

CODOOTT

COOOTT

LIT

LIP

CCATIDSATISAVITGNV*OOOTT

CEXTIISXIISAVITGNVTOOOTT

86T

S°O¥43 G°ZEFIIVISA/SONWA-ECTIGIYDAPHCIIGIYDAT

26T

OL

(ATSCTIOSATLETIOSAE) (XTSCTIOSXIACTIISXI)D

IWWISX/INWX-CTIOTYOX

O9

OL

(T)ISATCOTIISAT‘SZ4‘OT) CELIOSXECCLIISXI*ZSOT)

OD

(66 STaav1 STaav1

(6°LO° GOVeEVI-CXIPOTYOXT=9VI GOVeEVI-CXIPOTYOXT=9VI

"19° GOvaTVI-(TIAGIYOXI=cvI GOvaTVI-(TIAGIYOXI=cvI

IIS

LIP

OT/(UTPISXT=CEVISXI OT/CLIISATHCTIISAT GOo/(XIJATIYIXI=EVI

FCT)

CCI

CC

EITIDSATISEVI?D

PGOv/(TIGIYIXI=TVI PGOv/(TIGIYIXI=TVI A A

(TIQIYDA=CT

(TIQIYOX=CTIISXI

TIOSXIISGVI) GNV GNV SANIT

PISXIIVSEVID

ISXTISAVI)

X1*T=F

AI* AT*lt=I ¥2-=(XI)SOdXI AI*T=I O2-— XI*T=I XI‘T=I

AI*T=I

XI‘T=I

¥2—=(T)SOdxI

9T-=(T)SOdxI

=F

Goasta

GDGSIa X X

(I)

O02

t=! ¥WOd ¥WOd

et2 002 =t1)SOdxI

Qryusd

76T

TIGIYOXI

JNNTINOD JNNTINOD

o¢2 Of

S€2 €12 O€2 O12 SOZ 06T

LVWeOd €6Tt

3Q0INZ FQQIN]

OL

Ol

OL FTWEVI FTWEVI

ISAT

Mv

WIVvd

WVvd

Oa

O90 09 09

0G O98 OA 0G OC 09 OG OG SI

ST JI

SI

€6T €6T 96T 96T

002 £12 912 0&2 8EZ c61 c61 O6T O6T S02 O12 ele O22 SEZ

Z6T 86T

ONO UYUO 143 +GOOTXEVI)+9000000000000T (YVIFGOOTeEV ID 4900000000 Ts(2VI+900T# GOQOOTREVI+G0000 st cVI+G00Tx PGOOOOOOO CVIFGOOCOOOOCOOTREVIFSVI=(H)LOTdI IVI) IVI) GOOOOCOOOOTHEVIF9OVI=C 00000000 +20000000000000000099L=SVI +9O00000000000000000992 OOOOOT GSLSLSLSLOOCOO*TOO0OY9L=9VI GSLSESLSLLTOOOO0NNY O8STT 2o2 POVeEVI-(ATIGFYOAT=9VI (TISOdXIF€ Gove Ove Ove FO OL OL TXEVI+SVI=CHILOTdI 0°OT/3 O°OT/ATIWISA=FIWWISA GOX/CATICIYSAI=€VI TVI+9VI=0 CUIPISAT=( (LVOSXT=(24+ GOvV/CIVOGIUYDAI=1VI GOV/(TIGIYOAT=1TVI 6VI+GOOTe8VI=OTVI GOV/t(IVQIYOXI=TVI TVI-CIIGIYOXT=cvVI TVI-CTIGIYDAL=cVI TVI-CTIGCIYDATH=HCVI OD OD eVI+GO00TxIVI=EVI CVI+GOOTe GOve8VI-LVI=6VI O°OT/INIX=ONIX O° XI‘T=I AT*T=I (OTAIN°AIT) (O°3O°KIT) OT/SINIA=INIA O° O°OT/XWA=XWA O° O° WIS FIGIYOXI=ALVI POv/LVI=8VI BOOOOT#I+VIT OT/XWX OT OT 24+ T+ TANI Ly¢ 942 T+ATF=ATI T+XTI=XTI X=3TWISK /NNA=NWA /NWX=NWX I 9 VI=EVI $2 O¥2 101d LOM! LOTdI OL LOTdI OL E+M=N E+H=4 =SV =X =9VI WX 09 OG O09 AI OG AI 1 FE 942 OFZ Le? GH? 14h

OVI+GOOTHRSVIFGOOOOTS OD (NWATL TPCT IAT UO"

(EVI XWAT

4G00TeZ2VI}+900000000S/ LO CI (TSC (TS(84H INSWIYONT FAS

MOS 101d 101d FH GE GO9IETOOS GOVE PE

COOTST=F*

CT4EC#H) (T4694) (M*T=T° NWXT SSHG GO909SLSLLELE IES LOTTI LOTTI INIX

INIA O1 O1 TOIS7TE7¥O090L0909=(S4+H) GNV CYYSCTSEZSHYTENI=(E ZHHSCTSECSH S*O%FF

G°ZEFFIVISASENWA-C

ETO VIVO VIVO Zy2T

CT) FTE * SC CCoFtHPLOTAIST*OT} C84) LOT (84H

LOTHISENWX) 6G62

OSs2

(FIVLOTdI CL SSNTVA 44+)

LOTT) Y

262 X* 709290

OL 31VDS 31VDS

TWISX/SENWX—-CT)XIETVI (WASTIEVIST=(

SISLZGLSLSE=(H}LONdI

I‘ OL

O1 LOTd!) MOS LOTdI*ST4OT) 1L01dI? YZ O95

INWA) OL

O9 O9 OOOHSL=(H TENQI=( WOAWINIW XWXTLOTCI)X)

GOveZVI-TVI=EVI GObaSVI-VVI=9VI

VC

909=( GNV GNV

09

€T°3N°QN3ST) €3dLTGG)

AGLIGQQY

(TOT* (T°OI°DST) N‘I=I GIESIG GDESTIAQ GIGSIG GIGSTIG GOv/TVI=cVI

T+#1h9d

(1°B3°H)

Ov TOEWAS TOEWAS L4H

642 T+)

+H) TPAD

/HvVI=svt

LI) ANNTINOD

AVTdSTIO 892 892 0=ON3I OS2e JQOINZ FCOBNS

1=19d7 IOI LOT! LOT! LONI LOTd!

LOTT O01

64+=% JLIUM

JLT T-=)

T+H=9 T+

H=H4VI WIVv9 WIVd TIVvI

WIV9 LAS LAS

T=)

=>

09

ca OLT OLT UM JI

JT AI

ST AI

O8Tl O8Tl

S8ttT Bo? OSe

S6TT 2Ge Let 642

WOO UNO 145

(TSESILINISCOPLINID

(TS

809090909090909090909=(8)LINI

(64

(SYLINIS(BVLINID

(EfT=r*(QIWS)C3dL

JOVINE(OYLINIS2*OT)

THIS

LIM

9S¢

TOECBILINIS24°OT}

CIVLINIVEAGLIQQ)

OL

O9

(O°DS°1IdT)

Q98S1G GIGSTG

TGC)

OOOT

092

NUNL3y JGOINS FGOINZ

T=QN31I T=ON3ST

OL

JLTUM O1

JLIUM

TIV)9

TWIVv9

QN3

09

09

AI 9S2 092

GS2 oocoTl 146

+1

FtOLIXdF)

)Xd34

“(OZ

*(TOSIIX*

*€T02

SXSONT*

*C>SMINDS

“Coe

“(HSH

(ZW

OANSTS

eS2°t+2ee

YXQH1SC

XOWXGS

LOATd

UdSGOW

TX

HHS

CTOZIVWHVS

ZIV

(NWXA°

(STIVISNSETOZ)VI (7S

COD

EONS

SC

CoS

HLS

(CCT

EV

e)0T*

TO2Z)XOXIG*

*NVWS

IMX—-CT

AX

SOS

PYX-C

asd

HVLIV

Td

SVWWV

48

LOT

CHS

MELE

ETOCS

DYE

O48

XOTHdG

I)

9N3

HDLIL

(Ho)

9S

ESOIUST

WL

OT

LES

94d!

CTOZ

DUS

EDS

173

U/WOS9D/

ROE)

C7

DUS

TI0*

34S

* 4VHd

(eS)

UV

(Co ZRENXE"ZDE

IHd

DH

COC

14644007995

TAS

EO

Eda

S

84S

ott?

(SPENDUId

NOON

£148

W‘*

*XOH

TD)

ZVHd

96S

«2

Ue

*

OHH) SHHH

INDUId

EC

VHd

Fd1Vd

130

TOZ)

TOWX

SCNX

O97)

TV

“(Q)WHS

(44

SHH (2exNWX—*T

TVS

T9997

*XOX30

A

OO

odds ECW

XdF*

SNX¥TAWXECHV

Ce

SF

§

TNX

ZTTSTINWX

67545 £02 SNN‘SS 435544549

(102

TVHd

Se)

(ED

TX

NX

TAWX

(TOS)

SEVISN

SH

WHS

TVHd

*

SHIida*XdFI/YLSAUd/T

IXQTHdO*

007)8 TW/ONNOG/

(48H) SNWX

4

HE

XJONI®

THE

JW

/4051VE/

DxZWV XTULVW XTULVW

THSSAVSE/3SAVS/8 RCN

*ZWV

OC

(IVIHd—-=(T

(TITHd-=(E

XONXGS

W'T=I

TY

E99

te*zl4a=fefeds

(o*e4=(€°S)4

(€*

STOW

LIviuvd

OVI

WV 68S

NVY

4S

4

IX

O°O0=(2*T)4 O°0=(44*T)4 O°0=(T*Z)4 TX

O°T=(TST)4 IX 0°O0=(%42)4 O°0=({T*#)4

0° O°

6

4

T02Z

TX=(9E

NOISNSWIO

IX/ESNOD/2

T3I0/

Cae(I)IHdT

fe

(4)

(102

X=

/BDANVY/S

/NVULV 0=(2'#)4

0=(4*)4

Se

COCTPHLdIT PHC

WYUD0

ER

0002 4 4

S

(T02)

NOWWOD NOWWND

PIAVSED

LOAI

T+NN=W

*%

(Of (ESE

IVS

Cf

O0ZIVE DIG DIG

ESSA

T=WW

JI

ENS

DHHHY STA

1l1vVd9

204

Ud

OSE DA

Hd7

AIS

HLT

OO

DA JLNdWOD JLNdWOD

/E

147 Zax Zax

(Zeal CIV CIV

{IT

CLIVWWY9O

—" —" CCL) CCL)

(Zax( e°Z)e e°Z)e

CLIVWWV

PU/NXBNWX-—CETD

(IV

IHAK IHAK

(IL (IL

TCL TCL

CTIA CTIA CI) CI)

TI)

PVWWNVDSCNWKE PVWWNVDSCNWKE

TED TED XQHL3904 XQHL3904

IHde

COWX4F°TI4°O/SC CCLIHLdG34+ CCLIHLdG34+

deseo) VWWV9-CT) VWWV9-CT)

IT) *€)eCRaNX

CT CT

COT COT Le Le

CLIMK—-C

(L)THd& (L)THd& CCT CCT

&ZeeNX RC RC

UZ)

CI

CIPXdIe CIPXdIe

INL INL Xd Xd

9DANX8

COE

CLI CLI Ue Ue

)IHd&

CUT) CUT) INX-CL INX-CL

SZaeeNxX—-€

3 3

VWWV9 VWWV9

CL CL et et

PXOWNXO4

eS) eS) C1) C1)

/CeRNXENWX—°

RT

TOWXeCWY

Ue" Ue" ITWX+ ITWX+

CHE

(NWX4° (NWX4°

PYX% PYX% CT CT

t+

XOxX30) XOxX30) ANXe(NWX ANXe(NWX

DHL CI CI

(Cee Xe Xe

NWX

Zee

CIUXOITHdGe CIUXOITHdGe

WL WL

TEPC TEPC Xda) Xda)

AX&

xX xX

96) 96) VVWWV9FC VVWWV9FC

dSt

CLIVWWNV9 CLIVWWNV9

(NWX4°T) (NWX4°T) CITYXOIHdO—24% CITYXOIHdO—24%

CII

(1 (1 CIYXOTHdGs CIYXOTHdGs

ECW

CT (1)

(TD COC COC

LD)

TP TP /TANWXENXSCWY /TANWXENXSCWY

OCNWKE

CT E E

XddaZes

WX—OC

eS2°4+ eS2°4+

EEC EEC VWWV9 VWWV9

C1

AXe

X82 Ue?

TX)

xECT xECT

TCT TCT TPL TPL

PITHGECT

CTIVWWV CTIVWWV eI eI

IX-—C SOT SOT

Xdd}

Z

Cex Cex SC SC

OTA

LDN

CLIVWWV

Ue Ue

S77? S77?

ee ee

96 96 —CT —CT

ae

TIP OZ OZ

EC

)/

CCCT CCCT

PURO?) PURO?)

DFC DFC

(CL) (CL) NWX—S NWX—S

CI (TI (TI

—-Zaa

el

2

LSE

Deo /TOWXSCNV /TOWXSCNV

(

CLUS CLUS

*Z—(€ *Z—(€

9% 9% o>) o>)

LX THde? THde?

T

CIYXGIHdOS(T

DRO) DRO)

DOC DOC

OCOD OCOD

DX DX eC eC

WL

eNXe VWWV9SNW VWWV9SNW

NL-OD

ZS

C1)

)VWWV9R

(1) (1)

/NX—-OCTDX—CI /NX—-OCTDX—CI

(Ze (Ze be be

ODS

NWX4 NWX4

eo eo

TP TP TX TX /NX—OC /NX—OC

(I 1) 1)

CCL

Pe

ZT Ue

NL—OL NL—OL CT CT

C4

C C

TD) TD)

2+ 2+

eNWX—° eNWX—° ROW ROW

TNWX

€ €

THde THde

PE PE THde THde

COWX

COL

CTIAX* CTIAX* FECT FECT

VWWV9N—C

(Zax

FU CCI CCI

PL

DX

IVAW IVAW De De

>)

eo eo

Yeo Yeo

2aet 2aet

OT OT

A—CT A—CT TX) TX)

(AW

PALA-OCLT

Xs

C1 C1 TX) TX)

—OL O01)

eT

SET TP TP

FV

De

(FI (FI

CZ CZ

DSO DSO

JHIdS+(T JHIdS+(T

DX DX

97) 97)

OZ) OZ)

IME? IME? NX NX

WV Z)/NXRTOWXF

XONXG—INWKX XONXG—INWKX Tx Tx

C—O

1)

CL

(ZeeNWX—* (ZeeNWX—*

(Cea (Cea

EL) EL)

aC aC

Tl Tl x x

4

VWWV9e* VWWV9e*

X40 X40

+ +

DIHde DIHde Pe Pe

Xe

VWWV9OOENX—OCT

de eS eS

X42

/NX* /NX* SNXRTNWX SNXRTNWX

TD FH

OT)

CT CT CT CT

VWWV94

ZT/AWX ZT/AWX HRN HRN

TE

SO

CNWX—° CNWX—° CL CL

DIX VW VW

ONX

NWKX—* NWKX—*

DLE DLE Ue Ue

Ee D/NX D/NX

8)

1 1 da da

De Le Le

ae

(CD

ec

XO XO

VWWV9e VWWV9e

TAWX% TAWX%

Xda) Xda) tl tl

O&O THd& THd&

/cee

CCID

OO

Dei CLP CLP

(1)

EDD

Z-(E Z-(E

2/7 2/7

NWKXt NWKXt RC RC

TX

PVWWYV94 PVWWYV94 PO PO

NWX—°E eZ eZ

CT

Tac Tac

2) 2)

CEC CEC TO TO

CD tIVWWV9=(TPT)9 tIVWWV9=(TPT)9

DHE

XTYULVW

VWWY9O—CIEXONXOT VWWY9O—CIEXONXOT

4°74 4°74

ECW ECW

NWX NWX

(Z7*T)9-=(T (Z7*T)9-=(T

(4° (4°

De De OS OS

LENWX4 e°o/ e°o/

THdedcae

(1 (1 RCW RCW

Cae RZWV RZWV

STA CW CW

tC

EDD

XONKO=(E

aNWX-=(1 EXACT EXACT

COCT fT fT

CLI

Ob Ob OCT) OCT)

Oo Oo

TX TX

NX NX ETT ETT

dat

o4+ o4+

T)99-=(T T)99-=(T

TINW TINW

TX TX

TX TX

0°0=(44219 0°0=(44219

VWWV9OeINWXC VWWV9OeINWXC

0° 0°

0° 0° XIYVLVW XIYVLVW

THe

DN

°S °S TX TX

Duet TX=(6 TX=(6

X

TX= TX=

OC OC

9O-=(T 9O-=(T

(1) (1)

CF) CF)

Xa Xa =e =e

-= 0=(2*4)9 0=(2*4)9

ECW

TIVWWV94Z TIVWWV94Z 0=(44%)9 0=(44%)9

Le XH XH

Pua

DC DC

DCT DCT FH FH

(C1

HEE HEE

L-OL L-OL = =

-CI

YVEA = =

OFX

(

XOX50+2 XOX50+2

XOWXG-T XOWXG-T VWWY9FT VWWY9FT

CF (9° (9°

02° C1 CZ CZ

Xd)

UE UE

12 12

(E (E OF OF

TX TNL TNL

ZT)

TX

CT) ST ST

ST

STH

4999 4999 979 979

O79 O79 fT fT

DX

LE LE

SE SE

E779 E779 $799 $799 9 9

TH Xx?

H

E E T T

Xe

XRT XRT XT XT

De?

)H

9 9

9 9

9 9

9 9 9 9

DT

9 9 09 09

S/T

e€ ST ST

e2

/T JINdWOD JLNdWOD 148 CTH COLD VWWV VAWV9 CCT CTIUNL& COCT CHC ZHeeCTPIHdX CTINLe CTW CL) CLIVWWV9 VNWV9 CNV "L-CLTYVLe “HP Ze LAGSeET ZHRNX&TNWXECWV XONXGF "Ze CI (Zee JHidSs4+ 9 "Ee IHde CTU TMs (S*S IX be INXFCCEL TP De )XOXIGe Cae Cee (NWX4° LP CTIHLdS NL) —Z#e cea THdS (CTIVWWV9SSTAWXeG°+0 CCT) CL) CL)VWWV9-C CCL) J SUP WXeZee( Zee -CI) LAWX *O/CT 8° CLV CLP (TUS tI PH eZee U/C (LE CCL Ue Ueto? Ct+Zee 1e /NXSTAWX CLK CT CIV (TNL CLL )X 1) Hidde YXe TDD ) CIP WHI-—C VWWV 42ax eC eeNXSNWXt dF) ood IX IA CLD AX U/CRENX—C ZeeNX 4/S IHG CLIXAGIHdGOetE Let MX—CT EO EPS CLIVWWVO TF) LT) e U/NX—OCO RS e01) # P/NXETNWXSCWV D/NXXTNWXRCWY CT CL CLI 98? VWWY TX STS HLe cae PD Oe ° (TILE CL CLD CLI E—C a2 1 XOHLID+4 USC ECW ZeENX—OT Xe Xe +2 AX—Zaeet USS U/S2 C4 eeNXxINWwX-tlFEHd& VWWV9SNWX Y/S THd TAWXeS2NV CNWX Xd (LU CID Oe CID EP OSL eee EENX—C Zax CIDILS CT CPDL CT TX oO U/NX—CCOLPYX—C1T) e2e% WLETS ae CL) SANK TL ORNXXTONWX—CL FP Xe -CI E+ 4° /S2eeNX—C Pe ET)U/S (I VWWV9 Xe FECT CI TL I TDK EL ( CT OCT LOT) Le YVWWV94F(T ECT JHIdS+(F)Xd3 TDW CLVVWWV9OXTNW DT U1 PXGHXd# )U/7eeNX TF VWWVDSNWXS TOWX—CIPIHd Zee Pe Xt PXOX3I0) TDL CL) CID VWWV9S%NX—( Hd XONXOe IXF XOWKXG4 TX4+ 4 OZ—OF) CF ILRI Le DUO? oo OT) CP) De XS U/NX# eZee Xe RNXHTINWX DIX4 CCD) (LP Zee Cxa XC OCT 0 COT XOWXGRG XOXO) CT Le NWX#S VWWV9-—Z2 C¥e(ZeeNWKX—"T T TOWX CLIUXATHdO CI TIX) aN NW e( Zee Xa CT (1 XeNWX (IU CT PI SOT CD) Xe (CeeNWX—* XE VWWV9O—ED C1) Le COT Le HGe XS 1) PYXECTIVWWYD VWWV94 US Zee C CT Dx Xe & HLe /S NWX VWWV aX NWK +O) FPVWWVO es x Dat CLP P< CI) C(LIXQIHdG* Xe OI) RK VW 2° ZRENKXSENWX ONWXE (TD) (Cee (Zee CT (Zee oO XOMXIF+CNWX4° IH (Z2eNWKX—° FE? tC oe C1 —Cee Oe CI 1) NW -( XOHLIGF 4 4 WX4+2e% XX SECT) EPS 98S U/ Ze U/S DL THde CTE CID CT CL}XOTHdOs DTHd VW Cee WLe Xe? NWX—° NWX—* OOT OOT & 001 FEZ) ANX OT eNXt Soe 1) OT hl CI X—* Xe EL 74+ oe De Ee C1 OCI ae eNWXeZWV LD C—-Zee PVWWV9O%ENW De PAZWVTX**2TH09* De OCI Nicaea I A OL OL ( Xe COT) CL CL DOD CI RS (1 I CE Cael & EANWKX4 Zee W Te Te Te CL CI (I) (CTD CTX S/S DO TP NWK-°E X#G72° 4° Le Xe CT lO Le C—O VAWYS VWWV 09 VWWYODANX O9 )Y/S oe °2 PXOXIG VV VW XOTHdG# AZWV CHV ZW TDD CL Cxe Z2WV CI) OCCT CT) (4° X-€T Let Y/N TIPO (TU U/NX—=CE OE CL) CD )—-Zex 2 REN La ¢(1T°O3°I) (W°OS°T) Pe ODEN *e&NX#TNWX44 1) RO TX VWWVS) TX TX-=(0€ TX-=(1T 2) CLD ED YP X40 TX= O-= U/SNXRNWX—4% 9-H 240 XOYNXde XONKde° X—= 002 Cee ) ONWXSE X—CTbeZ ) KX CT xe /NXeNWX—-S H=(2 Xt -=0T -= eo CTS -=(E Peo -—= eC Ue eINWX NX XK / (1 044TH (I) DHIdS€E CT SR Xe Ce C4 OTD) LX CT) 07 (DX 0542 ET 02° (9 OL INWX TNW TINWXFE CI) CEST 44 aNX-Z 2H IH SE °2 SE OT (Cee? SZ SE fH 59 CID XE 2 W1es¢ CTE € € 9H WX%2Z € CI) DH eax )H )H 09 Ue XRT €-€ dS AI JST 0H 42 DH JH JH JH FH DET xe FD eZ eT FY T T

Ng

COL COL CCL) CCL)

CL¥U/GS CL¥U/GS

WL—CTDIX8° WL—CTDIX8°

YX

(CLIX (CLIX

*ZEC *ZEC

CL CL

°eCeeNX+C °eCeeNX+C

AX-CLIHde AX-CLIHde

IP IP

}—Zee }—Zee

UW UW

Le Le

AX—CP AX—CP

CI) CI)

ED ED

€ €

(CLUS (CLUS

THde THde

I] I]

&o &o

Wik Wik

CCT) CCT)

XZ XZ

IES IES

CI) CI)

C1 C1 CI CI

CT CT

€CLIHIdS+ €CLIHIdS+

ODA ODA

Ue Ue

IHd IHd

TAW TAW

PVWWV9ORNWX—OD PVWWV9ORNWX—OD VWWVO%Z VWWVO%Z

ee ee

YLES° YLES°

96) 96) e412 e412

Xe Xe

CTI CTI COL COL

CT) CT)

VWWV9I% VWWV9I%

/NXXTNWXS /NXXTNWXS

CI) CI)

xX xX

Uae Uae

U/S5°eNXe U/S5°eNXe

TNWKX4+ TNWKX4+

VWWVORCWY VWWVORCWY

eENX& eENX&

OT) OT)

VWWV9x VWWV9x

ec) ec)

CIT) CIT)

Xd Xd

(CNW (CNW

(I) (I)

ECT ECT

SCL SCL

IHde IHde ENWX4°E ENWX4°E

YX YX

(I) (I)

Fel Fel

CHV CHV dae dae

TNWX40€ TNWX40€ X4 X4

THde THde

(2 (2

IVWWVOENX&TNWXR2WY IVWWVOENX&TNWXR2WY

Xe Xe

MH MH

xe xe

TX TX td

OT OT

1) 1)

(1 (1

TX—OTDULS TX—OTDULS

—S —S

I I

9/S72°ENX+ 9/S72°ENX+

NWX—° NWX—°

54+ 54+

(1 (1

Pee Pee

(2 (2

Y/NX*MWX—C Y/NX*MWX—C

De De

ee ee

ORCI ORCI

C1) C1) X-COCL X-COCL

82) 82)

CI CI

X40 X40

NWX—° NWX—°

CTS CTS

CTS CTS

X X

TX TX

O£t O£t

HLENWXFCTPIX=0E HLENWXFCTPIX=0E

13 13

do do

VWWVOXTNWX—H=t28 VWWVOXTNWX—H=t28

TOW TOW TNWX&2WVIX—H=CE TNWX&2WVIX—H=CE

T T

CL) CL)

el el

TAWXSZWV TAWXSZWV

ORNX*INWX—H=0T ORNX*INWX—H=0T

DVWWV9DeNWX=CT DVWWV9DeNWX=CT

1eS2 1eS2

CTITHde( CTITHde(

XIMLVW XIMLVW

OL OL

XIYIVW XIYIVW

Te Te

CCT CCT

Y/NXaNWxX=(2°T) Y/NXaNWxX=(2°T)

XL XL

Xe Xe

IVWWV9-=(6 IVWWV9-=(6

OT) OT)

CHP CHP

(4* (4*

09 09

CWT CWT

CNV CNV

-CI -CI

Px Px

(4*f (4*f

CHS CHS

(x4 (x4

X—UI X—UI

(F*TYHH=EPf)TH (F*TYHH=EPf)TH

+*T=y +*T=y 4*T=fF 4*T=fF

+*T=y +*T=y

¥*T=f ¥*T=f

¥*T=f ¥*T=f

+*T=y +*T=y

€*t=f €*t=f

Pf Pf

W4=O8 W4=O8

CII CII

L&C L&C

I I

O*°O0=(%*Z) O*°O0=(%*Z)

O°O=t2°9) O°O=t2°9) 0°o=f€ 0°o=f€ O°0=(4' O°0=(4'

0°0=(%4T) 0°0=(%4T)

DH=C(H* DH=C(H*

TX—=0TS TX—=0TS

EWed3Q°!I) EWed3Q°!I)

DX DX

4=(9 4=(9

X= X=

CL CL

IS=(CH IS=(CH

4 4

Cxe( Cxe(

TX=09°€) TX=09°€)

3 3

X-=HC X-=HC

400 400

ao¢g ao¢g

VWWV942 VWWV942

NWX4 NWX4

JTLLIIT JTLLIIT

JTLLIY JTLLIY

*°€ *°€

) )

E72 E72

YLeAWX4T YLeAWX4T

6 6

OST OST

ost ost

O9T O9T

O8T O8T

19T 19T

O8T O8T OST OST

Il) Il)

TSE) TSE)

xc xc

ST) ST)

STIS STIS

8 8

aL aL

f f

FITS FITS

SZ) SZ)

42) 42) FE) FE)

£4) £4)

* *

ee ee

D444 D444

ED ED

OT OT

4%) 4%)

9) 9)

2) 2) IHd#Z IHd#Z

PC PC

€ €

VA4S VA4S

DHH DHH

44 44

TA TA

14 14

14 14

14 14

T4 T4

Dat Dat

TS TS D&T D&T

44 44

as as

OC OC

OG OG OC OC

oa oa

Od Od

Od Od Od Od

82 82

TS TS

14 14

14 14

TA TA

14 14

74 74 aeT aeT

TA TA

TA TA

Al Al

3Findwod 3Findwod 2indwod

T T

OLT OLT

OOT OOT

OST OST

OST OST TOT TOT 150

CFWOIST'Y*XFONT*

CTYVLTIG/S

CTIVLTIO/S

LOAT

COST)

°*

RON

O44

AT

ONT

DOVE

C14

Tuva

WYdL50

T)

)O—ZeeCTIVITIO/S

OFZ

ETEDTVHd

uv

(TIVLTIGSS

de

RE

(TSP

40!

CHP

(746

TIVLTIO/

LVd'

LOVEE OOS OOS

008

WHOOP

JIVE

LIVE

oa

4

OL OL OL

avd)

CNET)

(MP (HSC (HSC

ON CSP CSP

EP OMT

ONT

ON

O09 O09 O09 (fF (fF

EP

P=

IIV=EON

+*T=y4

+*T=F

+*I=f 4*T=f >*I=y%

+*1=1

%*T=f %*T=f €*t=f €*t=f

+*T=f +*T=% O°O=(4*F +*T=1 +*T=f +*T="¥ o°O=(4 b*T=1 >*1=P +*T=)% >*1=P +*T=% +*1T=y%

LOV=OF *‘f *‘f

uvd=OFF T4= T4=

TI=O8

ANILYW

0°0=(4'fT)03

XITYLVW XITYLVW DH= DH=

XTYULVW XTYULVW CT°AN°I) CT°AN°I)

OT=O147209 (W°AN°I)

G=O8

OF=O14F703 0002

YHHH=(C)WH YHHH=(C)WH

C4 C4

ONT ONT SP SP

IP

FT

062

092 092 TSst TSst

OS2

O12 OLZ OLZ S12 082

GLZ S12

082 062

062 062 00€ Oss Oss

OO€

EP

fF

fT

Of

Ud PASS PASS

)39V DHHH

ITIV

NF NF OF OF

11V3

LIV EDV

UVE

PLE

IV

OG

00 0a 0a

Od Oa OC

00 OO 09 0G 0G

OO OC 00 00 00 OC OG 00

OO AI AI

OG

AT

FALINdWOD FALINdWOD

JiNndwod JiNndwod

002 002 OBT OBT

O22

062

062 092

082

00S

G2z

O0€ TST TST 151

VITIGF+

ViT30+(TIVL130

CH*

CTIVETIGIKETIVITIG)/CCT-LIVLTIGOe

PISO

(JIVIST (JIVIST (T-TIVLITIG/S (T-TIVLITIG/S

Pe

Seo

(NNIVETSO/S (NNIVETSO/S (T-ITIVETSO)/ So So

Z *XFONIS *XFONIS

De

EEC

TAHT

LOA LOA

CHFTIAII CHFTIAII

RENE RENE “ONS “ONS

IVETSOROLIVEITIG)/

CCL)

NOTIVEIS NOTIVEIS

CHETIUVde CHETIUVde

d d

I I CMS CMS

VL

SWe3L SWe3L

FV FV

OF OF

9—ZexINNIVITAG/ 9—ZexINNIVITAG/ TU TU COOT COOT

130%

OTE OTE

Cee(T-TIVETIG/ Cee(T-TIVETIG/

(NN (NN

AYSAZ AYSAZ

IO IO IVLTIG/S IVLTIG/S

ENT

ETF ETF de de

OF

OL OL

OOOT OOOT

Of Of

2VHd 2VHd

ETSFIIVECH ETSFIIVECH CHEF CHEF ff

COOT-T)VETS0-CT

O09 O09 1Vd 1Vd

19-04

DFO

LIVECNICIAIV=HACN LIVECNICIAIV=HACN

LV LV

ILIVECHSCINS=(9* ILIVECHSCINS=(9*

WON WON OL OL

STO

CI°SN°CWWILVISN) CI°SN°CWWILVISN)

+ +

** ** SAIDIMLVW SAIDIMLVW

ST

O09 O09 (MSP (MSP

SF

(4 (4

uvd) uvd) ON ON

Pda

(NSC (NSC PD PD

Doe

FF FF

(O0°D3*NOIN) (O0°D3*NOIN)

Sf Sf SF SF

SP

dPUVd=(HSFILIL dPUVd=(HSFILIL

“T= “T=

+*T=y +*T=y 7*T=T 7*T=T

%*T=f %*T=f

y*T=F y*T=F 4*T=y 4*T=y O°0=(*F O°0=(*F

¥*T=yH ¥*T=yH ¥*T=7 ¥*T=7

¥*T=f ¥*T=f

O°0=(4 O°0=(4 4*‘T=y% 4*‘T=y% ¥*T=f ¥*T=f

LIV=ECH LIV=ECH

¥*T=f ¥*T=f

>*T=% >*T=% +*1=T +*1=T

%*t=f %*t=f ¥*T=y ¥*T=y ¥*T=f

+*T=y%

eZ

ANILVW ANILVW

O°O=t O°O=t

INA=C4F INA=C4F 2 T2=O8 T2=O8

HEC 4=O4 4=O4

DHF

4S= 4S= 0002 0002

=

3 3 OST OST

VETIG

ONE

T+WW=WW T+WW=WW fa fa

(CCT-1)T

COCT-D)T

°F °F

44 44

SF SF

SF SF

06S 06S 096 096 OLS OLS

09¢ 09¢

OLS OLS

OLS OLS

GLS GLS oss oss

066 066

009 009 068

G16 G16

GLS GLS 08S 08S 06¢ 06¢

009 009 ose

06S 06S

SED SED

7 7

O1 O1

TING TING

13990 13990 CIN CIN

EDDY

)39V )39V STI DUVd DUVd

STE

T1V3 T1V3

ADV ADV

fv fv

LIV LIV

UV UV

IND IND

LIV LIV

OG 00 00 00 00

00 00

Oa Oa 0A 0A

00 00

QQ QQ OG OG

0A 0A

OC OC 0G 0G 0A 0A

00 00 Oa 0A

00 00

OA OA O09 O09

SI SI JT JT

aT

3iNdwOd 3iNdwOd

O95 O95 O25 O25

OSB

O66 O66

SLs SLs

O8S O8S

065 065 009 009 O08 O08 152 CTIVLTIG/S* CIIVLTSO/S Cxe(TIVITIAGZS x RON ONS 9—Zee( OES ee ONS CT TV IVITAG/ Dae ITAG/ (rfer*Te=(r (rér*yya=(r* 2-0 ONS (SP 4*T=f ¥*T=y €*t=f PT €*Tt=f H=OK a= d= 0002 St SNNTINOD ONSET OOTT TOTT OOTT TyaAvse SP NUNLay 168 IAVSE FTV L Gd OL STG ang 0d OG CA Od 99 OO0OT

OOTT 0002

TS8

TOTT 153

VOY OUQOUYU

(NX*TSTOVWOSATSSY) (NX*TSTOVWOSATSSY) (NX*O0*1*70) (NX*O0*1*70)

JUNAGIIOUd

W3AdOOD W3AdOOD

Y3d009 Y3d009

TOVWO*OISIY TOVWO*OISIY

1‘70 1‘70

TIVI TIVI

TVD TVD

NX NX @NsSt @NsSt

AVTYZSAD

TOYINOD TOYINOD

/4OSLVE/ /4OSLVE/ /O2Y3AQ/ /O2Y3AQ/

/OCAVT/ /OCAVT/

(O*DA°aNST) (O*DA°aNST) (1T°D3°aNSI) (1T°D3°aNSI) /ENS/ /ENS/

NI

WVUd0Ud

NUNL NUNL

NOWWOD NOWWOD NOWWOD NOWWOD NOWWOD NOWWOD NOWWOD NOWWOD

AUVSSAIAN

ana ana

4? 4? AY AY JI JI 79

15}

®IGDIVISN! ®IGDIVISN!

“(oH “(oH

“(TOZIXXSEZIINIS “(TOZIXXSEZIINIS

*XFONT* *XFONT*

§(of §(of

ABV ABV

SOY SOY

ey ey

A A

(CH (CH

(TOZIVETIG® (TOZIVETIG®

)OF* )OF*

sss! sss!

OAT OAT

UdICOW UdICOW

SHVLIVE SHVLIVE

CoS CoS

dG dG

O)STYS O)STYS

CoP CoP (44 (44

IANS IANS

oI oI

yy yy

‘NV ‘NV

Coed Coed

CZ CZ

LILS LILS

sa! sa!

SOF SOF

IMNS IMNS

(4S (4S

(SP (SP

LOTd LOTd

4 4

(444007195 (444007195

INDIUAdS INDIUAdS

Hf Hf

aVd aVd

LIES LIES

CoS CoS

“(EMWHS “(EMWHS

EZ EZ INA INA

CeeCTIVITIG/C

00T 00T

ois ois

ES ES

MUS MUS

(eed (eed

EES EES

OSUAT* OSUAT*

TA TA

Ids Ids (NX*‘3ZVW°X1LTI0OO) (NX*‘3ZVW°X1LTI0OO)

(fF 4SS 4SS

(FSW SVHd SVHd

CE CE (HSH (HSH

SHS

(464) (464)

(HSH (HSH

CED CED

WHAILS WHAILS

lvd lvd

TIWASIE TIWASIE

84S 84S

(44 (44

NOON NOON

TV TV

THS THS IZVHA IZVHA

LEE ING! ING!

IVe

ISUAANT

EZ EZ

o8 o8

SAS SAS SHHH SHHH

(TIVLTIG/S

INDY INDY

2VHd 2VHd

TOTS TOTS (ESTO? (ESTO?

CS

SI SI 00719 00719

OWT

OUTIL

SY) SY)

CNX CNX

TVS TVS

£14 £14 (454004 (454004

EP

OWXS OWXS

OHH OHH

XIQNI® XIQNI®

Ad Ad

ISN ISN TW TW

Saee2-EF (oS (oS

ILIVE

S S

S54 S54 STV¥Hd STV¥Hd

SLT

TNX TNX

NN NN

* *

fds fds DAAVSG* DAAVSG*

LXX0+

IS IS

bo bo

£30 £30

SS SS OD OD

SREP

DEWXS DEWXS

ES ES

* * AS AS

GNV

WH* WH*

Y¥3ad003 Y¥3ad003

LVESNS LVESNS

4007) 4007) TVHdG TVHdG

CP

434 434

(TOCSY (TOCSY

£7 £7

(YI (YI

tYW/GNNOG/ tYW/GNNOG/

SOVWOSWI SOVWOSWI

SAWX SAWX JIVA JIVA

SD

ST

ST

ST

LOAT LOAT

THSFAVSE/IAVS/8 THSFAVSE/IAVS/8

(ZIL305 (ZIL305

SY SY

fx*X fx*X XFuLvVW

34S 34S

TY TY IGICWX® IGICWX®

(IJTH=CI°T)HH

¥*T=f

7*T=y¥ aVd=(F ¥*T=T +%*T=f %*T=f

4#*T=1 +*t=f +*T=f 4*T=F b*T=I y*T=I +*T=yH

O°O=(F LIV=HaCl VAS=EF

O°0=(fF

O°o0=(f

)HHH )HHH EW EW

HHEEP LIV LIV

e‘T=I

VE VE

| |

* *

YAS YAS

dT dT

ANI ANI

4 4

1 1

TX TX

«NOFSNIWIOG «NOFSNIWIOG

T+ T+

VY VY TIO/ TIO/

(02 (02

TIG=HLX TIG=HLX

/ODd1VE/S /ODd1VE/S

/GDINV /GDINV

S S

Ste Ste

avd avd

LNOYENS

T+WI=WI T+WI=WI

SESNODOS SESNODOS

(2 (2

CTOZPAAS CTOZPAAS CS CS

ST ST

O€T

ObT

O2T O€T O£T NOWNOD NOWNOD

OG OT OTT OOT OTT

O2T OOT OTT

*TILIV

STV ‘T)L9V

1}

(CSP (CSP OAYATT OAYATT

SE

I=T1FT I=T1FT TILIV

0S

IVS IVS

te te OVWOY OVWOY

ISIV

DADV

HP HP s s

UVd

LVd9 LVd9 TWXS TWXS

JIVINIIVG

NFE NFE

XO XO HHZ HHZ

OG OC OC Od

OC OC OC

USS USS OG OG Od

OG

Od OG /E /E

d 2 2

OS

OT

OFT OTT OOT

155 CCP CCP

(AIIST

(JIVIST* (JIVIST* *TITVHATVIXISAI-T *TITVHATVIXISAI-T

So **X **X

*XFGNES

JONI JONI SNOTIVEIS SNOTIVEIS

LOATdG

CF CF

LOAITd LOAITd (FS (FS

(PEWFT—TI

SW SW

)ivoOls+(r )ivoOls+(r

HPAS HPAS UVd UVd

TSWeSL5

CF*HVOTSC CF*HVOTSC

IS IS

Wyst Wyst HONS HONS

OSy

AO AO

(HS (HS NOTIVIS NOTIVIS

de YAGNIVW3SY YAGNIVW3SY (rer

dt OL

3d 3d

TP TP DLIVTVHA DLIVTVHA

CHET

fT fT

(r*TyadveCr*TLIV=a(r (r*TyadveCr*TLIV=a(r MST MST IEXXO4CT*

O8 TVHd TVHd

ATVIOST 404 404

O89

0d=tr* 0d=tr*

JTVISTH#*xOTI° JTVISTH#*xOTI° T-NN=WNN T-NN=WNN id! STOVE

siete

LSYIS LSYIS

£Vd*%400) £Vd*%400)

IOGHEC IOGHEC

TVs TVs TEC TEC (TATVIS*3AT* of

#€¥8159°

LV LV rod rod avd) TISAVSSG=CF

slyuvd—=tr ST ST

WNN*2=T LV LV

ET

STS STS STD STD

002-3 SADIVIVW SADIVIVW

OOZ3°

(O°O3°ISN) (O°O3°ISN)

ILOV=ECP ILOV=ECP

+*T=y% +*T=y%

O0°0=(f O0°0=(f

>*T=F >*T=F

+*T=y +*T=y

TId=EF TId=EF

¥7*T=f ¥7*T=f

7*T=1 7*T=1 ¥*T=F ¥*T=F

UVd=EF XIYLVW XIYLVW

>*T= >*T=

O°O=(F O°O=(F

+*T=I +*T=I IIV=ECE IIV=ECE

%*T=f >*1T=f ¥*t=f ¥*t=f €*t=I ¥*T=I O°0=(f +*T=y ¥*T=I

TeWe ANILVW ANILVW

ANTIIVW

(reos°r) (reos°r) TeWUusljag=d TeWUusljag=d °T=Z3

€HISAVI JNNIINOD JNNIINOD T=T3 FL

OOOT SEAT SEAT

*T)uvd

OST OST

O9T O9T OFT OFT

062

NN=WNN NN=WNN

O9T O9T

002 002

OST OST OST OST OO€ OO€ OOF oOF

00% Idd

002 002

002 002

ST ST

STAIN STAIN

*1)39¥ *1)39¥ fI*T)d fI*T)d

ST *I)'UVd ST)

* *

d d d riod riod

T1V3 TTV9 TTV9 1V9S

19S ILIV ILIV

4108

JLVINIIWDI JLVINIIWDI FLV FLV UVd

AI

Id Id

OA OA

00

OG OG

Oa Oa

OQ OQ OO OO

Oa OA Od ca 00 00

aa OA Oa

st st

Oa Oa

0a 0a

ST ST =b

INITVS INITVS

OFT OFT

OST OST O9T O9T

O52 002 002 OOF oor

156

CHeRENNIVITIO/ CHeRENNIVITIO/

(fF (fF

CF CF

SHU SHU

oHVAAS oHVAAS

CFS CFS

(FSH (FSH (FSH

, ,

(NNIVI190/S (NNIVI190/S

ADVE ADVE

TI TI Sl> Sl>

HO HO

Lie Lie

CNS CNS

(CT) (CT)

MST MST De De

OL OL

TISVHd TISVHd

ONS ONS

OST OST

CHT CHT

dodeee—tP dodeee—tP

ZVHd ZVHd

Oost Oost

09 09

TD TD

LXxXd+ LXxXd+

Adve Adve

UVd4t UVd4t

LIVECE LIVECE

° °

TVET TVET

TIVES TIVES

(723 (723

«Ef «Ef

OL OL

1VIS*°3IO"COMSaV) 1VIS*°3IO"COMSaV)

Of Of

CP CP

61 61

O09 O09

STS STS

STO STO ST ST

STD STD

§ §

1 1

ED ED

(I)WH=¢€1I*T (I)WH=¢€1I*T

3dd-=(P 3dd-=(P

¥*t=f ¥*t=f %‘T=I %‘T=I 4“T=y 4*T=y% 4*T=y%

+*T=I +*T=I ¥*T=f ¥*T=f v*T=1 v*T=1 7“T=y% 7“T=y% %*T=I +*Tt=f +*Tt=f ¥*T=I +*T=f >*T=I %*T=f 7*T=y ‘T= ‘T=

XTYLVW XTYLVW

€*T=I €*T=I DHHH= DHHH= ¥*T=I ¥*T=I

(O°OA° (O°OA°

%*T=f %*T=f

IIV=HCP IIV=HCP 7*T=% 7*T=% +*T=I +*T=I

O°o=(fF O°o=(fF

O°o=(F O°o=(F LIVECE LIVECE LIV=HEP O°0=(F O°0=(F O°0=tF O°0=tF

O°O=tr O°O=tr WI WI

a a

d=th d=th

d=H= d=H=

TI TI TA TA

$l¥ $l¥

Cf Cf

WIS WIS

WIS/B=0 WIS/B=0

JNNTIINOD JNNTIINOD

EF EF

OSOT OSOT O90T O90T OLOT OLOT OLOT OLOT OLOT OTTT OTTT O80T O80T

O90T O90T O60T O60T OOTT OOTT O60T O60T O2TT O2TT

osoTt osoTt OOTT O60T O60T OTTT OTIT

ISN) ISN)

£1)39V £1)39V

ST ST

*T *T

NG NG 00S 00S

00S 00S

00S 00S

ST ST

STIL9V STIL9V STUNG STUNG AT AT *I4 *I4

STV STV *1)39V S14 S14

ST ST

OL OL

ILIV ILIV

DI9V DI9V

OLIV OLIV

}HHH }HHH LOV LOV IV IV

0 0

JIVINITVI JIVINITVI

td td Vd Vd

ST ST

=] =]

Oa Oa 09 09

Oa Oa 0A

00 00 OC OC 0G Od Od OG OG OG Oa OG aa 0a 0a Oa Oa OG OG

OG OG OG OG OA OA OA OG OG

JI JI oa oa

OS¥

OOooT OOooT

GLY 00s OSOT

OOTT OOTT OTTT OTTT

OL0T OL0T o90T o90T OsoT O60T 157

SH1

SV

INO COOP (J ( TWISTSe*XSONIS WISTSH*XAIONT*

Q3INIUd STICVHADTIVIXISI-TIEVOTAF(P

SI

GNV (FSS IOAT LOAT

SINVNIWY313SG (FEOXENNIDG A A T-NNI TS FSWHSLSGS WesLaG GeO (PF OS TINS EONS SISNNDGF (FS ST Of ST (fF OS JTWVIST#*81T3° JWIST##813° TOOZ TING+(P *TIDVACHSFILIOV=ACr NG=EF ANNIVEEP LVS LVd

4O T-NN=WNN 4

LINAGOYd ((0)SEVIOTSOTV=90 ofS oS CF +O L OD OL AT IWISTee°OT=3 (r*TuvVd=(F (r*ridvd=(r (90 ST aVd) ST UVd) STD ONG ST VUVd—-=(F PUVd—=(f TX %‘T=f +*‘T=f ¥*T=I ¥*T=f %*T=y %*T=I %*T=I %*t=f ¥*T=I +*T=f +*T=y% 4*T=!I +*T=f +*‘T=I 4*T=f (O°D3°2LSN) O°o=(F UVd= UVd= O°O0=(f TaWdd13d2d TeWd9LIGs0=0 (T°LO* XIAI=3IISI ANILVW ANILVW

SZATLIVINWNI (reda°r) oco0e 3¥vIS/b=60 JINNILNOD

WNQIS3Y Cf CF O2ZTT OO9T 00ZT oO2T 002T OO€T OOFT O009T O0O9T OOLT OO8T DO=WYIL OOFT OOLT OOE€T 008T ST ST)UVd NN=WNN STIS *T)UVd ST fT)uVd TFIIDSI fT ‘TST SITING OL WIS T1V9 17V9 )uvd UVd avd =0 1X Od Od AG aa Oa 0A Ca OA Od 09 OG aa Od OA Od Oa at JI TY

SIT OO9T 0002 OOFT OOLT O2TT OOET OOST OO?T OO8T T002

DB

x * 158

(CE*TISITUR(ZSEVST

(H*TISTURCE

(V4

COP

CCESTISTUR(T

TISTURCES TISTUR(ZSEDST

CESTISFUR(2*ZST (TPE

(TEEVSTUx( (ZSTISTMe

(ZSEVSTYRCE

VSTURCE*ZIST

SE

IST

EUS

(TS

Ue

SS

URd

SZ

(TS

ZS

2ISTUeIe

TUR

ZS

Ue

IST

TS

Z)STUFCE

Tue

EZ CTS

axle

2S UE

Ux

OOOE

TUR

SZIS

ZS

OLOE

OTOE OZOE

(YS

(>

Tut

oS

e

XLTSO=(ZIOVWO EVSTY-t2*TISTua

XITIG=(TIDVWO

SES

TIS

TUF

OL

EPSTU-(

TISTU-CESTIST

STISTU-Ce Tut

Co

SEVST

OL OL

OL

OOD

DG=(T)LFO DG=(2Z)1F0

TYCO

TU-CT

(4

SES CH

OICT*OI*

GOCT*OS° ODETTOS*UETSTIZVHATV)XISID

ENS

SE

(8°9T3AX>*2

C1*D3°C(4S

uate

TESTIS

XLTIG=(TIOVWO

TUR

DST

Da‘

0092

STIS

ocoe TIS

Tue

fT

Ue

00¥2 00S2

e

fZUSTUeCT

OG=(T)IL30

XL

IST

Touaele Tuas Tuet2

S2)ST

tes

CFE CESS

Uae

OL cS

TAG

C°O"LO°OGe(TIL3IG) CPOTLTV°OdGe(T)

C°O°

C°O"L9O°OUS(TILIG)

uel

OL

Ces

ZS

O1 2ST

OL

“OTAXSEIXSVLVWHOS

SE

OD

(IE

CI*7ISTU=CI°EVSTY (1*EVSTU=C(1SCdSTY (T47)STY=ETSENS

fOYOUYIOHZ) (ISHISTH=CTSENSTY (I42)STY=CIS

Se)

IEC

SVSVHA

eZ

OF v*T=I Ue

LT

SEvSTuxle* SE

7S

CVHdTIVIXISI) eySTua(e*cysry-t

VZVHd

09 ZUSTae S3dVHS

O9

Tua

uxtZ*

STeet

tT

(T°O3°37VW)

STIS

5*T=1I

+*T=I OGetT)

ST

(0°03

(FECES

STU=CTS2oS

Tue

SSB

{T°O3°WI)

STISTU)—=LAA

(0°03°*NVW)4AI CT°OAWI) (T*OI°wWI)

TS

TV

OOOE

OSOE uxt?

TV) oooe 000S

TU)

TS

*OIALIUM TS

(TSE

(Tf

IXIA JCOW

°1SN)

{7

XISAID L350)

Lad)

OIILIUM OF70€

090€

-=XWXX

TYHLMM

EySTut+t 2ST

LVWYO

TYa=Lnn

Eds

TIS

dSTe—e

O1 OL

Ol

VST JLVINITVS

AI AT

TS

SAI TY

OG 09 oa OG

Al O89 U+T

AT SI O9 u-2

AT AT AT AT

SI SI AI

Ty Tet

OOOE

OTOE Of£OE

OZOE OSO€ O9OE 00% 00% 0092

OvOE

00S2 VEEE 88s8e 159 2 3 J J / J / / (XW

(C24TISTURETSZISTUe(ESEVSTU-CTSTISTuK(

(TSE A NM M AZITIVWYON 3ZI1VWYON

WS

Tuell

2

fC

USTURIES CZeeXWXXFZeRaLMMF+CHREAASFZHS CZeeXWXXFZeRaLMMF+CHREAASFZHS

t/XWH2X8T COCT—TEP SA SA SA SA JINVISTA JINVISTO JINVESTCO JINVISTC

DUASEP

TISTU-—C /

SMHTX6T NOTLVYGFA

NOIIVWHOANI

(OS

STS

OT6Z2 TWNOITQIYUAW TWNOIGIYSW

CST /=VHd /=8 IWNOTQIYSW IWNOIQIYSW

THES /=VQGWVT

LIND J=N /=V93WO J=SNOTEVLS

SAHTX6T XL7T30

IST

NNN

CTSELIMAD NX

OL SdN

d TV

NN=WNN

UKE

Det

09

€02)WA*Z*£OT) ((2)WA‘S

SNHTXET////) C7

ef

JTLIL GUYS

TOTS

XWXX*ZIG=CT

SCUST LANNY LANNY

WNN‘T=7F LAAKZ90=(TS LAAKZ90=(TS HOT/(CTIWA H25/

eySTuxle*z2)ysry-z2 Hers Hev/ Hey/ WNN*2=1 LMMxZ2DQ=CT*EDUA

HOT/(OTIWA LNNe2IAQ=CT LNNe2IAQ=CT

(0°03°Yd3dOW) WA HOT/EEIWA HOT/ITIWA HOT/ESIWA

HOT/S(9IWA T2adVLVI=3dV T2adVLVI=3dV

(8°0234)

¥*T=I #*T=f

(8947S

(LSETSOVALIUM (8°O¢23) (0°03 HO2/INI

TPYA=E SE (e°8s)

44

ua LYOS/* LYOS/*

101d

1+

“O=C £02)

OT)

T-WNN=L4N

CTS

JANTLINOD T+NN=WNN bWX eWwX ewx T+NN=NNN IWX

°LSN)

0062

0082

61S€ OIAETUM 0082

dn 3009N3 ivwudd eS 1LVWUOS LVWUOS 3009N3

3SGO9NF

LVWHOS TESTA

TS T=230 T=230

SH)

Viva 2)UA 2)UA VEVO VIVO VIVO VIVO VIVO VIVC

VIVA VIVO VIVO VIVO TIA TIA

DA ras

SI LI LI

UA

U+T

Od

OG OA OG

AI

6LS€ 6LS€

8942 8942 0062 OT62

0082 LSE€T LSE€T 160

YsdVd

SYSWWVYUIOUd

HdVYSOTTIIOSO SNIDIVdS SNIDIVdS

ATTONVI JATEVIYVA JATEVIYVA

YO

(VSN-TPLVOTSs (VSN-TPLVOTSs

CVSFA-TIDLIVOTSA&e CVSFA-TIDLIVOTSA&e

CVST—-IVIVOTAxEVSS CVST—-IVIVOTAxEVSS (VSN-I) (VSN-I)

WITS

YOA YOS YOS

JATEVIIVAY

NO

LVOTS# LVOTS# FONTLIOTd FONTLIOTd

ONTLIEOTd

€ETE €ETE

€E€TE

CETE CETE E€ete E€ete VHd

CT-TPAVOTSa(TIVETSG=H(I)

CVSS CVSS

(VSNIVITIOFIVSNI (VSNIVITIOFIVSNI (VSNIVITIOF+CVSNXX=CIDXX (VSNIVITIOF+CVSNXX=CIDXX

WVIX OL OL

OL OL OL

GNV OL OL TV

S

IVE IVE

YOA) YOA) VITIOFEVST)XX=CI)XX VITIOFEVST)XX=CI)XX

ODFO°OA*(ZIPLIVISN)

O90°DS*° O90°DS*°

ONFO°OS*(VPIVISN) ONFO°OS*(VPIVISN) AONTO°DA*CSILIVISN) AONTO°DA*CSILIVISN) WOF CUETTIWASS CCETIWASSSOT) NN=4

3dVE

€(6)WASS*SOT)3009N9

vSrfvsl=!I vSrfvsl=!I

VSNSVSI=I VSNSVSI=I

vse vse

VSN*WST=I VSN*WST=I TIG+FEVSFYXX=ET)XX TIG+FEVSFYXX=ET)XX VSN*2=T

JNIINOWENS

JNTIINGY SANIVA SANIVA

CLIN‘ ‘VSI=rI ‘VSI=rI ¥*T=I

NO (O°O3°ISN) (9°OTAIDLVWYEOS

(TILVESN=VSN

(SJLVISN=VSN (SJLVISN=VSN

(ZYLVISN=VSE (ZYLVISN=VSE

(EVIVISN=VSN (EVIVISN=VSN

(P)LVISN=VST (P)LVISN=VST (EV (EV

ST TPYA=CTIAA (ST) OT)

T+VSN=VSI T+VSN=VSI

T4VS=VSI T4VS=VSI T4#VSN=VSI T4#VSN=VSI

I-T+H=1L4N

T4#VS=VSI T4#VS=VSI

XX=EITDXX XX=EITDXX

LVISN) LVISN) X X O=(T)

OOTE

€2€€ €2€€ E€¥EE E€¥EE

€TEE E€See E€See

ONTLLO1d

e€fLfC€ e€fLfC€ SNTiNOVENS T+NN=IN T+NN=IN 3Q09N3

LVWYOd dN dN ICGOINS 1+NN=»

AZTIONVTI

L3S L3S

GI GI

ST SI SI

Xx SI SI XX 00

OC

OG OG

OG OG OG OG

I Od Od + OOTE S

ETEE

E2EE E2EE

€€TE €€TE

ESGEE ESGEE

EVEE EVEE ELEE ELEE

WVI

JF

Dd 3 3

161

CAdVITSOTSIWX CAdVITSOTSIWX

(AGVLISOTSOWX (AGVLISOTSOWX CAMVIT CAMVIT

(SAVET (SAVET

SOT SOT

SOT SOT

FENX FENX SCWNXSSSWASETLOSOSOSOSAATXX SCWNXSSSWASETLOSOSOSOSAATXX

SS SS

SS SS

SS SS

FWASETSOSOSOSOSAASXXS FWASETSOSOSOSOSAASXXS

SWASETSOSOSOSOSAASXX* SWASETSOSOSOSOSAASXX*

SWASETSLOSOSOSOSAASXX SWASETSLOSOSOSOSAASXX

SINS SINS

SINGS SINGS

ING ING

INE INE

NN=IN NN=IN

INIA INIA

INI‘ INI‘

INIST) INIST)

INIST) INIST)

CLINSEVAYAHCTPAA CLINSEVAYAHCTPAA (LIN‘Z)YA=ETDAA (LIN‘Z)YA=ETDAA

CLIN‘ CLIN‘

T) T)

T) T)

W*Tt=I W*Tt=I

4*T=1 4*T=1

4*T=I 4*T=I

(0°03 (0°03

LIdICd LIdICd

LIdIGG LIdIGG

LIdFaG LIdFaG LIdFGG LIdFGG

YYUYA=ITIAA YYUYA=ITIAA

I-T+H=L3N I-T+H=L3N I-T+=LIN I-T+=LIN

I-T#=LIN I-T#=LIN

JNNIINOD JNNIINOD

°LSN) °LSN)

OOvE OOvE

ooze ooze

OO€E OO€E

NaNL NaNL

1WI1V39 1WI1V39

T1V3 T1V3

WWV9 WWV9

WIV WIV

ani ani

00 00

OG OG

OA OA

SI SI sy sy

OOVE OO¢E OOEE 000s 162

wu

“NOON

*(TOZPXGHLAG* “(OZ

“CTOZIUX*SCTOZIVWHYVD

POAUAT*

*2NX*

UdICOW

UdIGOW

INXS

ES

IVISNANNSS

C1072

VLVISN®

*NVWS SVHA

(TOZ)cusas

IXQX3AG*

TV

LOTdI

ETOCS

CTOZ

SIXVWS

XOTHdO*

INI

SW

(107 SOFYAT

IVE

US

13

(TOS

WX*IXVWSZS*TASXVETIOS

CIS CT+2N-EN)

Ce HLINST HLINST

T3904

SW

SVHd

THd

JHEd3*

TIS

(o2)WX*

Sod

TX

IT

“NOON VHd VHd

TV

*

(CSP

HAG

ZVHd

XVE

XQHLIG*S

§

ZV

SENDS

LNDUAd

3iNdwOD 3iNdwOD IV IV

CTO7

SC

Hd

TIO LVOTS/S&

SZNXFINX

IV

XOWXG / /

(COZ

TOZIVM*

TV

0S 0S

(°C/VHd (°C/VHd OOT OOT

VXd3*

SEG

Io

d

XOX3IG*

IXVITIG*

SE

SNN O1 O1

TVHd

*

3d

2VHd

(TOZ SH

o>)

GNV GNV OL OL

VV

SS O09 O09

LS 888666 888666

FLV

*X93*

C102 CIN (TI

TVHd

CTOZ)XX

T/L TV TV SVIT30

NX

INVWS

WS HLd 09 09

XGIHdG

SAWX

ISNS

T3d*X89*

INdNI INdNI INDYId=(F

%S %S (°O*DA°VHdIW) (°O*DA°VHdIW)

SESS

SVWWV9

PXONXO*

(02)

IY

AINVN

TWddOsIT/tWddO

TVHd INDYAd/VULXA/?

a’ €N*ZN=r

LVESN-Z T~CTPELVISN=EN

CINdNI*S)GV3" CINdNI*S)GV3" (OTV8}) (OTV8})

(VuIXa*

INIS*% INIS*% (0°03°NOON) (0°03°NOON)

GNIS

SHV

VEL WX(T*S)QV3" WX(T*S)QV3"

Xd

LOTdI S*T=I

VV/ULINOIO

998s

JTEVIYVA (64404) (64404)

«6NOISNAWIC NOISN3WIO

IV/ONNOG/T TIO/IVdS/S

F/YULSIANA/E IX/SESNODSY

WIV WIV JNNIINOD JNNIINOD

*

LS Ts Ts

SY

(TOZIIHdZ ° °

WVN90Ud

S$ S$

2=9N3 2=9N3 T+NN=IN T+NN=IN

C107 I-9=1I

WddOSI

NOWWO)D =9N3T3 =9N3T3

/W099/

+NN=ZN LVWYOS LVWYOS savas"

I DVL

(OZ)

SOIUAIT ava" ava"

TSWYN OL OL OT OT TAG

FLT

SI SI SI SI

3/2

VVE 09 09 CC

OG

4I 4I 13 13 31NdwOD

SE

2

888 888 oT OS OS TS TS 2

163

WV WV

WV WV

IX/ IX/

IXS IXS

€C°T-C9UV)SODI+VHATVI/(9OUVINIS#VHd €C°T-C9UV)SODI+VHATVI/(9OUVINIS#VHd

OXGSe° OXGSe°

(X9DF%°E€—( (X9DF%°E€—(

(C*T-€COYVISOD)+VHd (C*T-€COYVISOD)+VHd

E+ E+

XG XG

(7aRNWX-" (7aRNWX-"

7HRNWX—° 7HRNWX—°

de de

CNWX+4+VHd CNWX+4+VHd

AYLIWOID AYLIWOID

(€12V—-)dX3+ (€12V—-)dX3+

€€12V—-) €€12V—-)

VHdTV/E°T-C98VISO9) VHdTV/E°T-C98VISO9)

TP TP

TI TI

LUOS LUOS

LUOSAWV LUOSAWV

TV TV OO€ OO€

00% THI THI

SNOT

I-02 I-02

VHd VHd

dX dX

AWV AWV

OL OL TISHS TISHS OL

(9 (9 3-12 3-12

LVWHOSIG

C(NNDLVOTASSH=CLIVETAG C(NNDLVOTASSH=CLIVETAG

1V¥X—*72/VHd 1V¥X—*72/VHd TX% TX%

AYLIWOAD AYLIWOAD

TX TX

eNWX—9T) eNWX—9T)

( ( OD OD

AD

T2V)dX3 T2V)dX3

(PEF (PEF

ViT3dd ViT3dd

SODeVHd SODeVHd

(°C) (°C)

GAFAUND GAFAUND

V V (*O°OA*VHdTWIAT (*O°OA*VHdTWIAT

(O*bA*IWddOSIISY

dX) dX)

CVRTVE* CVRTVE*

(TIVINIS=TTVS (TIVINIS=TTVS (1TV)SO3=T1V9 (1TV)SO3=T1V9

IN‘T=I IN‘T=I IN‘ IN‘ IN‘

LHOSP LHOSP

CIPVLTII+X=x CIPVLTII+X=x

LEMOS LEMOS

VHd VHd W=(1 W=(1

SSAULS3udd

e e

"Z/SRTV=TIV "Z/SRTV=TIV

*O=(1 *O=(1 "O=(T “O=(TUXONXG

*2/S*2V=aTCV *2/S*2V=aTCV

)¥#S°=12VH9 )¥#S°=12VH9

INVISNOD INVISNOD

YSANITAD YSANITAD

T3d=30 T3d=30

40° 40° T=I T=I

002 O°T=CINL *S

T=I

OTE OTE

ATENOG ATENOG

TV=ET) TV=ET) IVECO) IVECO) O°

"O=(

WV WV

PLYOS=TV PLYOS=TV

LYOS=cV LYOS=cV

*=TZVHS *=TZVHS

#S #S

DVWWVD DVWWVD

T=CT T=CT C=CVTV C=CVTV

T=t1I)Y }XONXG }XONXG

VWWVS

OL

O02 O02 S2 ST ST OL OL =9 =9

1)

TI TI °O=Xx °O=Xx

4X

DY DY

UV UV

O9 Oa

1X 1X

O09 O09

OQ OQ 00

Fd Fd

IL IL

JINdWOd JINdWOd

JLNdwod JLNdwod FLNdWOd FLNdWOd JINdWOD

002 002 O02 O02

OOE OOT OOT ST ST

OTE

SZ 164 ZVETVdVI XVHSEX

NAQV/

NAQV/ )FXVHIDSX D4

CIZVHDS

EC

TCVHS OC 2VECV

TIVS

TI Jal dV

VIeCV Cee IF

2

2V TVS

C2%% NSQV/ TV NAIOV/

TV

TV—-12VHOe ECV EV

4

T2VHD

ICVHSS dV XVHS#XS#( dV C12VHIF DP OC I-ZV TZ2VHDeTTV Wd

eas FXVHDE XVHDAXIAZVAGVIFEX

TIV TEVS STV XOSaNWX T2 TT

TIV

O2E

9%

(INVYDWIW)

& VS VHD% XS ETVd Zee

942

(Cee

(Cee ¥2V4 aC STV

O1 TVET CL)VM#(2#4NWX-—"

e212 Veo TV IZVHSeTV4FTTV +02

TV

TV

G3LWOddNS

OD —T2VHS xZVdVI—-2VeTVdVO) IZVHS* V

—CRRCV)

—2 eeNWX—*

VHS8 C+ dV C0°2/S—-X €0°?/S—-X

ee2V

(2aaNWX—°T)

U°T*DA*

Cee I-—CV SSAJYLSAudd (€°2/S-X) CtO°2/5—X VHS

Zee eT TIVIOeTV (1)

) V eV Te TV

DW

DEW &XSHaTVdGVI=(I)

TTS) ECV 2y430-—=(1) (1)

(HS Ia }#2V De )

(ATHWIS (NNDIVOTSA/S=xXC acl 0°O=( CLIVM=CTI ZV 2V TI=CI) 0° TIVSeZ2VENIGV IN*T=I dV) IN’ TH¥30-=l1)THd

H)T *O=(1)xax3a ) KT

/IC *

&2VTVENTCV

FHSO9J=XVH9 dV LNVLSNOD O=(1)xaxaa FHNIS=XVHS XGF=€TYXdF *O=(T)Hid3 e&Wd-=2Vd ) TV)

o€€ eWd=TVd T=I 866 "O=(1}Xd3 HCP 1)

VHA VINIS=XS HC 3%

TI X=C1) SO3=xd XOHLIG XGHLIG

YO)

=TVdV9 XO+X=xX

=¢VdV2 xXdIHda 1) °C-Z%%T

id=wWd

OL L 09 OL

TV)SI 08 Of DHE Tae 2450 °O=x

G3AdWV VM dS OG OD OC

ATAIYA XX V9 V9

3INdWOD 004 08 OZE O€E

1D

* * 165 0° O0=(T)XGIHdG O° O=(IT)THd NYNIIY dOIs

ON3

O€

866 866 666 166 (TddO3)

SNOTLIVWYOS30

S3HAS*d°N S3HAS*d°N

SATEIVIIN SATEIVIIN JO JO

INOLINT

WSH1 SNOILVNDA SNOILVNDA

Yd G3SSSIAMLSNN G3SSSIAMLSNN

ONILNIYd

CULT SS3YLSaud

HLIM

NI

WIFHS WIFHS “8-F=N “8-F=N

JNFINOVENS

G3SN

CULT SINTOd SINTOd

YO4

GQFLYaddNS GQFLYaddNS d33Q d33Q

WOAH SOOOT=SSINWIIHL/SNIAGVY SOOOT=SSINWIIHL/SNIAGVY

YOF

S3dVHS

T SISAL

SVLT3d 3SSHEL 3SSHEL T

SSANIVA AHL AHL

2

00+36Z288TL66°2

CULT ‘CSINVYGWAW)

JINIDYIANOD

SHIYVIS JO JO

J

3COW

ATAIXYA ATAIXYA LV LV

WVIYVA

YOA NOTINIOS NOTINIOS

3dVHS SIIYVONNOE SIIYVONNOE

4O

TFWANVW SNOTIVYSLI

SLOTd sO sO

YOS

002 Oc*®

3GOW

SS3YLSaSud

SNOTALVUYGTA SNOTALVUYGTA 4O 4O

T

YOS JO 90-30000°T

=HLINAT =NW YOQA

=STVAYSINI

GOHLIW GOHLIW

NOTSSY NOTSSY *E=S *E=S

SVETIG

LNOLNIYd

JO

T T

LNVISNOD *SO°-=Xy *SO°-=Xy

*SiO0Id *2YULT

YAGWON

IVOTYSWNN IVOTYSWNN TWUNLVN TWUNLVN

8

LINVISNOD

IWIXV 0 0

=23

°ON

oo°T

INISN

ON oo°T OL

GN 0 0

WNWIXVW

"0

"0 °0 "0 "0

°0

¥OS HLIM HLIM

¥ wos

SNOT 00

YOd

O00SO0°- ooo0oo0"’e—e 0

YOd HOA HOA

YOA

T00° S0-30000°T

0

0 O O O S1

O =(€*E)

=(2*°2)2VHd =(€SE)2VHd

TIBHS TIBHS LIGNOD =(9°4) =(TST)TVHd =(2*2) =(>*S)

=(T*T)

O INdLNO INdLNO

N

O T02@ T02@

O

O Se

dO

=S 0

=VagWvl

=uddd0W

=VHd =TddOdl °9 °9

JUNLVAUND JUNLVAUND 2VHd

TVHd IVHd

=101dI ¢

TVHdA 2VHA =LVISN =LVISN AYVONNOS

=IXVW

JONVY

=NDON

AYLAWOIS WALdVHD WALdVHD

=NVW JTdwvS

=14

IV

IV TV

TV

TV

$3003 TV TV TV

TV

0=X

S=X

167 0000000°*T 0000000°*T

=LIWIT SO-J6LT996 SO-J6LT996 €<272LETO?

JYOSAIYAHL

waddn OFLVINIWI

20° 20°

€zzl6To°* €zzl6To°* E-— E-—

00+ OO+STE6EVETE VO-ATETSEECO°PE

40-3608 +40-JOFONSO9E

TO0-38€8 OOFISESEVE4ST €0-32Z0S26LE9* €O-AFLSETIBGE SO-3J6LT99G20°

SO-A¥V~ST =AINSNODIJYS

00+3962E0E¥%T*Y TO-3S9GS7Z6T°S 2O-ALOE 20-3808 €0-37E6CZOCEC €0-3T609L7296°%? £0-ABTTLO8Z20°*

TO-AL99LL8L8°T “G3ESANOIU

36T9SGLE9C WNGISI WNGISI

* g31vos g31vos

GO-A¥22T76B2 1ON

TS

602

CY

0S8729°E—

TERS § §

OSE

T6B ST

0000S00°

0000500" u

¢2S° T22L6T0* CTVNIS)

eT

*T

PS *2-

ES

*C~

°2? PT IWACTISSY

9-

T—

e—

T-

RB LON

°G

S3dVHS

61 61

GQALVIdysINI GQALVIdysINI

INIWA INIWA (AININOA (AININOA OOSLETO" €ZelL6to°*

0000s00°" O0000STO” OOOSLT0* SL896T0° OZ216T0° =QILIDIMSNI =QILIDIMSNI

0000020* =WAYSINT =WAYSINT LE786TO°* 9S691610° 99¢L6TO° OLOLETO” B89TLETO® LT2L6T%0° =SNOTLVYSLI =STVNOIS3AY OSLE6TO® OOO00COTO® 6ecLl6TO°

=AININOIJYS TY2L6TO° Te?L6to0°® WNIS 3IGOW

0O0STO°*

VIAWO VIAWO

YA) YA)

NI NI ADNINDHAYA ADNINDHAYA

ONIGNOdS3yYOdD

WNIS

40 ¥

=V1iTts0 G3ISN G3ISN NOTILV

YIGWNN uid

vOs

LNIWAYINI LNIWAYINI AN AFIOm OO

WAN WAN =*°ON walt

INVISNOD

SANNOG WILINI WILINI

3Q0W 168

QOO00COOCO*T

=LIWIT SO-JEBLEBSZE

YOREBLOO® YOREBLOO®

SHOSSYFIHL SHOSSYFIHL QILVINIWI QILVINIWI

add

T8EeRezoo®

°C?

00+

CO—3LTOY9ZE? €O-JTOTTSIO9* yO-ABYE $O0-JLELBTS66°

OOF

€O-J3T9TYIOTB*S VO-JECETESYE*T

SO-JSOT GO0-JLTOEOF09 =ADNAIND =ADNAIND

0O+3TLITTSE2°E

CO-ABITL9VEL €0-3STB#2S10 €O-J6LELHOLB*T

GO-JEBLEB2CB°e—

TO-3¥E9 CO-JEZTLE997S

TO-SLE96LESYH* TO-3€02S1T690°L

— f{G3LS3NO3yY f{G3LS3NO3yY

30

WNGTS3Y A¥TCRLE%4Y“T

*

aq31v3s LON LON

261£009

GO-FILTOEN%09°Z

ECE

TESEE

T6892 AYA AYA

* ST ST

COO00ZO0")

OBEBLO0*

VEC?

OC0O0Z00* UTWNIA) UTWNIA)

°8—

°*S— WNOISSY WNOISSY

°2

*

PE PZ

°L—

LE

2— LON LON

T—

T—

2 SIJdVHS SIJdVHS

6T

INIWA GALVTIOdYIINI GALVTIOdYIINI

CAINING

O0000L00°

68€8200°

o000Ssl00* 0S628100° Z€*8200°

=IWAYSINI

0000700° 0000900° 0000800" 0O0SZL00°

6SEBL00° 86E82L00° 62¢€8200° YBEBLOO” O8Ees200*

0000200°

ScTeL00°

T8EslO00”

=O3F1DAIdSNI =AININGAYS

T@csloo°

=SNOTIVYSLE =STVNGISIY

T8EsZ00°*

IWNIS IWNIS JGOW JGOW

VIOIWO

AS)

NI

INIGNOdS

INIA

AINANDIAYA

40

S

G3ASN

NOTIVYILI

YAEWNN

YIGWNAN

vod

4

¥T

Z

L eT Lt 6T

€ Ss 9 8 6 OT

ST

INAWIYINI

eT oT 8T

T

TT

=*ON

3uyO3

IWILINI

SONNOG

3C0W

169

OoooocdoO*T OoooocdoO*T

SO-328T9LSE66°L— SO-328T9LSE66°L—

=LIWIT =LIWIT

6VEOZETO® 6VEOZETO®

AMOASUFHL AMOASUFHL

Y3addNn Y3addNn

G3ILVINIIWI G3ILVINIIWI 9EvV26TO® 9EvV26TO®

00+316662ETL°¥

7O-3IZ 7O-JECOTSETL°

CO-JTYSHCIETTE €0-3T2TLOGYL° YO-SF6ECELSE*T 20-J7V9SLOEB°L— 00+

CO-3ZTUZEIVL?S 20-39 €0-382496129° 00+

OOF GO-JBSEOCYE6T°T 60-3281 =AINAND CO-ALYIESEBY TO-3LS6ES9S6°%2

10-34%S696180°*T

TO-3EL062685 SQALSINOAY SQALSINOAY

3SE86STT#°?2

ABYETI66T°9

56%7S26820°T

TWNOIS * *

Q3TVOS

T6TE9TZ°E—

LON LON BBEDHEE SO-ABGEODZYETTT

91S566°l-

SYS SYS

* * ST ST

Fy

0000S00° 0000S00°

0000S00" 0000S00"

SEHZ7TETO® SEHZ7TETO®

CVWNIS) CVWNIS) TWAGISAY TWAGISAY

PT

°S— °T °¥—

2—

8- LON LON

T-

— SAdDVHS SAdDVHS

6T GILVIdYSINI GILVIdYSINI

INIWA

C(AINANDIYS)

0000020° =TWAXSLNI =TWAXSLNI GE¥76TO* 49426

OOOSLTO® OOS18TO°? 0000S00°

=AFLIIdSNI =AFLIIdSNI 9S¥26T0* 8ESZETO* €BEC6TO” 696Z26T0° 8LS¢6T0° OSLE6TO* Ooo00TO” O000STO”

GE*26T0° O8+726T0O* ZEYVZ6TO” SZ906TO* LBT26TO°

=SNOTEVUSLT =AINAINGDIAYA =AINAINGDIAYA

=STVNGISAY =STVNGISAY

WNIS WNIS JCOW JCOW

T0*

VIIWO

NI NI

ADNANDAYS ADNANDAYS INTONOdS3uYOd INTONOdS3uYOd INIA INIA 340

9 G3SN G3SN

NOTIVYSLY YAGWNAN

YIeWAN YOs YOs

4

6T oT oT 9

€ INSWSYONI INSWSYONI LT eT 8 OT S 2 /@

ST ST eT 6 T

TT

="ON

IWILINT SANNA SANNA

3d0W 170

0000000°T =LIWIT =LIWIT SO-382OC7S

2¥ZSO8ZO*

JYOAIUAHL JYOAIUAHL Ysddn Ysddn Q3LVINITWWD

CHT GZso8szo* GZso8szo* PT

OO+3S4TT8ESC°? 00+32TLYLE66Z2 00+302%920 ¥0-3S2O08TTSE° ¥0-3¥SYTbY40® 90-362S660L2T°9

CO-STITSLSOE 70-3968

00+36SS7T60°E TO-3ESSO002 €0-J3LYLIO06S"°9 CO-J6VELYYOB"C

€0-39%288909 S0-36760T SO-3B =AINAND

TO-3GCLETCLIEY 2O-JABOTELOE9*L— £O-JOTOIEBLI°S

€0-3189 SO0-36966872E9°L S0-3829€890%° —

*G3ESANDAY TWNOIS3 TWNOIS3

* q31vos q31vos 20272

90-362S60L2T°9 LON

88S

TSTBE°S

AYA * * £68 7HT SE

98

26°

0000s00° 0000s00°

¥2S0820° ¥2S0820°

0000S00° 0000S00° 99°E 99°E u CTWNIA)

°T

°T—

*8— °

*E— TWAGISAY PT c— + C— 9—

T—

LON —

SFdVHS TZ TZ

Qa

INIVA INIVA {AININOIAYS) {AININOIAYS)

_00000TO*

0000¢s00° 0000620° oo000¢c0”

¥cSO8Z0° =G3LDIdSNI =G3LDIdSNI

0000020 000SL 0062820° oS2T8zo° 4¥990820° 8tsoszo°’ oe€sosco® ScS0820°

0000STO* 1896120° 69408¢0° 6S80820° 9960820" =AINING

=WAYSLNI =SNOTIVYSLI

ScT8lzo°* 7¥S0820" LéS0820° =STVNGTS3Y INIA

LV

IOdya

3COW

720° VIIWO VIIWO

°

AYA

INI

NI NI ADNINGSYA ADNINGSYA

TWNIS INTONOdS

JO

Z a3sn a3sn

NOTLVYILI

YaIEWNN

YIGWnNn

YOS

INIWIYINI ANATOM OD =°ON =°ON

FuuOD

SONNOG TWILINT 300W 300W 171

0000000°*T

=LIWIT =LIWIT 90~-36691S4999° €T260920° €T260920°

SJYOSSYIHL

Yaddn Yaddn O3SLVINIWI

226092Z0° 226092Z0°

OO+3TT626949°T OO+3TT626949°T

4O-J6SLETYIL°S 4O-J6SLETYIL°S

9O0-SLESB96BL 9O0-SLESB96BL y—

40-IB2YELEGS°T 40-IB2YELEGS°T FO-JETEELTEE°E FO-JETEELTEE°E

90-3669154999° 90-3669154999°

€O0-3¥7092CH9OLTE €O0-3¥7092CH9OLTE

S0-39848S6T S0-39848S6T

€O-—J3¥VEOZEESP*L €O-—J3¥VEOZEESP*L

CO-J6LZSBOBE°? CO-J6LZSBOBE°? €CO-J39BISHLES €CO-J39BISHLES CO-AE CO-AE

=ADNISNO

S0-J09T S0-J09T

SO-3LT9¥2lS6°T- SO-3LT9¥2lS6°T- SO~-4A44EYYINO’Y SO~-4A44EYYINO’Y

£O-JESTESSES £O-JESTESSES

20-JE9900S98°S 20-JE9900S98°S

OOF OOF

TO-3L29TTTET TO-3L29TTTET TO-3”T9LOOSE*Y TO-3”T9LOOSE*Y TO-JT8B84Z0T0°6 TO-JT8B84Z0T0°6

£OF1S3N03¥

3CCTELSEET 3CCTELSEET

WNGISAY WNGISAY

* *

Q3a1VvIS Q3a1VvIS EB EB

LON

90-3LES89EBL 90-3LES89EBL

SZOEG SZOEG 24420 24420

ANS * * ST 0000S00°

0000S00°

1260920" 1260920" 6°r— 6°r—

CTVNIA)

°T °T

*L- *L-

PS— PS— PT- PT- °T °T

TWNOIS3SY

NP? NP? ¥— ¥— LON S3dVHS

Té 2 2

OILVIWOdYSAINI INTWA

CAINANDIAYSA)

=GFLIAIMSNE =GFLIAIMSNE oo00sTO°* oo00sTO°*

=TWAYFINI

6880920° 6880920°

0S29S20° 0S29S20° 00S7920° 00S7920°

OO000E0" OO000E0" 0000S00° 0000S00°

61T60920° 61T60920°

$z60920°* $z60920°*

€1T60920° €1T60920°

0*80920° 0*80920° c#LO970* c#LO970* 1¥7S0920° 1¥7S0920°

2¢€60920° 2¢€60920°

o000c/zz0° o000c/zz0°

0000S20°* 0000S20°* 00000c¢0°" 00000c¢0°"

=STVNGIS3Y =STVNGIS3Y 2260920° 2260920°

9ST0920° 9ST0920° SLE6S SLE6S oo000oTO* oo000oTO*

=SNOTIVY3SLT

1 1 =AINANDAYA =AINANDAYA

IWNIS 260920° 260920° 300W

¥OAWO

20° 20°

NI NI

AINANGIAYS AINANGIAYS OINTONOdSAYYOD OINTONOdSAYYOD INIS INIS

40 G3SN G3SN 8

NOTIVUSILT

YaSEWNN

UIGWNN YOd YOd

IN3SWIVINI IN3SWIVINI AINAPI OM OD

="ON

IWILINT SANNOE SANNOE JCGOW 172

FLOW DIAGRAM OF MATIN PROGRAM FOR GENERAL METHOD

OF SOLUTION OF THE APPROXIMATE

(SHALLOW MERIDIAN) EQUATIONS

Read Tnput Data

IN=0 IFREQ=0

y

Begin loop o mode numbers leg pg 26 NN=NB, NE 4

!

> IFREQ=IFREQ+1 Choose run type

4

TRUN=1 or 3

173 i

Interpolate CALL for frequency SHAPE QMAGI

Calculate residual for Yes QMAGI from ZN

No

Calculate residual for PMAGI from RE

——-W.

174

Define ot (3 and OME(IN) to find next frequency

26 Continue

Read new case

175

A. Main Program Variables

See comment cards in the main program for a description of of the input data. IN - subscript associated with each frequency interval. IFREQ - counts the number of successive frequencies for a particular circumferential mode number. N - circumferential mode number. QMAGI - interpolated value of the frequency. INT - counts the number of iterations in the ITR2 subroutine for each frequency.

B. Subroutines and Function Subprograms

1. MANUAL ~ subroutine which calculates the residuals when given a frequency interval and a constant frequency increment. Ce ITR2 - iterative halving subroutine which searches for a sign change and then proceeds to the frequency within a specified error limit. SHAPE - subroutine which calculates the mode shapes and stresses; results were not used in the thesis. NZERG - subroutine which calculates the minimum torsional frequency when the circumferential mode number is zero. RES - function subprogram for solving the characteristic equation, calculating the modal amplitude and boundary condition coefficients and evaluating the residuals; used for all circumferential mode numbers except zero. Subroutines used by RES: a. FALG - calculates the roots of the characteristic equation. b. ABCDI - examines and orders the roots of the characteristic equation. c. CDETERM - calculates the complex residual. ZN - function subprogram similar to RES; used only for circumferentiai mode number zero.

176

“G3CNIINI “G3CNIINI SLVWIXOUddY SLVWIXOUddY

SYUIAWNIYID 3JdO03-NOSNIGOU

“TWO

VIFSHIXW

OSUIN

W3AI78O¥d

OY3Z INdING INdING

*CTOZIXNS(CTOSIVXSETOZIMS*

“(TOZIVISHIXW JHL JHL

SINS

SV

OL

d3aG

ANTS

ISHIW

DAV 3ETYIS3Aad

3O 3O JIdWVS JIdWVS

GNSS WN

SISVINISAISSLIS (°INdING (°INdING

HLIM NOTINIOS NOTINIOS

‘LOT

(TZIDVLS

S

LOOUNSNNUT

XW

GOHLIW

Dee

ASV

STTISHS

IS °8 °8

(TOZIVISHIWS

OL

ISHIXN

NNUIS

AUNT

(02)

N IEV ONV

YUSIidVHI YUSIidVHI 32O 32O

ADIOHD 40 40

ININI=SIdVLE

Ud NOSTYVdWwOD) NOSTYVdWwOD)

0WD

ENVNIWYSLIG QOHLIW QOHLIW

ES

MOTTIVHS

SS

6S

FV

*MAMIW

VGEWV

SLUT

LSHINS

SVOGWNV

(Oz (TOZIASS(TOZINS

SYASN SJIIULVW 4O 4O

ZWI*LOOUS

SS

(/OTVEX9/OTVEXS/OTVEXSeOe)

DAWO*

(TOZ)XWS SNOILVNDS SNOILVNDS

TS WWY3N39 WWY3N39

(2 uad009 uad009

FGOWN 40

TSGANSEAXNS

XNOEX

SAN

LAC

ASVIIS

ILIG!

AO YwOd YwOd

XITdIWODSXT/eSUNIVAYUND

SNOTLVUSTAXXTS///THTDLVWHOS

102

ENDS

SEAN

SEXNS

(V2ST=HTS(CTIATLIL)

NOTLIGNOD

SGYVD

LOTTA

(o2*T=IS

IVOWV

SACOWS LX3L LX3L

(/*8S2-N0Y

(8°8)N998°(8‘SINIGV/NIEG/6

ETOZIVESHIXN'

DINOS

YOs YOs °V*°d °V*°d

(2)

(8)

ENANI)

XHS

TS

(/OTVXER3ZLVOOs)

(e*e)o9geG* (NOIGIYIW (NOIGIYIW

SEXN

LO0US

ULI

XH

Sf

(LIASIY)

TS

ATLIL

NI NI WVEDONd WVEDONd

JTVIST*WHALIG/EIAI/

INT

(07 — —

42)3T1LIL

3 T3S 234

NS

SAW/ENGNI/ (TILINSAY

WOSWYSLIG

CQ

SVOEWNV

NOSNISOY NOSNISOY » »

NW/OLN

s Ud

JOJYANS

VATLILD

AYVONNOG

NZ*S3Y

LAX1dWI

(BI

(949)

(2 FYNOTY FYNOTY

IS

JISHL

POVWO/

IVOWVIS3ISV9/S

MANW/VHSOOW/

96STV-OYS

IOSVWO/WO3N4/9

IXVWS

(8*S

(OTVEILVWUOS

(8°8)9EV/9E/2 MOT MOT

WILAVG YALNdWOD YALNdWOD

TIN

ETOZIVILSHINT

ZYWI/Z7YWI/E

ANI

NOISNSWIC

C2 TVHS TVHS LST

IWNYSLXS

64%

ASNW

62

WI/YWI/L

WYYNDOUd

/NOWWOD

AVIAY 3355S) 3355S)

OWOS

X3TdWOD T T

TAESAU/E

f€ °d*wW °d*wW

IVWUOF

LINGSIUYZ

1VWUOS LAS

INT TAWVN INTdd INTUd

TWIINT ) )

ava

TVIU

TIV9

IWOOT

Ud

YZ

T

Y

¥&

€ OO0O0T OO0O0T

T 2

Wuoony 177

GNV

V

¥Od

STVNGIS3IY

CYAEGWAN

OL HLIM

V

INAWSYONT

HLIM

ADNINDAYS

SYSOWAN

NOTLVNDZ

JUV

OSNIGNIS

G3LVIDOSSV

ADNANOIYA

JCOW TWAYSLNI

IVHL

GILVINITWWI

HOVA STVAYSINI STVAYSINI

JGOW

HOVA

wO4

JILSTUILIVYVHD

SSTININGAYUS

TWNIS

NOTLVYSLI

STVAYSINI STVAYSINI CULT CULT

VI STVAYSINI STVAYSINI

SI ADNANDAYA

IVIINSYSIWNIYID

LV SS330Ud

HLIM

~- GNNOA NI

AVYUV

INO-INTUd

SSAID ADNANDAYA ADNANDAYA

IND-INIUd

GALVIDOSSV

GQaMOTW GQaMOTW ABNINOAYA ABNINOAYA

HIVI

JSATISSIDINS

ONIATVH

3G AININODAYSA CULT CULT

SHE Cull Cull

N3ATS

ATHdWIS}

JO

WOUS

YILIWVUVd OL

JO

UIGWAN YOF

SNOFLIVYSALI SNOFLIVYSALI wOsS wOsS

SL1OOUY

CINSJWSYINT

WOWINIW JUV UOA

LNAW313

JHE JO

SATIVUSIT) NI YON

NNY

SSIULSAYd INO-LNIYd

NOTYALIYD NOTYALIYD NOTYSLIYD

$1004

HIYVAS

YOA YOA SAIINANO SANIVA

JONVY

sO

NYHL

ONILINIYd

GVAY

OFLVY

AINO SANTVA SANTVA

32GCOW

AO

SHYSSGWAN

$ioou¥

JYNIVAYND SS3I¥LSAUd SINIWAYINT SINIWAYINT

OILVY YAGWNN

HVA

INI¥d

3dAL

(CTWNOTS3Y

ST INIOS YIGWNN

WNCGIS3Y SAID JO

INVISNOD YVINITLUVd TIWILINT

SNIAVY-SSANYIIHL

TWANVW

AUS

WIINZYSAWNIYTS

YASWAN YASWAN yours yours

WON WON LNIu¥d TWNIA OILVYu

TWAUSINI

Cull 2@y1i

YOF

-

YOA

SNIAQVY-HIONIT

LON SHI AN

JGOW

HIIHM

GNNOJS

AG

TYNOIGI JCOW

TVNOIGIYAW

YOLVITIONI ONV YOIVIIONI

ASN

asn

3S5N

40 40 OG OG JO

SNOSSIOd AO AO

AO

JINIOSEV JINIOSEV

JATLV JATLV WAWIXVW WAWIXVW

IVILINI

Viva GN

3a

AVUUV AVUUV AVUUV AVUUV AVUUV AVUUV

AVUUV

TVNIG

Tf

tT

O

2 IY IY

YAW

LAdNI

o*°o=(f

o*o=(f VOaWVT SLOOUN

O3YIN

e*t=F

8‘T=I NOI

IXVW

awo GAN @XN

AwWO

Iwo

ON

Qviy¥ ed nw xX»

IN Ss

*1)38E

*T)98V

s

Ss

0G

Oa

S

OO OOUOUYO VIYUIVWVVUYUY Oooo YVYUYO YO WBoOv VuUWOUuUUU 178

3N¥ SINSWOW G3INI¥d G3LL01d TWNOSVIG TWNOSVIG SONS

*(LZ*LIDaVilefEdDGV LO SLNSWOW SINIWOW 1d

SINIWITS AINO AINO FS INIUdI

S3dVHS IJNILNOYENS ONV

GNV GNV -—

442

JNILNOVENS XIYIVW XIYIVW S3SS3U1S

/S=X#XLT SMANW S3SS3YULS

S3SS3Y1S TWNOOVIG

(E"LAx=NWeXx9'€*

S3dVHS JCOW AING SS

(94° NOILIGNOD NOILIGNOD NI

S3dVHS

ADVHS SE 3ACGOWN

YOd

582

9DAVS AdVHS

*SAGOW *LAR=EXNEXG Gvau

S3COW NI

JCOW NWS *SIGOW ‘SAGOW

/S-=X4X1T//8SNOTLIGNOD

SNOTEVIS

S/12°GS%= £S300OW JICGOW

iNd

XS

30GOW

AZ

40° A2°GAe=(LSLIDOVEXB

(7° 39 JLVINDIVI 3GOW

°GAK=(9° MfASN

L4e=XWeXG/E

M*ASN SANS AYVONNOE AYVONNOE ONTAVH ONTAVH

GAe=(G6S

2) ONITIVI OL S73

JivVINDIVI ANIYd ANIYd

SNOILIQNOD

DEVS

NI 101d 101d

SS

SE G33N

SIXV-X

084 TAS

EXN* ALVINIIWI ALVINIIWI

OL

GASN IiNI’dd IiNI’dd

(S*SIDGVOETSTIDGV YOIS

¥4O4 101d 101d 9)

BIIAVEXE

GIIGVEXB AR

LON YOs

10N 10N LON LON IXVWSNNUITSSLOOUN wOd

VGEWV =VOEWY

SINIW3ST13 DOVEXE

PLA YOLVIIGNI YOLVIIGNI

4O AOLVIIGNI oa oa

OG OG OG

00 00 OG 0a SINIWATI SINIWATI YOLVIIGNI

S=GANSXS

AYVONNOE

Cr‘ Vivd

YSEWAN

1!

6?

TKAXG//KAULIWOFIAXTS

SS

SS 67 tT tT

O O

O O T T

T O O AUVGNNOSOs)

T9av—"T=CrST)I9gE

(848)

PGA

*SAR=FS *SAR=(

°G4e=(T

94212 LINdNI

(INdNE‘S)AV3u

SE

HCE

IGVS LINIUdI

SACOWN ANII3Z034

PL S3cOwW

8*1t=I 4S 1OTdI

(S404) MANW

SLED

ST) SZ)

INIUd YD AK=S J8V J8V *6

“8

(644)

IGVEXGE

LVWUOS DAV

IOVEXGT

DIGVEXSY LNT

LNIUd

aXOTO

2

DEVT EKG Ud

OG INT

JI

S

9 8B

2

YOu 1S) QOUo QOoVe QUW WO 179

JILSTYALIVYVHD

XJ

71dWOD

ULS ONV

od NNu JSSIAVLsS

/*INTANOUGNS JILSIYSIIVYVHD

0

GNV/AING

¢ecYylI JO

JHL AdAL

*S3SSau1S

2LVINITVI

/*2Yll /*10N /JESIdVHS

SSN TWAUZINI TWAUZINI

AO

SHEL

NWNTOD ONV

SINIVA €

ZULT

OG

JO SSTIDNINDAYS

YOS LINSWSYINI

4O

SLOOYU GNV/AINO O

JCOW

*HOYVIS

O AININDIYS AININDIYS

Y¥OS VINYALIYVI

HOTHM

SLOOY

AdVHS evil evil

*ANTLNOYWENS

YOA

SAING

SNOITLVYSLI

ININIWVX]A

WVYDONd INIUd TVANYW dO

SANTVA

JOOW JAISSADINS SENTOd

SSLFWIT

HIVA HLIM HLIM HIVA S3COW SNOTIVYSLI

JINAQYFANO

(€TxOLl

G3SLVINDIVI

TeX€*

JSN

AG SIXV-X

AdVHS JNFinOYENns 3dVHS

STIAL

MFAPSN TWAUSINI

JO

S3QI930

s€T4wOUus cl 2

YIGWON

40 GALVIDOSSV GALVIDOSSV

*e=SLOOUNSXS//#SIGCIOF)}

DEKE 40 40

HOIHM JOCOW

JACOW YSEWNN

ALVINIIVI

40

SZULI YISWNN YISWNN

INIUd

* NO YIGWON*XE

LOId

WAWIXVWeXe

TVD

/*iON

Tadev

‘MOTIOd

YOLVIIONI

JONVY SIJe#=2Z NOTLVWYOSNI

ASN NO

/*LON

T¥X€*ZI#=LNIYd

NO NO LdIYISENS LdIYISENS

T#X€ T*X€!Z2I*=S300WeX99

CC

3as LINNOD Fe

TexXe*ZIa=MANWSXl Tex€

SYSAGWAN

KES

QL JN‘GN=NN LNNOD

§2ZTe=S

OG

O

T+O03UST=O03NSI

*ZI*=10

§2Te

*ZTa=NNeleXl2

‘NOTLVANDS

— T°

TwNAISssay —

O

LS3Lyl

SAe=TIeKX6S

*NOTLVNDIT

=F

Says! — — INTUd A#OS

SCOWNSXS

/sINIdd —- —-

JOCOWKXS O=03u4I T+3N=JN

T+ON=EN O=LSILI T+NI=NI

LVWHOS

XVWEX

1d

7*10N T-NN=N INI

*s3ssia NI NI

92 O=LNI O=LNI

I O=NI

TV

I*x99

*xXSV 00

ld

S6

ZL

Q €

66

6

Ouo 180 NOTLINAA AYVONNOS HIHOTS T JLVUVdSS CAxUIOWONEXT ADNINOAVA OL £3SV9 (NZ (JOODTSIXVWS (O°%4e=YSEWAN /RISVIEXH? SLNIWISNFOVY YO) *VILSHIWS V WI33dS SAY £334930 IWNISRXE ATV SR YAIINFA XWSVIESHEXNSVIESHINGO 23S V TWNGISSUeXO? IST WIV ACOWSXT//S°SAx=WABAINI ST HIXIS WVY9ONd TSSSAUS eX9OT £S*B4e=GILIFMSNI OL OY3SZ *3ASV9 YFIGWON WVENONd Se S3WOD3G (X3 ENT) OL JHL STHL SRINTIVA TdWOD) CONT OWOS ASVID WANDA NS OL SMOTTV t€le=SNOTLVYSLI NOTIVNDS SJTONVH )GWOS (NI XNS TWNYSINI ENT ANIWHYILIG SX6T YSGWNN FOWOS VXSMS VOAWOXXES AINANDAYA JAWOS (NEV HOIHM SX NZ (NT EADNIND SAS (NID NOT 92 SWOS JIISTYSLIVYVHD €T €T FeV 2=LS3LI SOOW SET WVeDONdENS }SWOS SNS YOLVDIGNI OL OL LIFDSNIXXE‘SS*SSe=LIWIT OL OL eNOTIVYSLI IWOSVOSWO) (fF (NT) (r*T+1)98G=(F TWILINITS///)1LVWU0A °9L9 (CNT SSSCOWNI IYI) OL OF JING JO IVIINSYSSWNDYID *T+rDEV=aCf (IS ( OOD OD ENT) IWO) YSEGWNNOx)LVWYOd OD TIDAV=CI*S TIDGG=CISTINIGG (2°0a°3asvor) ¢€0°B3*S30GOW) EXS IWOJSIY=1S4LIu (T°OA°NNUT? (E°OACNNYT) “SNOILIGNOD WVYHIOUdSNS 8*T=I IWO INI (NIJ 8‘t=f 9*G=I b*?2=!I ISVII=ISVINI C°T°ETEN) NOTLINAS TVANVW — SRY Ad Or) LSILYI %E€T CULT ‘21 FIYWIIG SOF FWO=ISVWO VHS 92 O=1S314u!I Tt IGWNNSXE T=LSFLUI (VISHLXWT 4 ST O9€T T=IS3I11 IINIES 9ET LET 9ET LVWUOS TINDEV INITUd INTUd OL D1 INITUd INDEV T1V9 W1V9 TIVD 00 CA OC 09 OA JI O09 dt SE AT JI T OT 2T SET OVET ET GET TT

OnRUL

181

(21 (21

CJOODISIXVWSZ3°TASNZ CJOODISIXVWSZ3°TASNZ

e=JdODTeX€ e=JdODTeX€

TWNGISSY TWNGISSY

£*030339XF £*030339XF

(ZE*=3007TSXE*eJAILVIIN (ZE*=3007TSXE*eJAILVIIN

SCNT SCNT

GNY GNY

ISVITSTOVWOS9DS ISVITSTOVWOS9DS

IGWOS IGWOS

SNOTLVYALT SNOTLVYALT

AININOIYS AININOIYS

(NID (NID

JOO3I JOO3I

JQODI JQODI

JOOST JOOST

JGODI JGODI

€ZIe=JOODI €ZIe=JOODI

(ZT (ZT

((S0-90 ((S0-90

(ted-4d)/tTO—20)) (ted-4d)/tTO—20))

AWOS AWOS

e=AGCII e=AGCII

4O 4O

IWNIS IWNIS

f4T f4T

*St *St

‘21 ‘21

*9T *9T

HD HD

ENT ENT

81 81

92 92

€2 €2

YIAWNN YIAWNN

@=1S911 @=1S911

*GOSED*Z04TD *GOSED*Z04TD

)/(TO—2D) )/(TO—2D)

eXE eXE

OL OL

ST ST

OL OL

OL OL

INEUd INEUd

LINIUd LINIUd

ANTYd ANTYd

LINTUd LINTUd

(2+PF (2+PF

€z+F* €z+F*

(T+f (T+f

(T+ (T+

axe’ axe’

IWOSVOSWO) IWOSVOSWO)

YOsI YOsI

(r*2+ (r*2+

(r*24+r39v=(r* (r*24+r39v=(r*

*x1LOOU *x1LOOU

09 09

OD OD

YO YO

OD OD

CONT CONT

* *

* *

*TINDEV=A(P *TINDEV=A(P

WOWIXVWOs) WOWIXVWOs)

NOILVIOdYSINI NOILVIOdYSINI

DINDAG=(r DINDAG=(r

TINDEV=ACF TINDEV=ACF

TINDAG=(F* TINDAG=(F*

9° 9°

O=X1900%) O=X1900%)

(O°AN"3C03I) (O°AN"3C03I)

(4°03°3009T) (4°03°3009T)

(e€°Oa°3SVII) (e€°Oa°3SVII)

7) 7)

(T*INTLSILT) (T*INTLSILT)

(€°O3° (€°O3°

(2°02°3C0II) (2°02°3C0II)

(T°O3°3SCO9I) (T°O3°3SCO9I)

(4°03°S3qG0W) (4°03°S3qG0W)

PIWOINZ=1S491L3948 PIWOINZ=1S491L3948

99G=tr 99G=tr

INI INI

L19°vOse) L19°vOse)

JxSGd—-TO=19VWO JxSGd—-TO=19VWO

e*t=f e*t=f

%*c=f %*c=f

9*G=f 9*G=f

9fT=I 9fT=I

x€0-—1T0=19VWO x€0-—1T0=19VWO

ASVIT=HASVINI ASVIT=HASVINI

9*T=I 9*T=I

ONO*) ONO*)

(Z»9VWO=20 (Z»9VWO=20

(T)YLad=cd (T)YLad=cd

(Z1eL3G=48 (Z1eL3G=48

(TIT (TIT (2) (2)

(T (T

370091) 370091)

ZYLIT ZYLIT

402 402

*ZTt *ZTt

6T 6T

O=1S3L41 O=1S3L41

T=1SFLUI T=1SFLUI

}OVWO=TO }OVWO=TO

4 4

A A

* *

I I

T=1S311 T=1S311

‘TINGE ‘TINGE

T)NDEE T)NDEE

TINIEV TINIEV

6ET 6ET

LET LET

L30=96 L30=96

6€T 6€T

TINDAV TINDAV

8Eet 8Eet

8E€T 8E€T

LVWYOS LVWYOS

L320=s60 L320=s60

LVWUCS LVWUCS

LVWYOS LVWYOS

LYWYOS LYWYOS

TINIGE TINIGE

TINIEV TINIEV

ENIUd ENIUd

OL OL

LNIUd LNIUd

TIV9 TIV9

0A 0A

OQ OQ

OO OO

OC OC

00 00

JT JT

O09 O09

JI JI

SI SI

JI JI

SI SI

JI JI

Jl Jl

JI JI

oT oT

6eT 6eT Let

oeT oeT oT oT BET BET 6T

LT ST ST 182

3 GieleB°STAXTs*#8°ST3e)eXT GieleB°STAXTs*#8°ST3e)eXT ®x*S°GTae (2B (2T#=3S LON °STIXT

WNGISSY ®VISHIW ®VISHIW JAWIDS V98xXS*2°64#=AIDNINDAVA 86 aXe e8°STIe /L°6AXER TeeOTQI°OUeWeILAG

SaleB XW! XW!

WNEA VESHIXNAVESHIN VESHIXNAVESHIN STIX eXG #2 JAYOSSYSHL

(S4T=L4CLVIVGWVT) (O*T=I4(I)IVOWVT) (O*T=I4(I)IVOWVT) P/ENOTEVNOS TOVWO ee VIVO OP 6AXE

SLOOY

e=TWAGISSY e=TWAGISSY ISVIFSISVWO ISVIFSISVWO O° HLIM SRAININODIYA NOTLVIOdHSINE = GT34 CTVNIA) JIASTYILIVYVHI AINIANOAUS SAFILSINDAY

(TVNGISSY) XN XN

G3IVIDOSSV 92 92 DILSTYSILIVYVHID

aXe

VX VX

OL OL

(WNIS) (WNIS)

SOD SOD OMS OMS OFLV eS

[IONVWOINZ=CIS3M OD OD

22

S22 S22

(NIT (NIT SAS SAS AALVIOdYAINI TVNGISIY

TVNIA HD HD ION LNVNIWYSLAG TOdUSINIeXS//¥

OUSZN

OYSZN OYSZN

JWIST*WH3ILIO JWIST*WH3ILIO

}GWO*S00°+ISVWO=E(NT)IWO }GWO*S00°+ISVWO=E(NT)IWO CINTIOSYAN*OI*°OSUAI) CINTIOSYAN*OI*°OSUAI)

STIS STIS *SB*ED*ZB* *SB*ED*ZB*

INTYd INTYd INTYd

€€Z 90 GILVIGdUIINIOs) GILVIGdUIINIOs)

TWNGISSY TOVWO+ TOVWO+ S3dVHS 4O 4SDS

YOS FSIGOWN) FSIGOWN) OL TIVI

3SV5D TIVI TIVI AG

ONIONOdS OSes (T°OR°SLOOUN) (T°OR°SLOOUN)

tT°DS°SLOOUN) (IOVWO)SIY=GIS INI INI OD SAONNOGOe) INndino SLOOVORILIVWHOA INI

JCOWO*)

(ZI (ZI

TD TD DAWO=(NE}SWO DAWO=(NE}SWO

C°T°LION) (°T° C°T°LICN) C°TPLIOND C°TPLIOND WeaLaG JAWISI (2x05 (28°

AISVII oooT oooT

e=AWISTAXT e=AWISTAXT 3dVHS 3dVHS z7OS

FOVWO

O02 O02 *ye *ye *2T INIdd

LION) 66 66 JNNIINOD JNNIINOD TZ SZ

JUYOIXTT (VISHIXWT (VISHIXWT TO 1V STIAXT LVWHOS

LVWYOA

LVWHOS LVWHOS OL OL

LNIYd OL OL OL

O=INI O=INI INT INT ANT ANT ENIUYd

11ND

dOIS dOIS

T1V9 T1V9 ONS ONS

( dd dd Fu Wt

09

a9 a9 09 09

AT GI

JI JI SI SI Ud Ud

SI AT AT JAI («xT #2

O02 2 2

€2 92 92

22 €€2 L2 L2 G2 G2 TZ

WVUUYUUOYO 183

V V

SI wos

NOTLVNOI

$64)

eOTS4+654G4etT (WHUALIG)

%64348 *WI°(B*BIZWI

CHEVOIWO—ZHeNBOANS INIT INIT JINIS (8*8)SWISLOOU

4eGseTae(Gdalsdelde ‘SSSVONT ‘SSSVONT WAGISSY

334930

s+

CaelLa—iseOdelde

(Sade94)/

NOTIVNDZ

(8 SISSLISISFLYUT SISSLISISFLYUT

HLYUNOS

*BIIWNI* NAUYT NAUYT JHI S23 *

(6449454 SAINIWYSISG

THX SS SS TD

JIALSTYSLIVUVHD

SV *VGGWV *VGGWV EBS

HRNWE? (2*SIXSONI* (2*SIXSONI* ed “ZT

GSTONVH SINS

9°29

(2x87 Ed

/E

C2) C2) TSE TSE

°C (VO3WO) CECHEKNE eens (8 *2Zd'

S—(

JSVII*(8)LOOUS JSVII*(8)LOOUS AN AN

(Ge HOIHM

dF 1 1

(Sdavdt)/

SIND!

XM*AANSEXNSVOEWV XM*AANSEXNSVOEWV L308 L308

Td 2aeVO SI

4c SEXNS SEXNS "ZT

OXN—*O9/2e9Nax2eeVOOWV (BLOAT (BLOAT

(S4av5)/

XT

€d—Liecde Cux *WusLId* C°€/Z¥aVGUnV /N&

NOTIVNDS

E45—94e AINANDAYS Cee

JO €2) €2) OST WVeONUdENS Ho

44S XWENSNW/CIAUN XWENSNW/CIAUN

TUS (8‘8)3004(848)98V/99/T (8‘8)3004(848)98V/99/T ny

(OTAeb 81504 81504

SINITIIS4IO)

(NW-* JWOIST JWOIST /

4)

*2T/2eaVdagwy

(VO3WO)S3Y (VO3WO)S3Y AIS AIS 1-Ns ZTys

0

847449 V9IWO+2

248097 ENE V9OSW0—-Z

(2e224-944

*Z21/cx*#VOGWV (OT) (OT)

IVAWV (8994 (8994

2&7

JINVH JINVH

(Z)9VWO/STOISSU/ (Z)9VWO/STOISSU/ (CB (CB IS)*¥ IS)*¥

44

| WA94H

(CX “IILYVNOD-IE VIVOWV VIVOWV YVINIILYVd

*Z2/(NW+°T)=dd *WeILI0/1ICI/ *WeILI0/1ICI/ °C) *Z/(NW—° 14° SAVOIEWY MaNWe

(2xeZ24d-b4eTsal

dW3L dW3L

(8*°BIWD/UWI/ (8*°BIWD/UWI/

TEN TEN (8 (8 NOILINA HeSVOEWY

TS DE DE

ed)

KEAD

eaNeW0-=TS NOISNIWIOC NOISNIWIOC O°

4—-J VH/SONVH/G VH/SONVH/G T+LNI=INI x

(4) /JINVHI/9 /JINVHI/9 aN210=S4

PeWwO-=34 T/NOWWOD T/NOWWOD

Nx NOFLINAS

XY4#NW=E9 SNW SNW

14+? T/SSVI/E T/SSVI/E

— X3TdWOD X3TdWOD T=UT)OV XITdWOD ?

T4464)

HZ SVOWVIT dO-=24

HCE) HO) THiS T 1-=64 T=0TS

ov T=94

t=10 1=84 TVS TVS =WO

OV

OV OV

2 2

2 2 4 4

T 184. AJNANOAMSA XJ TdWOD

(ZIX8#OFLISdSNI FHL (#INITENOUEGNS

UVINITLUVd JYSH JYSH JO

NWN109 GJZLVNIWYSL GJZLVNIWYSL VY

GNV OWA SHI NI

Q3SAYNSSEO ~

WOUS HLIM HLIM IVHE

SINSTDISS303 JSVIISVIOIWOSINI JONVHD HJLIMS (S*T=I°C1I4V)

NYNLSY LYVEIS LYVEIS HONS (S84eyd)

JONVHD (UYSTSdWIL* 3SVD €€8°S236)//S

JONVHD OL OL AVW

COCIOVGNVTILYOSI=(T-f WWHONGV

IT UNaT V /(OTAsG $LOO¥

JONET

JISVIRX6*S*STIXS*ZIXS)LVWYOS ASV ASV ONITONVH

OL G3MOTIOS

(I-fe2 AVW

*S2 oVOWV

O09

C=LSALT

TT £8

ST Oz INIWHYILAG LHOTA

WdwWVY del XE

OL INTUd INTYd ENTIYd 3SV9 INST

‘OT (4SVINI°OS°3ISVII)

DIVOWVI-=( ‘ZI TOS d+

09 YOd

TwOOW 3G

(I}LOOY=CI)DIVGWY? 314330304) JHL Cxel

(O°O3°LS3LUT) e=Uud SHI

O2°OS9°3SV9I) OL (O° (O°AN°

(Z°OA°NNUI)

(E°DI*NNYI) SINSWILVIS

ov ALVINIIWI YOd de

ISVIT=a3ISVINI

(lL) IN°UNAT) WNOISSY IVAYSINI

fez IO FOx)

6*t=f 8‘t=I 9

Td4—-)=(5) 8*T=F

Tadev

ec)

Dee O=JONVHII

Cee T=39ONVHII

IVGWV TVS AYINGA GNV

UNIT) 0°0=S 0°0=S

T=LS311I

IVOWV LVWUOS LYWUOS

IVawV? NUNLIY NUNLIY NUNLIY

TY=Z

THH=b O=LNI O=LNI

6

2

TI1V) € H

TWO

1=T4u 34 34

OA

0a

9V Od

14

GI Al TY JI

JI SI AI

ATI

I

OT 02

ST ST

SZ SZ TOE TT

QUO 185

O54)

#94) *CRENE

e

TURZAI/S

TU87Z

(NWS

5)

/

?S)-E

“O/THANSCHAVGEWV

O0S

OL

534+

RR

540

TU)

Teed)

10995

aC

SINJTII339IOD

RAVOEWY

et

De

Te

Ol

T—

d+

(LPO

2

1+

44

126445

(PF

OZ

O1

(TS

T/

SHINDe

Tee

S42 NOTLIGNOD

HNe

(19D

(TS

Teds)

The

NW+XH+

((S442 ((S44¢ CHAT

OCS

84) TUE

(C4

CH#NRNW—Z

SCeRVOOWV

TODEVECT

N&

+2

T)2WIF

IDIGGF

1d

AYVGONNOS

ae

1u47 Teo

(TID

(NW?

84)

(

25472

O° EL

eNeNW—-Tee

4)

dx

(°2/S# CF Caf

(C£TIWI=CFSTISWI

(°0*°O)=0F

14°

TUF

2/S%

2)

STV

STI

TURE

ST CIJHeZI=11

(Y)9eTI=CIS2Z9N

( €1)9%xZ9=(E49IN (THe

THe

yde2J=(1°8)ND

eZ

EdxTI=(1*EIND CdxCJ=(TS9IND

1ee7d Tee

€deZI=( Td&#TI=C Cd¥TI=€1*ZIND

78e

TdeZ29=(1*SIND

da

TIF

TuseZ9=(T4BIN

2WI=CF Tae

sov=HCrsTICWd IND=EF

(CLIO

eeVOEWY 18-1 NN

IND=EF

TH

XN—"CT/ @*Tt=I e*‘t=f

€4—-(CLS4+c @*t=I

99) e*t=f

8*T=y%

TI=(

CT

GNV

TI=(T 29=(1°L

TI=ACT*S TI=(1

d—(

aNaxNWaod

J-)=17T

(I

-)=HCT dXI9=e9

dX33=19

PHEN=Cd

14

ST

FS 1S

L542

STP

ST

ND

S

“EIN

LIND

H=Td

9IND

TIND

Ss +» 4+

4+ s

T=Ed

TWO 69 *SIN

eWD

TWO

TIN

IWO

OCTET

IN

DH IN

TUT

00 00

00 OA

OG

TeT

99

EC

4

S 186 GNV

*JIVISTSWUSLIG*VOSWOSINI TWNOIS3Y ASVITSAIVISTSWHALIGS‘VISWOSINE IWNIS CCZSIXS)ZS 4O

(XSONT‘*IOATd NOILVIOdYFIINI xl eh

§9 BOOT

UNTUd

FSS

ae! TWNQISSY TWNQISSY

WVOST eB

ELESDAISNAUT)DONVTETTOSSENID) YOA ° SGT

VOAWO=(TIOVWO

fWUF130°S* VOSWO=(ZIOVWO VOIWO=(CIDVWO VIAWO=(TIDVWO VOSWO=(TISOVWO ae

NOTLVWHOANT XFdWO}D XFdWO}D eX

A=(TITLIA

X=(TIYULIG O°0=S3au £9 X=(ZPYLIG A=(T)ELIQ A=(e)TLIG A=UTITEIG X=(ZIYLAG A=(2Z)TE30 X=(TIYEFG X=(TJaYLaAG

NUNLAY

X=S3YU

ZTfet A=S3¥

NYUNLIY $B INTUd °STIXS*SZIXS)IVWYOS

SWI) JO JO

(2°O3°1S31T)

(T°OS°LS3LI) (WHILAGIOVWIV=AA (O°OI°ESALI)D

(2°0a"kSail)

(Wud (E°DATNNUI)

(e°Oa°NNyl) NOTLIVONTVAZ NOTLIVONTVAZ JO

CT°OIPINID (T°DS°LNI)D (T°OIPLINI)

(CT°OIPLINI) AJININOIAUS (°O°19°X) (°O°ID°A) F°O°ATPA) (°O°FT°A) (°O°3T°X) (°O°3IWX) C°O° (°0°19°X) C°O"L9°X) (°O°ATW*X) C°O"LD°A)D C(°O°LS°A)

WYL3GD 39VUOLS

130) ¥T ATCA) NUNEAY

WV O1

AISVIIT

11V3

Iu aN]

=x O09 AI AI AT JI Al

JI Al GI AT AT SI JI SI AI SI JAI SI SI 4] SI ST Al

SI

ct €t oT 187

WVUDONdANS

TWAGIS3Y

NOITLINAS

*(D4OINECSFOIND

FHL CxANIENOYENS

SANIWYSISG

WHSLAO*

INI

338 ‘SASVINISISFTLT

SIT OWA

(VOSWO)

HTS

HITHM

Dod

NOYT WOUS

ze

Edt

Te

SSS SE

O=N

AININDSYA LSILUT (S*T=I°CI)oV)

Tet

VGEWV NUYNLAY

Td

(Z2*4O)XIONTS CUYySaT

YOSF

®

54H

(94 (€8°O2349)//#S

SEZ

TSS

WVNIONdENS 2*RV

9ISZWI56969IZ7W9* dW3L COP

100M

3SVII4 TVWYHONGVSXE

VT

AYVINIILUYVd WUT

AN

VOOGWV

LIGS IOVOWV OIWO—°

SE (I-f

s

C9OVIOATdI +VGWwv1

XN

IVOWVTS

(8°SINDGG* Tt

(8)

(2d *T £2

T*'OANSEXNS x2) O2*OT

§

XEN Ce¥ES—-OTAt6 IT) 1NII OL

YLA0* L00US INTUd INT 14+X

NOTLINAS

JWV9OS LYOSI=CI-f FVOWV1-=(f ote

(VOSWOINZ $ZI*=uu9 (*1-*

V Yd 09 HeNWS

Fe)

SNW/CINGN C°T** 333353090 *Z1/2x%VO9WV

6

(SIDS (O°DS°LSILUI)

JONVHSI

YwOS

(S)dW3l

(4) (ZFOVWO/SICIS3u/2 (SPIVOWVI/JISVO/4 64548

YVOWVT

Ff

F8*SINIGV/NIG/E

(959) (O°AN° (2°DAI°NNYI? (O°3N° *‘ov)

1959) °O)}=(8)

XN Ov

9V

We3L30/13509/79 OTI*#T4=(9) ° €*t=f 2472 2x

IBIH/IONVH

CWHALIC) HCL) Se

W1939dS IqdEgv TO) 43% eZ) ec)

NOISNIWIG

ZWI/YTWIS2 OIV4 I+iNI=INI V9OAIWO=TH %)

SNW

NOTLONAS T4=(2)

TZWD TI=(E) 44%XH=0TS

/FJONVHIAS UNFIT) UNIT) B4=(1)9V X¥+NW=Ee4

I

XITdWOD @€XN-=63

XI

/NOWWNOD LVWHOS IVOWVI IVOWV1 IVaGWVI

Siu LVWHOS IVONVI €»

TdWOD

ZIT

TV38 W1W3 1=84 TIVI OV oV 9V Od ST AI AI AT

JE

€%

Ouov 188

(2) ({BVELOCCH=(9VLOOYN

LO0OH=(S)100N

(FA

(Fe

HINIe

HINSENOTINIGGE(C

(Tua€4—)/

C°T*OS°

(°T*O3°

TUxGXN—*ZT/E

TT

OWE

OL

TINDGVEECL

(0

CC

O09

Z=ISFLI

(C69)

1T44+2

ESPLOOWU)IOVWIVISEV)

(43SVINT*°OR°ISVII)

Te

LOC

ET)

#4

STDP

(70*°O)=Ef (°O0**"O0)=(F

(°2/S%18—)d

(1)

e644

NW+Xd4+TUet

(*2/S27¥)dX59=29

10 OVWIVISSY)

(eE°OsT°3SVII)

ZZWO=E

LOOYU=C

TZWI=FF

(TIH*XTISCISTIN

CI)HeZB=F1

eC

od&Z3=11°9)ND

od#TJ=C

Ede €dxZID=(1*S)ND

Tda

Td&e2J=(

WaT

TdeZI=(T

AISVII=3ISVINI

CI)

ee

1ea8d

9*T=I

9*1=f 9*T=y

9*T=F

9*T=I

TD=1° TI=(F4Z)N9

VOGWY

O=JONVHII

23=¢(1°SIN

yee

TI=(I420N Zae

T=J9ONVHII

IVOWV

FS

IP

I=tTen

FIV

T=LS3911

‘TI

STV

IS

I

1)

TIZZWO

y=01)H

2

0°0=NZ NUNLIY

X3D=19 NUNLIAY

TY=b IVOWVT

THHZ

SEND

¥c O=INI

W=4d

TZWD

59

4)N9D

¥ »

H=1d

IZWO + Z7WI

TIND 6 T=T14

THE

S9IN

IN

00

0A

OA

0a ad

TH TY

STI GI

AI Al

d vE vE +

OT 02 02 6 TT 189 *‘WHUILAIOSVOSWOSENT ISVITSFITVISTSWHSLSG*VOFWOSENI COZIXGS)2 (XSONTSLOAT Sala £9 B INT OT dT Ud SS a! IWISTSWY3L3GS9*SZWI) x8 FEETOATNNUT) °SGT3x) (FSF VOIWO=(TIOVWO VOIWO=(TIOVWO VIAWO=(ZIOVWO VIIWO=(ZIDVWO VISWO=(TIOVWO PSZWI4CF A=(TIILIG eXG X=(TPYLIA *9 X=(T)uLaa X=(Z)UL3Id A=(T)TL9I0 A=(Z) X=(Z)ULIG X=(T)YLIG A=(TIILIG O°O=NZ NUNLAY =(2}IL5G0 ZT*E€T NYNLFY INTUd A=NZ X=NZ 8 PONV °STAXS (fF 14130 STP *T)ZWI=EFSTISZWD (Z°OS° (CO°OR°LSAILIT) (T°OS°ES3LT) €c°0a°isasil) (WHILIDGIOVWIV=A (T*OS° (E°OAT (WYud130) Fe°OI°NNUT) TZWI=(F C1T°OS°LNE) CT°OS°INI) €T°OS°LNI) CT°OASINT) ASVIISATVISIT C°O°1N°A) *ZIXS)LVWUOS (°O°3T°A) C°O°3 (°O°L9°A) (°O0°3ST°X) (°O0°37°xX) €°O°3T°A) (°0°1D°A) (°O°EO°X) C°O°19°X) C°O°EO°X? ¢°O°3T°X) WHLAGD 9*T=I 9*‘t=f ESAILT) INI)? ¥T NAY) TPAD ST) NUNLIY TVAY=x OL ¢ ¢& TW1V9 QNna ZWD JI O98 GI JI ST SI AT AT JI OG 0a GI SI JI JST STI JI AT JT dl AT JI AY SI JI

SI eT eT 190 TWNOISYOL WOWINIW (8°STAs SSLVINIWI S/UCTE/STHRVOGWY O=N

NNUI*S YOS -—

*VOGWV AINIANGIAYA 3SVI THOT

TS

EAN O=N EOS

VQGWV IWNOISUOL

SEXNS YOA SONW—

TS

XO INILNOYENS

GANS OTD GLESSESOZHST

NSNW/GLIAGNI/NOWWOD

EXN® PD

OV3SZN WNWINIWO*) NIWYOL LMOSe AININOG

XNA

INILNOYINS WIIads Id ‘T YT =NIWYOL

NW NYNLIY LVWHOS AUS °E=I1d LNIUd

TSU QNn3 T

191

—- —- NOTLVADA NOTLVADA

CIVIVOWW JLASTYALIVYVHD JLASTYALIVYVHD

T=F€EVLOOY

¥*€*T ¥*€*T

é€ é€ 38¥2 38¥2 X=V

A=O X=D A=0

SASVD SASVD

Yost Yost JHE JHE ((T°OS*°TIF)PONV CETCOATIC C(2°OS° (O2°OS°

CCTPOS"TCVSONV’

G3MO01I04 G3MO01I04 AG AG

THWNS=WAS

YOI YOI $1004 $1004

T+TF=TF S100 S100 3SV3E4(8)

TF) TITAN GIMOTIOS GIMOTIOS AUVNIOVWI AUVNIOVWIE DV °GNV PAGNV™

X37dwOD

SYsCUOSaSY SYsCUOSaSY X4d1dWODd X3TdWOD

XJ XJ

NWN109 NWN109

HOS HOS

IdWOD IdWOD Way Way Wau TC CC ETO" CEPOTLOTADPONV™ETOTLI°X)) (POT EC (POTEDSAD LOCUS TOT °OTLSTADPONV

POTLIOTAD

SNIINOYENS SNIINOYENS NWN10D NWN10D EDPADPONV®

11NdA TINA TINA TINA TINA

AYNd LOTADPAONV sund sund

3uNd LIOTADPONV® 3yund

ONV ONV AYVNIODVWI (8 LOOYU*S ITVOWVT/3SV9/NOWWOD +

+ ASVD ASVD PONV PONV

TN N +t oO (CQVIVOWV TV3¥ TV3¥ CCL

TQ9ev

4 4 @ @ €

T T ONTId3S3nNO0d ONTId3S3nNO0d TVOWVT (°O°L9O°X)) IVOWV FO" TC (90° (POT

(°O"E9°X))

3asvd 3asvd 38v2 3svd 3svd 3SV) 3SV) SINTIWYSLIG SINTIWYSLIG *O"ES"X)) WNS

ANTinowsns 8*T=I 8*T=I 19°X)) LO*X)) TISVWIV=A LO*X)) 1) YADILINI X3T1dwWOD

TV O=WNS O=WNS

o=+¢ aeu=x

o=1f o=er o=ef O=Sf o=9F o=Lf

o=er 2 00 00 SAT JI SI ST SE ST JI

Vw Ww Oe VOoOoO uoo QO

192

(TP (F)Ivawv (Ty) (Ly C1)

(I) (I) CT) (IV (1) (LY

(1) (1) (1) (1) (I) (1d (Il)

IVGWV

IVOWY ITVOWV

FVGWwY

1vawv 1vawv IVGWV IVGWV IVawy FVGwv

Ivowv Ivowv IVawv IVawv rvawy IvVOwV Ivowv

T= 1=(9)1004 1=(9)1004

1=(s)1oayu 1=(8)

J=(€ J=(€ t=(2) t=(2) T=(S5) T= 1=(2)L00¥8

1=(2) 1=(8)100¥ 1=(¢2) 1=(¢2) 1=(8) 1=(9)

1=(S)

(9)

(4) } }

1004

10048 1004 1004 £004

L004

1004 L004

L004 L004 1004 1004 1004

1004

X=9 x=d A=0

A=)

CEZ°O3°TFIPANVTFETOC

(C2°OS° CUZ°DSTLFSONV Cecs

C12°DA° (€T°OIHFPTAONV" COS*O3I°OF) (CZ*OITSLITGNV™

(CT°O3I*2FYPONVOC CESPOS°2SFYTAONVE C(T*OASFISONV C42°DA°SLIPGNV' COTSPOS*LF CITSOS°ZF)PONVT C(Z*OATLOIEONV CCT*Oa°SF)PPGNVTFE*TOTLTIPADSONV®

CETPOITELCI C(T°OI*SFISAONVS CCTTOISOF

VIWNS=WNS Barer

BtWHNS=WNS

CAWNSEWNS E+WNS=WNS GtWNS=WNS 9+WNS=WNS

L+WNS=WNS

T+#GF=GF T4#LF=LF

T#2F THEF=EF TeyP=yr

T#8fF=B8F

T#9F=9F

ELD OF

PPGNV PV

PTONV yeanve

az

SANYO

PANY? TANVE

PONVOEPOPLTIPADPONV*

COTO"

EE

(POP

C*O*

(€E°TOTLDPAVPONVO’ CETO" CC

CETOPLITADPONV CHTOCLIPADPONVO CETOTOI*APSANV" CETO*OAPAPSTONVT(*TO"LTX)) CO°O*TBOAIPADPPAONVO(°O"LIEX)) CPO*POS°ADSONV® (ETOP CETOTLISADPANV®

CE°OCETPADTONV® EETO"LOPADPONV CC°O°BA°APPONVE(*O°LO*X))

ESOT

C°OCDATAP

EC

EC

(

ESOTLISCADPCONVS

CPOTLOSADTONV (CTO°OS°ADPAONV*? (CPO (O°

ETOSLTOCADSONV’

POT

TOTLTPADSONVO POTOAPADPONVE

°O*DS°AVTONV®

SO"D3°AI

TOP

EDA)

LTA

LOS

EDAD

LOCADSONV®

LOTAIDPONVO

LOTADSONV’ LIA)

LIP ETSAPPONV’

LEPAIPONV*

Z=3SVII y=3SVII

€=3SVII

T=3SVII

NUNLAY

NUNLayu NUNLAY NYNLAY

ADPONV?

ADPONV™

SONY

PONV PONV

PONVO

CAONV"(°O°03°X})

anv’

¢(ZEerOarwns)

E°O°ETSX))

EF TE CZE°OAcWNS) (9E°DI"WNS) C9E°DACWNS) fov°d3S°WNS) CO¥°OAI*WNS) (O7*OACWNS) (OZ*OACWNS)

(O°

(TOC

CSOT

ESO"

(POP

COTE (90° (°O"03°X))

(°O°D3°X))

(T°O°1L9°X)) (°O"TLO°X))

(C°O°1L9°X))

(C°O°LO°X))

(°0°03°X))

(C°OTETSXID C°O0°O3°X)) (C°O°0S°X)) C°O"OA°XDT

C°O°ELTSX)) E°OCLT°X)?) (°O"LO°X)) (°O°LT°X)) (°O°11°X)) (°0°D3°X))

("0°RI°xX))

FE

COCLITX))

°O°OA°X))

°O°LO°X))

LT

19°X))

LTTX))

LO°X)D) L9°X))

L9O°X))

OOT

TX)

JNNTINCD

X))

ILNIUd

SI

ST si

SI SE SI JI SI SI ST JI ST JI AT SI SAT JI AI AT AI

ST ST ST ST AT SI ST ST SI ST JT JI JT

SI SI SI SE SI GI JST SI d

193

(#3INIinOyuanNs (#3INIinOyuanNs

TdQdaV TdQdaV

NI NI

YyOuwsO*e) YyOuwsO*e)

NYNise NYNise

LvWweod LvWweod

GNZ GNZ OOT

194

TWNOSVIG TWNOSVIG

INVNIWYUS1A0 INVNIWYUS1A0

(XIONILOAEMI (XIONILOAEMI

TLOAT TLOAT

NO NO

dS dS IN3W3T9 IN3W3T9

OOTSOOTSSBE LOAT LOAT

X32 X32

SJ SJ

1TdWOD 1TdWOD

WIS] WIS]

a a

SWHA SWHA LOATd LOATd

T+(WNTIODTIVIOAIAGI=CWNIODI)

4WUSLIGINAV) 4WUSLIGINAV)

VY VY

LAGS LAGS

(Z2°N}EXSONI (Z2°N}EXSONI

ONTLVN ONTLVN OVT£O9Z* OVT£O9Z*

(CONST

OFVL*OOTSOB

INAW3T13

ES ES IAd IAd

09*SOT‘O9

d d

(LS (LS

VMS VMS

OL OL IAS IAS

IVISAVI-CXVNVISaVI)

dV¥MS*XVWVDIINITVA dV¥MS*XVWVDIINITVA

(TAWNTODTIV=ETSMOUT (TAWNTODTIV=ETSMOUT

SEND SEND

OT OT

SXVWVEENSNDY SXVWVEENSNDY SMOY SMOY

LOATd

NOTLVZIIVILINI NOTLVZIIVILINI

WHL1S0D WHL1S0D YOA YOA

LOATdI LOATdI d¥VMS=(TSWOTOITIV d¥VMS=(TSWOTOITIV

CI-(FPLOAIdI)

(TI-€H)LOAIdI)

(WNIODI-MOUI) (WNIODI-MOUI)

MOYIT=( MOYIT=(

WHI WHI JONVHIYSINI JONVHIYSINI

(°O0** (0°0*0°0)=XVWV (7*MOUT)V=dVMS (7*MOUT)V=dVMS ANILNOVWENS ANILNOVWENS YwOd

N*£T=x N*‘T=7 N*‘T=7

N‘T=I

N‘T=f

N*tT=F O=€(fYLOATdI LIO-=wWesLIa LIO-=wWesLIa

C4

JNFELNOYENS JNFELNOYENS NOISNAWIG NOISNAWIG

*T)V=XVWV HIUVAS

813°OT=TY

T)=WesaL3AG 1ST) 1ST)

O=31VISI

M=WN

JANTINOS

TaUs°T=2u

SNNTLINOD XITdWOD XITdWOD

LOAF

SOT OOT

OSS 002 002

r=M0UT XS0NI XS0NI

02 INOS INOS

1091

T=Nu DV DV

dI OG OG

OG

00 Od OG

SI JI

SI SI SI 002 092 sot

02 09 08 Oot OTT OvT S8 195 IN3W373

OLOTSOLOTSOGOT OSOTSOYVOTSO¥XOT OZOTSOZOTSO9OT OTOTSOTOTSOEOT

O9OTLOSGOTSOSOT

OZE1O0007TSOO0O?

OZELOTOZ

O8OT

SOB8O0TSOZE

LOATA/CTSWN LOAITd

SOTO?

(0°04O°T}=(WN SMOYW AG

(WNTOITSWATODIIV=LOATd INVNIWY3190 INVNIWY3190

ILOATd#weu3lad=wyslad

(TY-CWHALZIAISGVD)

(TY-(ILOATd)S9V9) (2Y-(WYSLIGISGVI) (2Y-CWUBIIIGISEVD) tITY-(WY3LIGISAVI)

(ZU-(ILOAITd (ZU-CILOATAISEVI)

(TY-tTLOAId)SaVI) MOU LOATd

TOD

WNTO09T=€2

TYU/WYF

TUusxTLOATd=ILOAId Tux TU/TLOAITd=1L0ATd Tua TusWwddg TU/WeALIG=WesL3aG

TY/TLOATd=IL0ATd

T-J

T-3 LOATd T-—JWIST=3WIST T+3

T#31WWIST=31VIST

T-3WOIST=3TVIOSI T4#3ITVIST=3IIVISI

T4#31VIST=3TVISI

IVECO

TOSI N‘T=17

Wes NON

FLOAT

N‘T=1

IGATd=F10OAId

WIS WIS

WIS

i

TIWA

LIG=WHILIA O90T

Lad=wua

SWNTODI

30=Wwes130 JQIAIO Oce 39NGIY

Savy)

T=3 JIVOS JIVOS

d=1LOAId

T=3AIWVISI

I=3TVIST

1

)XAQNI

TOSI

OSE OSS

WISI

OL

OL

iad

DV

O09

O9

OG OG

GI

JI I

GI SI

I JI

FV

JI

oToT

osoT O2OT O2OT

o60T O€OT 0v0T o90t OL0T 0002 OSE o8soT oTO? O2E

196

Le( Le(

00%*0SS*00% 00%*0SS*00%

TSWATODTIV—-CTSTVIVEC TSWATODTIV—-CTSTVIVEC

(0°O*O*°O)=(WNTIODI* (0°O*O*°O)=(WNTIODI*

(WNTOIJT* (WNTOIJT*

(WNTODJI-TT) (WNTODJI-TT)

N*T=1 N*T=1

SNNTINOD SNNTINOD

NUNLIY NUNLIY OS% OS%

TET TET

TTWVAL TTWVAL

ITV ITV

GN3 GN3

00 00 JI JI

00%

OvL OvL

OSY OSY OSS OSS

197

INT INT

‘SSSVONI ‘SSSVONI

(CIXS (CIXS

‘ASSLT ‘ASSLT

Se Se

(a! (a!

JSVITSAIWOISTSWHSLAT‘VOSWOS JSVITSAIWOISTSWHSLAT‘VOSWOS

ESSLUT ESSLUT

8° 8°

NNUT NNUT

OTAe OTAe

3ISV3T‘4 3ISV3T‘4

ZWI*LOOUSIVOWV ZWI*LOOUSIVOWV

SSS SSS

SHO SHO

C2 C2

(GWO4 (GWO4

VQGWY VQGWY

(8) (8)

TL TL

STAx) STAx) VQGWV VQGWV

ANTLNOWENS

IGS IGS

L008* L008*

3WO4 TWO) TWO) 3WO4

OWO+IWO=V9IWO OWO+IWO=V9IWO

TS TS

(VOSWOINZ=0 (VOSWOINZ=0

SAN SAN

eXS*B°SGTAXS*ZIXS) eXS*B°SGTAXS*ZIXS)

°2+(GWO/ °2+(GWO/

(2) (2)

TGAN‘SEXNS TGAN‘SEXNS

OT OT

(8) (8)

IWO=V93WO IWO=V93WO

UL3d* UL3d*

SEXN* SEXN*

TSW TSW

JWIST*WH3L30/1L309/1 JWIST*WH3L30/1L309/1

OL OL

1VOWV1/3SV9I/NOWWED 1VOWV1/3SV9I/NOWWED TVANVW TVANVW

HIYVAS

09 09 AWYILIG AWYILIG

XH XH

(ZOWWO/ (ZOWWO/

(IWO-JIWO) (IWO-JIWO)

(9°59) (9°59)

INE INE

ANS ANS

XHASNO XHASNO

(VOIWO (VOIWO

(8°S)WI/YWI/E (8°S)WI/YWI/E

(°0°BAI°N) (°0°BAI°N) (°O°BI"N) (°O°BI"N)

4*T=F 4*T=F

(T° (T°

(T°O3°T) (T°O3°T)

NW/CININISS NW/CININISS

ANTLNOYENS ANTLNOYENS ZWI/ZYUWNI/SY ZWI/ZYUWNI/SY

TVNNVW

4 4

IN°T) IN°T)

TT TT

NW NW

XATdWOD XATdWOD TOIS3IU/2 TOIS3IU/2

LVWeOS LVWeOS

YS YS

NUNLAY NUNLAY

)SAV=4 )SAV=4

O=1NI O=1NI

INT INT OT OT

FY=0 FY=0

TW34e TW34e

ana ana

OO OO

Ud Ud

STI STI

JI JI JI JI JI JI OT Tt? 198

JNO

YCd

43I

AININOIYUS

JONVHD

3SV9

SONIA

V

HBIHM

3TONVH

(30091

SS330Ud

GL

SIXVW'73*

JIIOT

ONIATVH

SNIVINOD

TS

Xd0S

JATLIVUSLI

XL

TAG'S

9T

€2

OW3SZ

€9

OL

6T OL

fvixX)

O1

FHL

COT+I

FJINVHIT

09

OL ZT

OD

8T

SI

940Z*S

O09

YOsS OL WAGIS3Y OD

OL

FO*°O"AIXL190)

(O°BS°FOINVHII)

€*oz2*z Z4oe*2

Dee?

ZULT

*OT/X1L130=X17390

CE*LT°LISALI)

O9

O09

/JONVHI/NOWWOD

CI°LV°IXvW)

INFLNOYENS T4#IS3LIT=1S311

949

?)

X¥L190=939730

C(X)XdGS) (X)XdOF=1SIL

(V)XSOS=LS31

(9°19°X)

(V°3S7°S)

ANFLNOYENS

/X

$¥n350 oot

140 XL1390~-X=V

X17T30+X=X

¢4S3L)

(1S3L)

HIIHM V=NIOFEV

@t

LTIO—-K=X

O=1S3ALI

X=XFAVS XFAVS=V

T

x=valo

=X171340

O1

OL @X=XX OL X=TEX

T+l=I

X=€X

V=X V=Xx O=I e=1

T=7

O09

09 Q9

Ar AI JI SI JI JT

AT SY JI

4

9 €% €

S OOT 2

€2

T

Wow 199 ¥T*02 OZ OL €T (0°O°37° OL 09 09 GZ (0°0°3971°(23-(X-XX)S8V)) G O1 €G OL 6T €0°O°37°(T3-(X}SAV))? CTS—(X/ OTfOZ*TT (CTH CUFT O1 1 OF 8T 09 *(8*STfe*sT) Ol 09 141846 e290 (O*O3°FONVHIT) L*0Z*8 ee? °OT/X1190=X (€°LIISSLE) (X-XX) 09 CL°AT°IXwW) 939740 2) ({X)xS05) (XX *E* (9719°X) /X /X X X OOT (AS3L) SEV) 4) L1I04+K=X 217 Z1 1730-X £190-K=x L7304+X dOS=1S 4=3009! €=3009! 2=30031 X=XJAVS X3AVS=V 1=3009I T NYNLSY NUNL NUNLAY NUNLIY =X1730 X=Vva710 T@X=XXx TEX=XX OL X=T8X OL OL O1 OL OL X=1 aX T+I=I 1730 X=aX =XX 5=7 v=X €=1 =X = 9X 09 09 09 09 09 SY JI 09 SI JT JI 92 JI AT AI AI AT

ST 81 6T

€T 91 LT

€S G2 OT TT eT

200

939730=x1130 939730=x1130

NISF9V=V¥ NISF9V=V¥

O=3003F O=3003F

NUNLaY NUNLaY

ON] ON] 02 201 * *VIFHIWS

(S3GOWN X* X*

SVETIGSWNS

S3SSIULS S3SSIULS

VOGWV VOGWV SUD SUD

XWSVESHEXNSVILFHINSXNOVXEMSSAS *(SSCOWN)VISHIWS *(SSCOWN)VISHIWS

)XN

TS TS

IGWAS IGWAS

CONT CONT

* EAN EAN

4 (

(LELISZWIS ONV ONV SSCOWN)

(LELISSLWISLAGSIOSS

S S

(EOWA (EOWA

EXN EXN

S S

S3dVHS S3dVHS

CSS CSS EN EN

VX LIXAONI*SELILOAT LIXAONI*SELILOAT

(X2ONISLOATAISAIWOISTS(CTIV

S S SOWA SOWA (XSONT*LOATAISSIVOST

* (ZC (ZC (SSCOWN)

(L242)

3J0OW 3J0OW

tSSCOWN)XWS tSSCOWN)XWS

DEWAS DEWAS VLSHEXW VLSHEXW

NAYI*S*

209!

3LVINITIVI 3LVINITIVI HE HE MS

GSS DZWAS DZWAS

LOOMS SV SV §

HS

LOTVdIS ESHIWS ESHIWS

(SSCOWN)AS* dT dT

VQGWV (CSSAGCOWN)VISHLXN® (CSSAGCOWN)VISHLXN®

FES

ASVII*(8)LO0U CED CED

SNS °C °C

IVOWV Z2)GWAS Z2)GWAS

FZSF

OL OL

TWAS TWAS XW XW SSAGOWN}E

TSS INTUd

INILNOUBNS

£30 TWO GA

AN

TSS

VLSHEXN VLSHEXN OCT OCT

Wud LE LE

AL

IddV IddV TIWX TIWX

SEXN IS (SSGOWNINS CT)VaTIax8 2*°SLWI)

CBIVEWNSMEWNSA

JWIST*WY3L30/1509/2 (TI) (8°

WS

MANW/VHS DBWAS DBWAS LIde8 SS2W9) (CP (fr (PFS T+IWI-=(TSTILWO

3dVHS § §

SX

(899° *TLZWI=(F

(SVIVAOWVI/ISVI/4

t3049*H JINY JINY

T+TWI=(F (SSCOWNIVISHLXWZ (SSCOWNIVISHLXWZ

FILWI=CF

OV OV (SSQOWNIVESHINT (SSQOWNIVESHINT

LZWI=ETATISSLWD TE TE

SNS

AdVHS LSHINS LSHINS L3Q/(T)V=(TIV 1 1 «+8

(8°S)WI/HWI/E TOVWO/WOSUsA/S (70%

CSI DLWA® DLWA® WHL303 WHL3G9 13

NW/OLINANI/SE SUYIWVUD SUYIWVUD L£*t=f i*‘t=f L‘t=!I Z*t=f Z2*t=I Z‘T=1

COW/NOWWOD L*t=!I JNTLINOYENS NOISNIWIG JIWIST=8I JTVISTI=TI T3°OT=130

H/DGNVH/ST °OT=(1)V "T)=(8)V

(VLFHLXWT XN XN ST

3GOW XITdWOD

A (E (E fT T)SLWO

FWNSNT YSLWI 4

€ THU THU 4 ¥ 2

T1V2 Tt 2 11V9 OWAE OWAE LWD 00 00 0d 0a 00

0a OG 9S 202

(XFONISIOAT (XFONTSLOAT

(XSGNIT (XJONT*

LOAF

LOATAEASTVIST

AIFF

AI

ALS

SSIIWIST

S

WISTS

WISTP

SE

PE

CZ (ENV

US)V

(H)V

ALS

IL

AL

(ZdVec (CVVeET#a8T3°OT=(E EL

(9) (S)VaSIxex8 (2*TLZWI=(ZSTISSZWI

(2° (84T+IWI-—=(E (o*TLWI=ty*TSSLWI (8*T+I C>*TISSZWI=(474 (84T4+I (84

(e*TPIsSsiwo=te*I)Lwd (TS

(€4T)LZWI=(E

(SS

(fF

(r*ry2wo=tr ISLWD)

(Tf (r*TILWI=(P (r*TILWI=(P

SE

*SLWO)

SLWI)

SLW9)

Veo T+)

TISSLZWI=IZS

TILWI=(S4TISSZWD *T)LZWI=EF TISSAWI=ETSTILWI

TPAWI=CF

Il

lee8T

exBTF°OT=(c2)¥

LIG/CEVWV=(ENV

L50/

L30/

WI-=(S5*1T)2W2

WWI-=(4* WI-=(2*

WHLI0) WYHL3QD WHLSOD

Z2*T=1I

L*T=!I 2*T=I WYHLIQD)

L*t=f 2*t=f

TS

Z*t=I 2*t=I i*t=f Z*t=1

L*t=I Z*t=I Z*t=f

JIWISI=Zd!I AJWIST=€!I

3WIST=SI

3

IWIST=+!

(2Z)V=12)V

(9)

ST

°OT=tS)V

°OT=(7)V 4 4

*1ysS2wd

*TISZWIO

SE

ST) V=(9)V

TISZWI TISLWD TISLWD

SSLWD

TI

o€

OT ot

O€

Tt

TZN TILWO

TILWI

8 9

2 9

W1V9 6 W1V9 9

WIV

WV) S¢ S¢

LWD

LWD

00

00 aa OO aa oa OG 0G 00

oa

od OG

VV 9 9

09 £9 OT

LS 6S Of

99 99 69 69 un fr TT 203

INVLINSAY

IN3WOW

J0OW

INSW3IIVIdSIO (XSQNI* (XFONTS

INVITINSSY

M

INSJWOW

INSWIIVIdSIG

SNIGNSS

OL

INVITASSY

SSAYLS LOAT LAQId

S3SSIYIS

LNIWIDVIdS

ONIGN3IG

SS3IULS AT 1°

TWEINSYISWNIUID

TIWIENFYSSWNOYTD WIIINSYSSWNDYID INSWOW S39VISI 31VISTPEC9)DV

SSAIUIS

ONV

WNOTOIYIW

TVNOICTYSW TWNOIOIYSW

IG

ONT SEL

SA3dVHS

TWWYON

YVIHS

LSIME IVILSSZWD) (I-SJOOWN}

INIX+Z=Z (L)VelIe88T2°OT=(L79 (9) SEL CL4TILWI=aILSTISSZWD (84 (SSTISSZANI=AES*T)LWI

*2/S-=7 (9*TISSLWI=(9* (9* (8*T+TWI-=094 fS2W9) (r*TyZwo=(f (r*Ty2wo=tf VaOFen8

3GOW

VISHLIXW

VISHLXN

S3QOWN‘ FIZWI=09* T+ITWI-=(1*IT)LWI

VISHIW

VLAHIN 130/(9)V=(9)¥ LIG/CLIV=ECLIV LI0/(S) LVOTA/S=INIX

3ZI

(°04*O)=WNSN L*t=!I Z*t=f WHLIGD

2*t=!l WeLSGD XN Z*t=I Ns AS MS

Z*Tt=I Z*t=f XW

(T°ds°) (T°AIN*H) TS 0° 3WIST=9I

IVWYON

T= 3IVISI=ALI °OT=(9)V O=3AVSMS

2=0) TISSZWI *1)SZWD *1TS2WI V=(S)V %€ #%€

2T ze €€ T€ ze TPLZWI T)2WD vd WVD

Vx

OG SI 0a oa 00

OG oa aa

JI

ol ol vE vE g9 69 ce el ct

TE TL

Lo) YUVYUWOOUVY 204 CLVIVOWN (ZxeCLPIVOWNV CZ* CI) CZ* 1) dX33 IVOQWV CIP Dd CZREIVIVOWV IVOWV XS9Det 401) T)dX3De (Ze V«C TI EC FT) dX33% LVIVOWY Ve C1) TidXS9De (Wt XMKNWH Ve CI) TIdX3De (ZK (Ze (2 Ve a% XM+ ° CT) CI (Zeal CIP T+ 01) (Ze (ESV VC SSQV=AAVSMHS IVOWN IVOWV CI) CT) CI ILVOWV IVI CED ORN-C 9eNWEN-C JAVSMS WINe CRISS Ve( C95) VOWV 1) JAVSMS/ON)VLAHIN=OOPVLSHIN IVOWV 1) 1-7 dX39e(T dX LT) €T 08 ct 1V CF IT) Ee’ 3D /OX)VISHLEXN= TeNW—C IVOWV TIdXID% S/(CNW-"9 Fes IVOWV PIVOWV Se OL OL OL aC TP C3AAVSMS°L9°SSEV) NWeN—-NWaNeN JAVSMS/OMINS=OINS JAVSMS/ IVOW FAVSMS/UNPAS=ONDAS JAVSMS/ JAVSMS/ 1) (ZS) (SS) (NW-* 09 OD O9 TS He Oe S3IGOWN* Tx I (WASH) C(WOSAD CWNSN) 14+ (CONS (IN-(TI9D) OeN-NEND 1V34= THC TVAN= CT CT tT°O3A°*MANW) OT (T°DA°RANW) (TSP (9S) (T°DF°MANW) fF Te T)=CNIVISHLXW TIVAEWNSA=WNSA CI (°0*°0)=WNSM (°O* VEWNSN=WNSN DHE EH) ON) (CNY YAWNSM=WNSM 8*T=I THD HEN) Oo TV TYVAY=ONINS TVIY=ONDXN TWAY=ON W3ay= (°0*°O)=€S €°0%°0)=%5 (°0*°0)=SS (°0£°0O)=2S (°0£*°0)=95 (*0**O) EO) CN) NW) T=x% HI SEV=SSEV XN=OH)DXN MS=OOIMS XW=O) AN=ONDAS DV JANTINOD ANNI “O)=WNSA VLAIHEXN 2 VISHIW VESHIN 4+TS=TS FESH=ES LSAHLXN 4cS=cS 49S=65 45S=5S 498=eS €T O8 0) INOD =TS (7*xT XW aa MS JI 0A XW GI AT SI eT

et 205 (3dVLI (AdVLT (AdVITS (JAVETSOTSZWASE (AdVLI

“OTS "STS SHT*GWAS “HTS OWASE GWAS SOT SOT OTS ‘SOT BWASE SOWASE SEWASZ

OS TZ TZ TWASE SLWASE SWXS

WX SWX SWX

FWX TTS" TTS" TT SWX TTS SWXS SWX SWX A TTS WX £90408 ETT 90490 ETT

TTS 04°08 04°08 TTS ATT 08 INVIIAS3SY / /

SE / /AINSWOW / / S204 S05 0% SOF 90% 04908

INSWIIVIdSIG

° ° 904 904 04

INVETASSY °0% 0% 904° 90% O SOS °O4 04°04 INJWOW

SOF SOF SOF POF 208 0%

04 ONIONSS ONIONSS

IN3SWIIVIdSIC

0% VESHIXN' VISHIXWS SSAYIS VESHIN INVLINS3SY VIFHEWS SOFAS

/

} OF M04 °O4NS

/SNOTLVYGTADBBSTYdWOYSHOC/NI SOS

LNJWIIVIGSIO ONIGN3S XN MS XWI

SSAMLS SV

JAVSMS SVXSSAIGOWNINI‘ST) SUX*SSIGOWN SY SVX

ENIWOW TVIENSYSSWNIDYIDHOE/ TVIENSYSSWNIDYIDHOE/

WILNSYSAWNIYIDHOE/CWA TVIINSYSAWNIYIDHOY/GWA VX X*SSIGOWNINIST?

VASWVT XS VX VX VX

JAVSMS/CXIVISHIW=

/=S

/=V9AWO

4=VHAW /=N /=VGGWv

TOVWO SSIGOWN‘NI‘T) SSGOWN

4T SSAYES

SSSIGOWNONIS SSIGOWN‘NES

*SSICOWNSNI‘STILTdIGG SSSGCOWNSNIS 4t 4t

TYNOIGIYSWHOE/ WNOTOQIYSIWHOE/TIWA

IWNOIOCTYSWHOC/LWA Xy S

J/EWVISHIXW=O

OL

N

ONTESIMLHOC/6WA OL

(CTT

€€23WX‘06‘OT)IQGINI ((4)WX*T6°O72)

(¢€LIWX*7264OT)3003N3 €COIWX*E65O0T)

OD

1

TWWYONHOC/EWA NIST) NIST)

AUVIHSHOE/IOWA OD OD

)WX

HOT/tOT

(O°O3°LONWd!)

HOT/(E HOT/(9IWX

HOT/ETIWX

HOT/(8

T2IdVLI9=AdVILT

(T°O3°MANW) (T°O3°MANW) TIL TIL TILTdICGG0

(8°9T3I) *4€6°OT)

(e°sSt)

(2°Ss4)

(0°74) LIDIAG EVAIGG LIdIGG LIdGIOG

LIdIQG TdGIGG TdGIGG IAIAG

(0

DV BWA BWA

JNNIINOD

WX

WX

WX

OWA

VESHIW

LVWHOS

ISHEXW

1vwuod LVWUOs 3009N3

AGOINF 3009N9

IvVRUOS

(JdVLTT

(AdVITT (3dVIIT

tadViIT

VIVA

VIVO VIVO VIVO VLVG

VIVO VIVO VIVO VIVO VIVC VIVO

VIVO VIVO VEVO VIVO 11V9 WIV

W1V9 11V9 TIV9 W1V9 TIV9

TIV3

11V9 SI SI

JI

08 06 26 £6 T6 206 NOTOTMIWSX GeXZTS J INJWOWSX (TIVISHIXWS eONTONAGeX ZT TT /& Se Se TVWUONSXS UV INJWOWSXTT CIDVISHLIWS J # IHS TT LNIWJIVAIdS Se &X8 ONIONIGEXTT* fe Se TV SX TVILNS CIDXWS TENIUSAWNIUEDeXS INVE FO#X9 /RONTISTMI&XL INS US CIOVESHIXNS eSSFULSeXZ IWNDUI Sx FUeX6 EINAWIIVTdS DeXS SS CITUMS*CEIAS*CIOAS C/e LNVL C(B°STAXEIS*S°STIXTPLVWYOS 9T CT Se ES Se $e CM 9T IVLSHENS WIINJUISWNIUIIDaXS OL eSSIMLS INS IVNOIOT ICaX9 TWNOTOTUSIW DRXGTA OL /* OF IURX6 LNJWOWSX O95 6 SJGOWN‘ RIAD S3GOWN‘T=I (O°OS°INTUdT) te U3SW XZ LNIWIIV CIOXN 4S (T°DA°MANW) eINVE RXSTS SxS CT T#) T=I Ts) *6T S6T SX TS 21 STUISeKX9Z T2 INS x(NeXL2 LVWUOS ONTONIE NUNLAY LVWYUNA INI e2 81 INTUd ISUeX INIUd ENT Te Se ONS XET 0a TT Oa ud Ud ST SI oy {Ss HT OT 22 LT 6T BT Te 207 Jd-UdW GASSIYMISNN -OIUSW JON SIINAYIAIY O00 °B8-—H=N MOTIVHS) O GaLwaddNS INIUd OS TV *S3ISSFULS

“OOOT=SSANNIIHE/SNIGVY LON LON JLVWEXOYUddY

10N SASSIULS

8S2-NGY 8S2-NGY ONV OC OC CULT 0€C JYNLVAUND JNTENOYANS

ATVAAYA O O CULT GNV/A 0 YOS

ALVINITWI

*SaSSTYLS *SaSSTYLS Y8SSTV-GYUS Y8SSTV-GYUS 3SN *NOILVNOS JHi VIYVASLIYD LON JO TING S3dVHS IWIINSYSIWNIYID € SNOTLEVYGTIA CULT O00 30 SSANIVA ‘HIYUVAS

NOTLNTOS GNV/AING GNV/AING 0 O YOs 30OW

SE=S wAdOOI-NOSNIGOY wAdOOI-NOSNIGOY JILSEYILIVYVHD JINISYIANOD 3dVHS *“3NIINOWENS “KINO SNOILVAYAILT YOd *GO*-=XH TVWYNLVN TWANVYW OO°T oo°t

40 SANTVA SANTVA S3COW SINIOd 300W d3IQd "0 °O

GOQHLAW 8 8 =t5°S)99V =(1421)94V =(848)9eV 3SN =(9*9)99V HLIM o0¢Cc*

GALVINIWI

HLIM OL MSASN AdVHS AdVHS 4G S0-30°T °L SIXV-X 40 2 °"O

°“O » » IVYIN3SD Y3SGWAN YALdVHD TISHS SLOOY STIFSHS

2/S=K =GAN =NW WOU

=aXN JLVINIW) 3GCQW 3GOW

*euLI QOHLAW QOHLAW =23 JO SYNLVAUND WOWIXVW INIUd LNI¥d YOd YIGWNN

TTIVI

JO

JONVY JONVY 101d 101d MOTTVHS

3asn

INVNIWYSLIG INVNIWYSLIG SNOITLIQNOD SNOITLIQNOD 90-30°T SNOTLVNBA oso*- ENGING Oo°T Oo°T ooo°e

TOO” TI TI

T T 1 T

*L9/8T/80 *L9/8T/80 T T SYAEWNN SYAEWNN *O "Oo

=tT*T)98V =(E€*e)dEV 0 4O =(474)98V 66=I1XVH 0 © =(2*2)98V € 0 0 BAILVIIN

=Ss =X» =S100UN =NNUI =MANW =LNIudI =10Td! JIVWdWVS =VOGnV =13 =S300W =S30C0OWN SNOTLVUSIA

(NOT AYVONNOG AYVONNOG

A¥LIWOS9

JCOW JCOW XI XI c/S

7

TdWOD TdWOD $3009 J3iva J3iva -=X

208 00S00° 00S00°

(6T-J649¥OZLL1G°L

=WAUSINI =WAUSINI NOTLISdSNI NOTLISdSNI YIGWNN 3Sv9 *60-JTIZHES96°%2-) £ € € € € € € € € € € € € € € £ JTVIST 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 OOOOO*T OOOOO*T GQ3LVINIIVI (6T-J668EL09%°L (8T-JOO9LZEYL°I— (6T-3ATZOLIBTO°S (6T-JF69BSGSZ9T*T (GI-3SEEZYECE°b6— (6T-380067L82°T (8T-3I8682OZ9E°I— (ST-JVEGBSEBET*T (6I-39OTTISLZS*S (8T-39690€76Z°T— (6T-J36590ZL16°L (@T—ATS9BOEE9°T (6T-3CLLOLELO°S (6T-3GZETLIOO*L (TZ-JLVECEOLY°S—

(6T-J9EO¥LYZO°L =LIWET =LIWET (8T-J969OEZEZ2*T-— €

LON AINANDAYSA AINANDAYSA =3SV2 WNCIS (X31dwWOD) F6E99TO? TWNOIS3Y = = 9 = *90-34HS8TT860°S 80-FAZLL9IESLO® *BO-JESBEZEBEO'? $90-32468T9¥T°T *SO-ATSEYIVETTT *SO-FLO9ETTZE°E—) £90-3ESGOLTSOZ°9—) “*90-ALOGESTVE"Z °90-SETSLOBSS*T—) *210-3L0S60TZ8°% L0-J6BLLOOST°S—)} *LO-39EZIZSETPT *60-FEBHTZOZa*y *60-F1TTZ¥ES96°C-) *L0-3ABZ7LGEOLE*? *BO-3BSLIGLYT°S

IY TWNIG TWNIG 68E99TO” *60-FESHTZOZB*y TWNIA

*Z8E99TO"

(TOFFTS8TH9990°S (TOFFTS8TH9990°S (00+368T022¥0°T

(TOFS (TOFS (TO+FTSBETY4bO%%— CIOFSTSBT¥4¥O*S CIOFSTSBT¥4¥O*S (TO-3TYOOFESTPL

(00+368TO2L4O°T- (TO-JTVOOVEDTPL— 00S00"° 00S00"° JUOSFYAHL =AINANDIYA

T—-)

TS8T TS8T NOILVNDA NOILVNDA ) ) ) ) ) ) ) ) )

)

HOO" HOO" =G3ILD4dSNI =G3ILD4dSNI ) Z20-300062969°T 20-34 €0-300000000°S 20-300000000°T Z20-J300000006 20-200000000°2 20-3200000679°T 20-30S290499 Z2O0-3L ZO-AZ2HLSEINOT 2O0-JEVOVEES9O*T AININDAMA Z0-JO00000SL°T 20-J0000SL89°T CO-JI00GLETLE*T CO-3GC9STO9S*T CO-JDEBTBEIOT

fOALSAINDAY o— o— INIWA

9T CASNAND CTVNIAD

STVNGIS3Y JILSTYILIVUVHD JILSTYILIVUVHD

§ = = 6SB0E99*T €60T799*T

=SNOTLVYSLI

*TOFSLZZLLYOBO"Y *TOFSLZZLLYOBO"Y *

*TOFALCZLLYBO°¥—)} *TOFALCZLLYBO°¥—)} STOFILZZTLLYBO*Y STOFILZZTLLYBO*Y * * * fTOFSLZZ2LL fTOFSLZZ2LL VOIWO

IY)

ADNINODAYSA ADNINODAYSA 4 4 TIVNIS GALVIOdYUSINI LON °T °T

INIONOdS

=YIEWNN =YIEWNN 980° 980° S3dVHS NOTLVYSLT YOS

40

YASWNN AG AG °O °O *0O-)

*O-)

4—) 4—) TWILINI ¥ yt YFIEWNN 2 € 9 Z 8 OT eT oT S 6 eT SONNOG T TT

ST SLOOY SLOOY 390d

}

) ) ) ) } ICGOW ICGOW JCOW 209 00200°

(6T-3800SS9¢1°T

=WAYZIINT =WAYZIINT NOILIIdSNI NOILIIdSNI YSIQWNN

3SV9 *OT-3S2E9€200°2-) *OT-3S2E9€200°2-) rere mMese eer ee ME EEE EET MMI MMMM AMM MAM OS ATVISI

9 9 9 oov.y oO 0o0onodw vy oowowvovwovuvvnvwnvvovoooo Oo

Q3JLIAdSNI Q3JLIAdSNI GQ3LD4dSNI O3LDAdSNI QALIAMdSNI Q3LD3dSNI

00000’

(T2-J6LTETSBE (Z22-JVLYOIGE?S? (02-3 (02-3

(O2-J¥VHTEDELO* (02-3

(T2-J6LTETEBE (OZ-JE8LITILO°S (61T-3800SS9ZL°T (6T-3¥9L (6T-3¥9L

(2c-JATSEOBOBS (02-3 (02-3JL696T890°9— (T2-JET¥Z28S06°T (02-J¥90ESTSO* (61T-J9E%EO60T (O2-JESSBO9F2 (1Z-3VBBEOT (T2-JEIOEZTEZ (22-3 ( ( (€E2-JILVEECSBE°T (02-J0S9S49E0° (6T-ASECESTIC

(2e-ALECESLTI°2- (O2-3L6FE9EOT (O2-347278ETLB°9 (T2-JOLTETSBE (T2-JOLTETSBE

T

=LIWIT =LIWIT 2L2S7SGE° 2L2S7SGE°

VLESYETE*Z~— ¥SL668SL

26SS6E62 (6T-JGECEST9IZ

ONV

ONY ONY GNV ONV

ONV

CLOT? CLOT?

GIJANASGO G3SAYASEO

GAIAYISEO GAIAYISEO GSAUAS8O G3ANFS8O

YS ADNANOAYA ADNANOAYA

°2— °T

PT

°E— ° *H

°C

PE

* WE WE

TWAQIS3Y PT PT

*o— "0

°S °0 (x3

O— L— T-

¥— S—

E-

9696800° T- T-

— TdWOD) “lLO-J9EBLESHL

*80-J0E9E8619 *“FO-ALESEI6B *90-382STO%0S *90-382STO%0S *“90-JSBETYSEN’T *10-J¥T9OT96ZE *20-3BSESTEZTTE *LO-A9TSTOTST°T *80-JOSEEBSEL

*80-3268401819°6 *80-ACLOEB9ELBE *80-J1T089€S60°9 “80-30S *90-J3FO8TEZTE *90-J3FO8TEZTE *60-J0608YTES°6 *60-3E4L908SH°? *L0-39€9LE996"T— *10-3489972869°2 *80-JL00E *80-356618622°T *80-368 *60-ABEBYISGTE*T *60-ALE864008 *OT-38¥TTTIO90°L— *OT-J8944T2SO°E *OT-3S6269€200°2- *90-JOEST¥ET?°L *90-JOEST¥ET?°L *60-ABELECZCEL*Z— °T

JONVHD

FJONVHD FJONVHD JONVHD SJONVHD FJONVHD TWNIG TWNIG

‘OT-3B9¥4TCSO°E

966E €6866%

4798

3SV9 3SV9

3SvI 3SV9 3SVD 3SVD

*1696800°

FE

o0z00° SY °y— °9-

PL °Z °T °T

PS °¥% °¥% TL PL

*Y °T—

—aw Sew fet — wt ae ee ee

=O31LD3dSNI

?) €0-300000000°8 £0-30000000%°9 €0-300000000°L £€0-3000000¢T*L €0-3000062S6°8 £0~-300000000 £€0-3200000000°9 €0-300000002°9 €0~300000009°9 €0-300000008 €0-300000000°2 £€0-3000000¢20*L €0-JooCOOO8O £€0-FJOOOCOOOFT €0-JOOOOOOFT €0-J00000STO°6 €0-SJ000SZ£86°S €0-JF00S7T896°8 €0-J9STOT696°S €0-J300000000°2 £0-200000000°9 €0-Woe000Cd*2L €0-300000040°2 £0-300000090°2 £€0-JOO00000NT*L £0-I00C0004FT*L £0-JOO000OFT €0-3000000%79°8 €0-300000068 €O-ASCTEOZLE°R £0-3¥786RS696°8 €O-JOGSLEE6SL6°8B €0-32T8L00L6°S AINANGDIAUs INIVA

€€ (AIN3INO STVNOIS3Y

=SNOTLVYS VOIWO

ADNAN IAS) S TVNI °9 *¥ °8 °6 °&S PL LZ 5

=YAEGWNN NIGNOdS3YdOD NIGNOdS3YdOD

O3us

LI 4 4

NOTLIVYILI ¥O4 ¥O4

dO

YAGWnNn

FWILINT

Y3IOWNN

ze €€ SONNOS ANAMP IN OM OOD Te

300W

210 GQ3LVINITVI GQ3LVINITVI

€ LON LON

=3SV)

WNAGIS3Y WNAGIS3Y

4¥696800° 4¥696800° TWNIFS TWNIFS

(TOFSZE9EVEEO°Y

(TOHIZE9EVEEO*Y (OO+3THIST+B8T°I-

(TOF+SZ69EVEEOTY— (OOFITHISTYBE°T (OO4FECESTLYO"T

(TOFHS2E9EVEECO*H— (OO+FEEE6TLYO°I-— JWOSIYSHL JWOSIYSHL

=AINANG3UA

NOILVNDS *QILSAINDAY *QILSAINDAY

CTVNIS) DIASTHYILIVYVHD

=

4104308414960 * *

*TO#F08%L4960°4F *TO4+308%24960°% 4104308414960 * *

GALVIOdUZINI

LON LON S3dVHS S3dVHS

°+—)

°¥—) JO

“0 *0-) °0-)

*O $1004

}

)

) ) 3GOW 3GOW

211 o00soo°* o00soo°*

(8T-3¥¥9CBECL =WAYSINE

PT NOTLJIMSNI

YASGWNN

3SV2 *80-3S681829T2°T-) *80-3S681829T2°T-)

y €

4

€ € € € 9 € y % y 4 4 4 y

€ € € € € € 4 € y €

€ € € € £

4%

JTVIST

9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9

9

G3LI3dSNI GQ3LDAdSNI

G3LISdSNI G3LI3dSNYI Q3LD5dSNI

00000°T

{8TI-3v6SS9TZB°L

(ST-JBYEB0STE°E-—

(8T-3BSS6ZBOSO°Z— t (OC-AGZ9OTISGTET"S (T2-28SE929LL°9— (ST-I6EGEBZETTL (ST-3HSZEGBYSI°S

(8I-3IZ2ST9TES2 (ST-3SO0E%7Z9BS*C— (ST-3Z9L84S00°1I~ (LI-A90Z9IGVEBST-— (ST-ATOLSEEYO"S— (T2-J6LTETEBESE— (ST-J¥OEBSLTS*T-— (O2-3AZL2G2SSE*T— (TZ-J6ATETSSE°E-— (O2-3BSE9COLL°9— (6T-J698O089EE°F—

(ST—3479CHSZLET (8T-38419¥700S°T (ST-ABEEZE9GT*¥— (LT-26€762690°T— (SI-2AS2ZTYBET*T— (6T-348996204%°8— (02-3T069L98%°6

(ST-3HTEZHESGG°9 =LIWIT

(8T-JBYE60STE

GNV GNV

GNV GNV GNV

G3ANSS80 G3ANS3SEGO

G3AYNSSE0 GSANSSEO

G3AYNSSEO AINSNOIYA

°Y—

TWNGISSY

"0

(X3

818S020°

«6

«=*

TdWOd)

*HO-JES69OTOEY*T

*80-J36¥2OLTLE°9-) 490-3CTYEIETS *10-3669Z600L *60-35619€9019°S—) *90-38%00T9I8T°E-) *90-3TBEOSLTO*T *S0-300S904%18°S *¥O-JZBYLSTbE°E—) *90-3ETSSEOB8E°S §90-38S669867C°%

*80-JTISIESGLEGTE 80-3G8L829T2°T-) *SO-ALLGOYESY *SO-38O0TC6EN0*T—) *20-39L72¥92S0°E ‘*90-AZTELOLEOD°S *$90-3ASBBYSC9IG *90-3T¥8979L9°6 $90-37ES6S92E°S

*L0-39TT¥O%2H°T 610-398 *90-3GZ09LS0¥°E £90-FJ6V6SEZEO*T *G60-322H2620OT°T *SO-3SSBEGBEC*T

°E-

¥O~-AEEVTTEOEE*T—-)

FONVHD

JONVHD

JONVHD JONVHD JONVHD

TWNIA *“8O0-JTSSESLEB°E *“8O0-JTSSESLEB°E

1L09€8°9-)

3SV9

ASVD

3SV9 3SV9D

ASVD *908S020°

00S00°

*2-)

°T—-)

°Z—-)

Z

)

)

) ) ) ) ) )

)

) ) ) ) ) )

)

=G3LD3dSNI ) )

Z2O0-JTLELTBSO*2

20-300000S620°T 2€0-300000000°*

20-3906818S50°2 Z20-3499G608S50°%2 AINANSAYA 20-F00S729690°2 20-3SL8TLI90°2 20-32 Z2O0-JO000000E Z0-JOOOOOSLT°2 20-F0000SZTI°? 20-300000S€0°T 20-300000000° 20-J00000000"°T

20-J0S?2TELEO%? Z20-J000000S0°2 c0-J000000SS°2 20-3000006%0 Z20-3000000S0°T 20-3000000S0°T 20-3000000SS°T 20-JONOO00ED 20-300000040 Z0-JOOOCOOTO*T Z20-300000STO°T 20-J00000020°T €0-—300000000°S 20-30000000S

ZO0-JELOOEBSO"?

Z20-3000000S0°T

2€0-3000GSZTB0"%2

c€0-300000S00°T

Z€

SINIVA

(AINAND

STVNGISIY

=SNOILVYSLI

9S9L

VOAWO

IYI) ADNANOAYA

650° 9

TWNIS

°T

°T

°T °T

2

Tt

INIGNOdS3¥YO)D

2

t =YISWnAN =YISWnAN

YOA

NOTIVUSLI

30

YIGWnn IWILINI

Y3SOWNN

¥T 9T

ee SANNOG Le 62 ce €2 rT 02 eT ST OT % 9 L

O€ T€ S2 92 82 8T eT 8 6 S 2] €

6T teé TI

T

A JCOW JCOW

212 a2LVIADW) a2LVIADW) €

LON

=3SVI

WACISSY

ST8S0Z20°

IWNIS

(TO+FEZEEVETO*S— {OO+SLETETLYHO*I-

(OO+ITHBETELESG*T~ (OOFILETETLHO°T

(TOF+JEZEEVETO*Y (TOFFEZEEVETO°H— (TOFJEZGEVEIO*Y (OO+3TYBTELES°T

FJHOAIUSHL

=AININO NOTLVNOA

AYA

SOS1LS3INOIY

CIWNISA DJILISIYFLIVUVHD

*TOFS96L220TT°¥—) * §

*T04396222ZOTT*Y * *

STOF3I9IEL2EZOIT*Y

STOFA9IELCZOTIeY—)

GALVIOdYaINI

LON

SAGVHS 4O

°O "0

°0-) °0-) SLOOY

)

)

) )

ICOW 213

00s00°*

=IWAYILNI =IWAYILNI NOTLISdSNI NOTLISdSNI

YSGWAN

3SV9

¥ 4 y v ¥

¥ ¥ 4 ¥ 4 ¥ 7 4

€ ¥ ¥ ¥ ¥ € € € €

£ 9 £ € € € € € € €

€ € £ €

4%

JTIVISI

9 9

9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9

9 OILIAdSNI G3LIZdSNI

ooo0o’T G3LJ4AdSNI QALISdSNI Q3L943dSNI

(ST-SBVECLYELST (ST-SBVECLYELST

(8T—-3¥L609TOL*? (8T—-3¥L609TOL*? (O2-JE¥VSOSOTL (O2-JE¥VSOSOTL

(ST-FEESVOCSE°T (ST-FEESVOCSE°T (8T-J7O%HCEHL (LT-J38T9BLLEOPT (LT-J38T9BLLEOPT (6T-J69B8089EE (6T-J69B8089EE

(61-ALTZ02780 (61-ALTZ02780 (8I-39L906TE?C (8I-39L906TE?C

(ST-JBECS66LT (ST-JBECS66LT (6T-ABELTIELI" (6T-ABELTIELI" (LI-32S05TSS2 (LI-32S05TSS2 (9T-JSTT (9T-JSTT ( (61-ALTZO?C%8O°T (61-ALTZO?C%8O°T

(8T-3SH¥TLOS? (8T-3SH¥TLOS? (9T-3€26LE7TO°2- t (8T-JTLYTT269°T (8T-JTLYTT269°T (ST-JEVEVELLL*E- (ST-JEVEVELLL*E-

(81-35 (81-35 ( ( (8T-J26HLT90? (8T-J26HLT90? (LT-dSOLEO7ZO°?—- (LT-dSOLEO7ZO°?—- (22-JVLYITSE? (22-JVLYITSE? (6T-JBELTIELO°S (6T-JBELTIELO°S

(O2-JEYSOSOTL (O2-JEYSOSOTL

(81-38 (81-38 (ST-FJLLYLSGCLE (ST-FJLLYLSGCLE (ST-3B4EZLYEL (ST-3B4EZLYEL (8T-JEVOLT¥OZ (8T-JEVOLT¥OZ (LI-3 =LIWIT 28661806

GQNV 92697HL 92697HL

GNV GNV GNV GNV 7660062 7660062 T6896 T6896

G3AUZSEO Q3AN3S9SO G3A¥N9SEO G3ANSSEO

G3A¥3S8O

ADNANDAYA

°S °S

* * Po Po

°2- °2- ° °

CY CY

°9— °9— °°? MT MT °T °T

* °2- TE TE

PL PL *2—- *2—-

WAGIS3IY

2 2

"0 "0

(X371dwWO?) "0

°0 °0 °6-— °6-— PZ PZ

B- B- T— T—

T-

T- T-

*O-JFRLTTE990°9 *O-JFRLTTE990°9 *#O-30Z1S6608°T *GO-J9SEITESB “I10-J3E800GSTIL°E

*GO-38TS886L0°E *GO-38TS886L0°E *9O-JvVE6TIBI2°Y *“O-J3LVT6LLOG°E *80-J6C

*GO-S9BCEOSEE *GO-S9BCEOSEE *GO-3S6SCO08SSH°? *GO-3S6SCO08SSH°? *GO-JT69ZYHEB *GO-JT69ZYHEB *€0-36L9C29E7*T *€0-36L9C29E7*T *¥0-3l8%61206°T

*bO-3LLYSOOVE'S *90~-300%728S729"45 *4O0-JOSTCS9ET°E *GO-3S2820896°%% *90-J8¥2TIEEO*? *90-3SZ2002882

*60-3020¥990L°E *60-3020¥990L°E *J0-J660E41TTE*T *GO-JLEBSTTEY*2—-) *“GO-JISSEBETE°S *GO-JELZ6LGT?Z°T *GO-JELZ6LGT?Z°T *90-38LZ¥E666"°S *90-38LZ¥E666"°S *GO-JO0LE90ZT°T-) *10-JLZT¥SGSG8S*5-) SLO-J3IGETBEE9*T *¥0-JS6L46S64°2 *VO-JZO¥VEECVI°T *90-38T *BO-JSENZLSBO9°E

JONVHD AONVHID JONVHD JONVHD JOINVHD FWNIA 968SSE 201209

3SVD JSVO 3SVD

JISVI 3ISV3 00s00° SZ

°T-)

°4 °4 eT eT °¥—} *4—-)

)

) ) )

) ) ) ) ) ) ) ) ) ) } ) ) ) ) ) )

) )

) ) ) } ) ) ) ) ) ) )

=GQ4ILI4dSNI

70-30000000S°*T

20—-3200000002°T 20-3J000000E 70-3000000%4"¢ 20-300000069°¢ CO-JOOGLEYZE°? Z0-306296 20-32 CO-STYTETITT6°%2%

ZO-3LCLYEOTE°%? €0-300000000°SsS 20-300000000°T 20-—300000000°T c€0-3000000S0°T Z0-JOONNNOOT c0-J000000S4%°T CO-JO0000 20-J00000S2H*T 20—-FO0000NF Z20-3000000%6°1 ZO0—-J0000SELLE°2

20-JOOOOOOST°T 20-3000000S2°T Z2O0-JOOOOOONE Z0~JOOQOO000SE*T Z20—300000004%°T c0-30000000¥%° 20-J00000S0%" Z0-J000000TY* c0-300000024*T 20-3J00000SE4°T 20-J000SL 20-3696L9TTb6°%?

20-3000000%%°T 20-3000000%6 Z20-JOO0ONSTE°2 20-3SZ29SICTE°C

AINIVA AINIVA (ADNIAND (ADNIAND

TEOLOTE°? VIIWO VIIWO

ST

ADNAN AYA) AYA) 806°2 9T6°2 L

4"

YT

Y*T

*T

*2

PT

T

T

T

T

=YIaGWAN

O3ud O3ud

NOILVYSILI NOILVYSILI

YSaWnin YSaWnin TWILINI INO SETMOQMH OA JICOW 214 (ST-JSL609TOL*°Z ‘*80-J6E96ESSE °¥-) Q3ILVINIWS (8T-3GYVTLOSGZ°2- € LON =3SV) 61 INGIS3Y TT620* +TTT6ZO° *2LO-3T9ETS6EO9*T WNIS

*“S60T620°

(O0+3S2czS72240°T (O0+3S2czS72240°T (1T04+3S6866200°%%— (00+3622S62140°T-

(OO+Z0E8SZE9G°T (OO+Z0E8SZE9G°T (TO0+3S6866Z2Z00°S (TO+3S6866200°Y-— (104+3S6866200°F COO+FOEBSZE9E*T— JOATUSHL =AINAND

NOTLVNOZS AYA ) AIN3INOIYA SAALSINOAY

2€ CIVNIS) STVNOGIS3Y

DJILSTYZLIVYVHD

=SNOILVYSLI

§ § *TOFF4E6BS92ZT*Y *

* * ‘TO+I¥E6BSEZT*Y ‘T0+3¥E68S9ZT°¥—) §

*TO+3¥EE6BSIZT°4—) AILVIWdYIINI TNIS LON INTIGNOdS SAdVHS YOs

AO

JO

*0-) *0-)

“Oo “Oo °O-) "0 "0

YIBWNAN SONNDS

sLooy 3uuOd

)

)

) ) ) ) 30OW

215 00S00° 00S00° =WAYSINI

NOT

YVAGWNN YVAGWNN 3svo 3svo

4 % 4 ¥

4 € 4 ¥ y 4 ¥ 4 € £ E

¥ 4 4 ¥ 4 € » 4 € € E

5 5 € € € € € € €

LIAdSNI € JTVISI JTVISI

9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9

9 9 9

Q3LD3dSNI

QALIAdSNI QALIAdSNI Q3LD3dSNI Q3LD3dSNI Q3LD3dSNI Q3LD3dSNI GILIAdSNI

00000*T

(8T-329STBYO08 (8T-329STBYO08

(LI-IVEDECESTE® (LI-IVEDECESTE® (61T-3¥E4OSE9T

(9T-349972290T (9T-349972290T (O2-S980TOT2S°S

(6T-JAVEVOHEOT (6T-JAVEVOHEOT (6T-ALTZO?4RO0° (6T-FEOETCSOS* (6T-FEOETCSOS* (LI-372SBTHTOE

(8T-3S6949694 (8T-3S6949694

(8T-3S66994699°C (8T-3S66994699°C (81T-3T8SY6T89°S (8T-3IS6994694H (8T-3IS6994694H

(LI-3LZLSOZSO°T (LI-3LZLSOZSO°T

(9T-J8962L9€E9 (9T-J8962L9€E9

(8T-J69BOB9EE (8T-J69BOB9EE (81-349SS9790B8°L (6T-JEOETZSOS°9

(8T-3T2S80Z209°2 (8T-3T2S80Z209°2

(LI-JTSSETIES*T— (LI-JTSSETIES*T—

(8T-JS6944694 (8T-JS6944694 (8

(8ST-J2HSEBLE9°L (8ST-J2HSEBLE9°L (8T-3T (8T-3T

(LI-JETETSC9O"T (LI-JETETSC9O"T (61-3721 (8T—-ATSIZ6¥SH°E

(BIT-JESYESEOE*L (BIT-JESYESEOE*L

(2T-309729€609°T (2T-309729€609°T (ST-ALEETSOB9 (ST-ALEETSOB9

(O02-37le7S72SsEe (O02-37le7S72SsEe

(6T—-JOvVTBEOTE (6T—-JOvVTBEOTE T-JEICEISHE T-JEICEISHE

=LIWIT QNV QNV GNV

GNV GNV

ONV ONV

2580209 2580209

26 26

2SS6E 2SS6E

G3AN3S9GO G3AN3S9GO G3ANSSEO0 G3ANSSEO0 G3AN3S80 G3AYU3S8O GQ3ANSSGO

AINANOIYA

°E- °E-

PC- PC-

°T °T

°C °C

°E °E PT PT

°8- °8-

"Ss "Ss

*2- *2- *T—

°9-— °9-— °Z—

°t- °t-

CY CY °9- °9-

TWNQTS34 TWNQTS34

°e- °e-

(X3 (X3

T-— T-—

¥— ¥— 9—

TdwWO3) TdwWO3)

*50-3S€625695°9 *50-3S€625695°9

*50-3€8 *50-3€8

*G0-30666€S80°S *10-34808LEV0°% *¥0-ALSYELISL°S *¥0-ALSYELISL°S *GO0-398805880°T

*¥0-J0609STLO*T *GO-J9OBTEXOH"S *GO-39SST6SL2°6 *GO-J99LTETTO*

*GO-3JTOLLLO9OY"9 *90-3£00%7206S

*cO-3/88Er28Z6°) *cO-3/88Er28Z6°)

*“L0-3¥9L798 *“L0-3¥9L798 *“€0-328280968°% *“€0-328280968°% *GO-JE0 *§O0-327LZESE6L *§O0-327LZESE6L *€0-IBZEBESIETT *€0-IBZEBESIETT *¥O-ASTEOVIBS* *¥O-ASTEOVIBS*

*¥O-JBLEZIVLE*? *¥O-JBLEZIVLE*?

*¥0-JSOEOYT0S°Z-) *¥0-JSOEOYT0S°Z-)

*GO-3T99Z9LSB *GO-F6997ZSTELTE *HO-JTLISLSLO*IT—) *90-3 *90-3 *€0-319%6cC9E9°T *€0-319%6cC9E9°T *80-J¥¥SHTEIE *€O-J9INZSBTTIIT *€O-J9INZSBTTIIT

*90-J¥TOTBLOO*? *90-J¥TOTBLOO*?

*90-JELTLICVE'S *90-JELTLICVE'S

*90-3475 *90-3475 *40-JSOL9O9OLI2*T *40-JSOL9O9OLI2*T

AONVHD AONVHD AONVHD AONVHD JONVHD JONVHI JONVHD

TWNIG 27686886 27686886

£8

268962 268962 268S8S°E—) 268S8S°E—)

T66E

3ISVD

IASVI IASVI 3SVD 3SVD 3SV3

ISVD 16 16 00S00°

“2

PL

°L-) °L-)

°S—) °S—)

*6—) *6—)

SS? SS?

°T—) °T—)

*8-) *8-)

4—) 4—)

) )

) )

) ) ) )

) ) ) ) ) ) et ee et ee tet —t eetot et tt ) =G3LDIdSNI

20-30000000S"T 20-—300000000 20-3000000SS 20—-300000009 20-—300000069°T 20-3000000S8°*T 2€0-3000000S8°T 20—-J00000028 Z0-JON00NSLE°T 20—J00000S88°T 20-J00000068 70-300000S68 70—-J00000S68 20-J00S29GES 2O0-JEOLO?

20—J00000000°T 20-—J0000000S" 20-3000000SL°T 20—300000006°T 20—JF00000SS8B°T 20-300000098 Z20-300000S98°T cO0-J00000088°T 20-300000S68° cO-JOOO00S6E*2 20-30000002S 20-JOOOS2 ZO-FLIBILIEES*?

€0-300000000°S Z20—J0000000L°*T c0-300000008

20-J00000649°2 c0-30000S828S°2 20-J0S2T8L2S°2 2O-JAGLBILTIES CO-ITESE9CES

2O-JAGBCIETES 3NTVA (ADNIND V9OIWO

TSS AN ADNAN

CEG 8 4)

°T

*T

°¢ °T °T

*T °T °2 °?

°T

*2 °C

°2 °7%

P27

T

Tt

=Y3EWNN

BDaYdsd

NOTIVYIELI NOTIVYIELI USaGWn USaGWn

WILINI ANMAMTNOM OD

FJOOW 216 (8T-3TS9ZE4SGY"E = *B80-JHYGYIEDE

°6-) Q3L1VINIWI Q3L1VINIWI

(8T-3TBSHE6TE9°S

€ €

LON LON =3SVd =3SVd

96TESZO®

TWNGISSY TWNGISSY ZCETESGZO® ZCETESGZO®

*20-34808LE40"S TWNIS TWNIS *2L1€S720° (TO+FTZOZOSBG°E (TO+3STCOCOSBE6°E— (TO+3TZOZOSB6°E (OO+39TSETISTS°T

(TO+3TZOZOSE85°E— (O0+34Z104%¥60°2 (00+342L0%%60°7Z- COO+39TSEISTe*T—-

FYOSIYSHE FYOSIYSHE =AINANDIAUS =AINANDIAUS NOILVNDA )

AININODAYSA “GILSINDAY “GILSINDAY

Ze ( (

STVNOTSIY¥ TWNIS) TWNIS) DILESTYSLIVYVHD = §*

=SNOILVYSLI * § * TOFAOZTZIE *TOFA9CCIE *TO+A9ZTZIEINHT*Y

=*TO#397ZICOYT*¥-) GFLV GFLV

TWNIS LON LON

INIGNOdS34yO2 TOddFINI TOddFINI DHT

DHT S3dVHS S3dVHS WOS

JO * 34O *0-) “0 °O-) "Oo ¥—)

YAGWNN SANNOE S$100u } )

) ) FGOQW FGOQW 217

FLOW DIAGRAM OF MAIN PROGRAM FOR

METHOD OF SOLUTION OF THE

APPROXIMATE (SHALLOW MERIDIAN) EQUATIONS FOR A FREELY SUPPORTED SHELL

Read Input Data

K=(ALPHF-ALPHI) /DELTAtL t

Begin loop on

curvature parameter ft Dg 100 Iel,K

|

SAVE=10.E19

|!

Begin loop on axial mode numbers "+ Dg 200 M=M1,MM

|! PMEGAM=10 E19

t

Begin loop on circumferential harmonic mode numbers DY 300 N=NL,NN

218 Y

Calculate coefficients of cubic equation

No

PMEGA=SQRT(ROPTS)

! y / 4 4 t Order @MEGAs from minimmto maximm

duican.cr. GMEGA(‘2) aie

No ANN=AN | PMEGAM=QMEGA (11)

300 CONTINUE

u

219 PG

Is SAVE.GT. @MEGAM ie

No SAVEN=ANN SAVEM=AM SAVE=(@MEGAM

200 CENTINUE

Put N,M,@MEGA into erreys A

Is ALPHA=0

No Yes

Is (ALPHA*LANR /2)**2.0T,1, —X&i_p¥

No

Calculate RISE DEEP and RISE SHALLQW

. *

100 CONTINUE |——_»»

220

2el

A. Main Program Variables

K - total number of curvature parameters considered. ALPHF - final curvature parameter. ALPHI - initial curvature parameter.

DELTA - difference between successive curvature parameters. FWY FWY OMEGA - frequency. M - axial mode number. N - circumferential harmonic mode number.

OANA OANA RGPTS - roots of cubic equation (frequency).

GMEGAM - minimum frequency within a specific M-loop. H Oro SAVE - minimum frequency.

B. Subroutine

1. FALG - NASA Langley Research Center library subroutine which solves for the roots of an equation. 222 JTdWVS

MOTIVHS)

UND Ud GVU GVU

UddV GALSIL GALSIL

(//#°S-T=W OL OL SATLVSIN "(INdINO *XUVGs JHL

°TISHS SSANAIIHLIH9O2XOT/S/SS°OTA=OILVY SSANAIIHLIH9O2XOT/S/SS°OTA=OILVY (OOOT NOTIVWIXOUddY /¥°TVTAHS

JO WHETXOTSSIOLHZX?* WHETXOTSSIOLHZX?* ‘VOGWNV CLNdDLNO=93dVIS NOTLNIOS )VOIWOX* GAILYOddNS GASSAYLSNN JO ‘8-¥=N NOSTUVdWOD TS GFLYOddNS (OOOTIVHd dSHd (COOOT TVS JO SOOOT=SSINNDIHL/SNIGVY 3HL ATISYA GA3ILwOddNS VI QOHLAW INUNT=S3dVLS IWX TV 40

TSG YOS ATWH3IY4 YIWOUS

Q3Y¥3CISNOD ‘ NOFLNTOS S (OOOT (8) V IHd LX3L HOA

YOA LWSAWS LWSAWS dW3LS TV INXS AT33Y4¥F

V ACFISSL ACFISSL

XY INdING SUNOTISNNG NI YOA

BY

SNIOVY SNIOVY JNO IND EN EN AF(NOTOIYIW

XH YUALdVHD 3O (E te ¥

COOOTISH* SINS SINS L LNOSENAINI)

dS IVOSIWO NHETXOT//*S°OTS=OILVY NHETXOT//*S°OTS=OILVY ONTYSCISNOD GOHLAW JYNDIA

4O AO YILdVHD

LO0Nf(4)S4A3T509 JTdWVSeXOT///*THTIIVWHOS

*T4AVITIG/ *T4AVITIG/

VCOEWYV VCOEWYV OL OL

YSEWNN SNOTIVYGIA

XH=VHd TN

*€=S (E*O)SLIUM (E*O)SLIUM SWS UNOT*VGGNVT AO

e3d009 HLONATHEZXOTIIVWHOS HLONATHEZXOTIIVWHOS

ZOOT‘TIOOR HOS

338) dW31*Si00Y¥ (S/S (S/S

COOO0T)IGY TSUNOT TSUNOT SNCTLVNOA *SO°-=XH

TV MOTTIVHS) JO

TW ( ( dOOIMAN

TVLOL THd THd /STWYN/ILS WVEOOdd

A*TTIHS

(A//ATHTDIVWHOS (A//ATHTDIVWHOS 7/410 7/410 GIAGNIINE

SNITLVADA*XOTT WVYDOUd

AINO 926S °4

(TIWVN*S)GVIY

TFVUNIVNeXOTE

C°O*3AN° C°O*3AN°

WV—SHd WV—SHd

LHOX? LHOX? (TSO) §S — NOISNIWIG NOTSN3WIQ NOISNIWIO

SSLVDIONI

(S4SOFSF NWS HLIM*XOTS

AI THT

SNW SO) SO) WVYOOUd FLYWIXOT Ysixacd

X3ATdWwWOD

T-TN=4N T-TN=4N T~-NN=IN T~-NN=IN (NOICIY3W FUNLVAY WAL

FE

OTSWYN FH

TV) TV)

AYUVGST WW=1W ALTIUM ALTIUM STH

3LTUM TW=4W TW=4W T= E€=Id

W3Y INdLNO UAT

O=4

SNIT SNIT

EWO? EWO? T= T=

TdWwOd = =

LIS

NI °9

OOOT

»

€ € T ZOOT S

YUOWOVYYO OovVvVveo 223

CVEETV-EZVEZTV

TH+ (VHd

(Z2eeWV9% OCL (°C/Z7EXVOGWY TV

VHA G3FLIATAS

TV

(NWO?

NWS?

THOT

RET

CHCHR YOS

+

CREST

VECEZVEETV—-EEVECTV

ZRENV (YZEWNN De? SNOTLVINIIWI

ET

RAW

IV

DP

V-CCVRLTTIV+ZRe

Hd

ANVE®

9%

TV 3COW

OSS (VIAIWOHSXOTSNHEXTZ//0 (VIAIWOHSXOTSNHEXTZ//0 NOFLVNBA

AC

ZT

44

(CNW DINOWHVH /Ze

(CHENV YALAWVUVd

eV (YUALIWVEVd

TOO

ET

DA

COW DJIGND

(YSGWNN

40 V-LI

CT

AUVGIeZeANV+XUVOI%

ZEENVET

VO

T-O

FAW

ZTE IVILNAYIAWNIYID) (7°

VRE

SCR

CHRRECV—E 40 JYNLVAYNIHTIS*XOT)IIVWYOS

CT) S8S4=VHd VIT3I0R04+THAD

(CIVVHdD

EVA

NV*WV9%"°C/S(NWE?

eVOEWY

JUNLVAUNI) JGOW

ZA

VHd SINSIDIASZ0FI

OO (TYVHd

Ce

(INW-—°T °¥4=WHOXST/ILVWHOS °¥4=WHOXST/ILVWHOS

TV CT CEVACCVFTIV=VLSHL

ee

TVIXV) TVHOXOT//)IVWUOI

EV

TV

VIFHL=(23S44909

eNW4+? /CRXVOSWV

T4°

CVE

WW*TW=W WW*TW=W YNOT/T YNOT/T NNfTN=N

THd-=(€}$443909

KZCV IV

FNW)

WV WV 6T3°OT=WV9IWO 6T3°OT=WV9IWO

*t-=(1)$44909

1Sd=(%)$445909 4*£T=1

Td

42 TV= 613°

EV XH eC

T) (8S9PSLIUM

(LSO)3ILIUM

(CHHWVI) (649 (649

XSW

W N

WV

XT

SZ (CT)

eRNV

&NV-=E deWV=WV9 deWV=WV9 JLVINIIWVI

ANTWYALIa INIWYNILIG ANIWYILIG OT=3AVS

CV TI

V9OHT

9-=E

TV=ISd )SLIUM )SLIUM

OOE

OOT OO¢ OO¢ TI €=930N

I-N=NV *T4+0=0 VHA

=THd

HCTV W=WV W=WV

HEEV

EC

0=0

TV

TV TV

AC OO

CV 4° OO OO CV

(zl

T 6 6 8 L

OVO Ovo QWwoo eo

X371dWOD JO

SSNIVA

ST

ONIMOTIOSN

VOSWO

SLVIIONI

NOTLVNODS

HLIM

JYVdWOD

ONV

SLOOY

DJIGND

(Yy3SI*

N

JLIUM

OL

JATLISOd

dWIL*S100U

3O

WOWINIW

N

ZE

ZL Ei

SLOOU

WNWIXVW NOTLVNDA

0S‘00G‘O00S

ONIGNOdS3YYOD

OL

OL OL

WOUS

OD OD

GNFSA

OD

JIM

(€C2)SLOOYU)

CCECEPSLOOYIIVIA)

(COTISIOOYU)

S

UYFT(9*OVILTUM(O°3N°UMsIIST

WAU (XS OL

TOS8V

C*O°

C°O*LTPCCETISIOON)

F°OPLTTERCEISLOOU)

DIGND

(ABNINOIYS)

OL TMIWODHLXSSO°SAXEZT)IVWHOS WOWINIW

(8°STAXS*O°GHXLZT) (//ST

(TIVOSWONV

(

£930N‘S443999I9TV4

LI

(T+

ANTLNOUENS

ONIA

ONV

4O

ECOCPS (T+f

TV3a)

IVI)

S=YUsTHSXS/)LVWUOS

VIOSWO-—(f

VOAWO

S1O0N WOUS NV

VOIWO OL

}VOSAWO=(f

€*T=GNI

LIV=(T4f

LYOS=(E

LYyOS=(2

VIIWO LYOS=(TIVSIWO

LOO)

YAqdHO

T*T=f

(FYVIIWO=LTV CZL2L*°9)

(OTSOVSLIUM

AYVYETIT

SVOAIWO WOWINIW

JATIVIIN

ONV

Sil oo€

)VIIWO)

Wa3y))

JANTINOD

TV

WV

O=WIUI ONI-€=7

JALVINITVI

IU)

NI

VVIAWO 00s

OOS IVWYOS

3U))

IVOAWO

)VIOIWO

VSIWO

O1 N O1 FLIUM

T1V9

Ysa0NO SLIUM VOIWO

SI

AT

OC 09

WVI

C9 JAVS

ST 00

SI

wos

00S BLL OT 9

OS LE LLL

Ow OO WOO Ooo oOUo WOU OVUQYL 225

aSTY ZT ZT

ONV

Se Se VOIWOEXTT VOIWOEXTT *d330

3STYU‘W‘N

SeVHd SeVHd

CTISUSCTIGUSETINXSCTEIWX CTISUSCTIGUSETINXSCTEIWX

(8°STAXS (8°STAXS

((Zee0°7Z WeXxZt//*SLINSSY WeXxZt//*SLINSSY

ONTONOdS3SYYOD

*B°STAXSSO°SAXSSO°HAXG*B*STIXSG*H°BAXG *B°STAXSSO°SAXSSO°HAXG*B*STIXSG*H°BAXG Ce Ce

UNO CMOTIVHS CMOTIVHS

W

OOT OOT

TO” TO”

CTINXS CTINXS

TOY TOY OOT OOT TE ONV

CL

OL OL

OL OL

OL OL

OL OL (O°SAXS (O°SAXS (TIVISWO=WVOSIWO IVHA

N

CIIWX* CIIWX*

OD OD

O9 O9 23S 23S

ONIONOdS3¥YOD

OD OD

OD OD MOTIVHS MOTIVHS

TV)

Tuex8* Tuex8* (TOODOODODCOO*’° (TOODOODODCOO*’° (TODOOOOOOO** (TODOOOOOOO**

HLIM

AINAINDIYS AINAINDIYS

E°TTLO° E°TTLO°

C°TPL9N° C°TPL9N° 4 4

-—9

CIPVIOSIWOXS CIPVIOSIWOXS 4O°HAXG 4O°HAXG CT) CT) WVD NV=NNVECTIVOSWO°LOTWVOSWO) TP AVUYV

NNVENSAVSUWVOSWO°LOSSAVSISI VIOAWOX VIOAWOX WV=WIAVS(WVSSWO°

VOAWO &£d330 &£d330

LYOS—" JSITY JSITY IWO=SAVS

*S8/ELIVHd

CHR CHR

CHI CHI O°STIXS O°STIXS CCT

OLNI

WNWINIW*XOT///) WNWINIW*XOT///)

ONV ONV

CIDVHE CIDVHE

SETI SETI OS OS ONV WOWINIW

Txt

23S 23S

LIP LIP LIP LIP

IVOAWO* C/ANO C/ANO SUNO SUNO

(WVOSWO"

d330 d330 XH

LUeXOT LUeXOT

CELIVHd CELIVHd VHA VHA

VOIWO CETIVHd CETIVHd VOSWO

WWecexdNOT=(1)SY ‘H°S4KXG ‘H°S4KXG

VHd TV TV

HOIVI

JAVS=( JAVS=(

TR TR

TH TH WC WC

LO°WV9SWO)

4*T=I 4*T=I

ASTY ASTY JLNTOSEV

(TE) (TE)

CI CI

WIAVS=(TIWX WIAVS=(TIWX NIAVS=CT) NIAVS=CT)

T/T

(TTSOPILIUM (TTSOPILIUM S S CETSOVIEIUM CETSOVIEIUM

WNWINIW ONV

ZTS ZTS

aN aN

LOPSAVS) LOC OooT

PVHd PVHd

TWISEV)IST TWISEV)IST

WISEV) WISEV)

VHd VHd

YwOs ooy 1) 1)

JNNIINOD JINNIINOD

xX xX JNNILNOD SNNIINOD

SAVS

OD OD

JLVINITIVI JLVINITIVI

PLIVWHOS PLIVWHOS

PIVWYOA PIVWYOA

VISWOX VISWOX

00% 00%

LVWHOS LVWHOS 6 6 TV) TV) HCE

“WSN

WV) WV)

OL OL

O1 O1 SLIUM SLIUM

MOTIVHS

* *

aWSXT aWSXT dOis dOis

JLIUM

T=u T=u DSI DSI

POY PAT PAT SI

ST

SI AT

NX NX

095 095

SAVS O05 OG OG AI

LNd OOF OOF

OOE 002

ET ET C2 OTT OOT GE

TOY TOY

ZT ZT

TOOT TOOT TT TT

UwWo Ovowg Wwo Wweouo 226

TISHS

(NOTOITYSW

JYALVAYUND

MOTIVHS)

S

JATLVIIN

OL

SiVWIXOUddvY

°S-I=W

1

"TISHS VHd

AASSIYLISNN

WOYd TV

‘8-7=N

G3LYOddNS G3LIATISS

JHL GIISFL

SOOOT=SSINNDJIHL/SNIGVY

40

G3ILYOddNS

W

NOFINTIOS Yd OOTOO*

ATS3I¥4a

o0000°E

20-J66649T8S0°2 2O-3IZOIOCHELTE Z2O-39B9TETES

€0-39216€696°8 CO-ILEBBTT66°6 CO-JESTLOOZTES

SNOTLIVINDWI TO-ACZE2ITEYZ

2O0-3S1€68€99°T 2O-JEZOHTTTE°? ZCO-JESTOZLIGPE

10-349

V ATTAINS

VOIWO

VIIWO VIIWO

40

¥60€29°T

YOSA

=OTLVY

8

GOHLAW

=OrlVe

L

OL

JO

°°?

PE

YSLdVHD

SNIGVY YFLIWVAVd

SNOTIVYSTIA

*E=S

»%

YO4A

SNTQVY 0O0SO°-

WOYS

LNdING

*SO°-=xXy

OL AO zrnonm © zrn0omo zv T

OL

SNOTILVNDBA SSANNDIHE JANLIVAYND

G3IISS1

IWUNLVN =W

HIINIT =VHd

ATdWVS

HLIM TV

N

227

(MOTTVHS (MOTTVHS

000S¢2960°- 000S¢2960°-

) )

SST SST

CEBCE9SOS— CEBCE9SOS—

(d330) (d330) 3S 3S

=z

= T

2O—3064T TO—-3S28S6099°4 TO-ALSYVETTES°E TO-3ZELGEBYI*? TO-JEODOLSE6LIPT T0-392629869°% TO-JBELLSTIB°E

TO-3969080TE°2Z TO-38EZESLS9°T TO-J2vE7O0N? TO-JECLI6E69L TO-JTTOLS6TS°2 TO-3ST¥ETCCOLESG 10-396 VIIWO

v9IwO €0-397L6£696°8 €0-397L6£696°8

9STE60°E SLIANSAY SLIANSAY

9881 VI3WC VI3WC PZ

°8

*T AINANDIAYA AINANDIAYA

Wom © Z2rnora zvyrnoro

VHd VHd WNWINIW WNWINIW

o0Sco°- o0Sco°- IV IV VIBRATION OF STRESSED SHELLS OF DOUBLE CURVATURE

By

Paul A. Cooper

ABSTRACT

Shells of double curvature are common structural elements in aero- space and related industries, but due to the complexity of their configurations and governing equations, little has been done to classify their general dynamic behavior. The subject of this dissertation is the determination of the effect of the meridional curvature on the natural vibrations of a class of axisymmetrically prestressed doubly curved shells of revolution.

A set of linear equations governing the infinitesimal vibrations of axisymmetrically prestressed shells is developed from Sander's nonlinear shell theory and both the in-plane inertia and prestress deformation effects are retained in the development. The equations derived are consistent with first-order thin-shell theory and can be used to describe the behavior of shells with arbitrary meridional configuration having moderately small prestress rotations.

A numerical procedure is given for solving the governing equations for the natural frequencies and associated mode shapes for a general shell of revolution with homogeneous boundary conditions.

The numerical procedure uses matrix methods in finite-difference form coupled with a Gaussian elimination to solve the governing eigenvalue problem. An approximate set of governing equations of motion with constant

coefficients which are based on shallowness of the meridian are

developed as an alternate more rapid method of solution and are solved

in an exact manner for all boundary conditions. The solutions of the

exact system of shell equations determined from the numerical procedure are used to determine the accuracy of the approximate

solutions and with its accuracy established, the approximate equations are used exclusively to generate results. The membrane and pure bending equations which correspond to the approximate set of equations are solved for a specific boundary condition.

The effect of the meridional curvature on the fundamental frequencies of a class of cylindrical-like shells with shallow meridio- nal curvature and freely supported edges are investigated. Results

show that the positive Gaussian curvature shells have fundamental frequencies well above those of corresponding cylindrical shells. The fundamental frequencies of the negative Gaussian curvature shells gen- erally are below those of the corresponding cylinders and evidence wide variations in value with large reductions in magnitude occuring at

certain critical curvatures. Comparison of the membrane, pure bending and complete shell analyses shows that these critical curvatures represent configurations at which the fundamental mode of vibration of the shell is in a state close to pure bending. The membrane theory affords a simple method of determining the modal wavelength ratio at which the pure bending state exists for a given negative Gaussian curvature shell, while the pure bending theory gives a good estimate

of the magnitude of the frequency for this wavelength ratio.

Meridional edge restraints and internal lateral pressure reduce the wide variation of the natural frequencies in the negative curvature

shells and in general raise the natural frequencies. External lateral pressure accentuates the reduction in natural frequencies of the negative curvature shells and causes instability at low compressive stress ratios.