Noise Figure Measurements

Feb 24, 2009 Account Manager : Peter Caputo Presented by : Ernie Jackson Agenda • Overview of Figure • Measurement Techniques • Accuracy Limitations • PNA-X’s Unique Approach

Gain

So/N o DUT

Si/N i

Noise Figure Basics Page 2 Noise Contributors

Thermal Noise: (otherwise known as Johnson noise) is the kinetic energy of a body of particles as a result of its finite temperature

Ptherm =kTB

Shot Noise: caused by the quantized and random nature of current flow

Flicker Noise: (or 1/f noise) is a low phenomenon where the follows a 1/f ααα characteristic

Noise Figure Basics Page 3 Why do we measure Noise Figure? Example...

Transmitter: ERP = ERP + 55 dBm +55 dBm Path Losses -200 dB Rx Ant. Gain 60 dB dB Power to Rx -85 dBm -200 ses: Los Receiver: Path

Noise Floor@290K -174 dBm/Hz C/N= 4 dB Noise in 100 MHz BW +80 dB Receiver NF +5 dB Rx Sensitivity -89 dBm

Choices to increase Margin by 3dB Receiver NF: 5dB 1. Double transmitter power Bandwidth: 100MHz Power to Antenna: +40dBm 2. Increase gain of antennas by 3dB Antenna Gain: +60dB Frequency: 12GHz 3. Lower the receiver noise figure by 3dB Antenna Gain: +15dB

Noise Figure Basics Page 4 The Definition of Noise Factor or Noise Figure in Linear Terms

• Noise Factor is a figure of merit that relates the Signal to Noise ratio of the output to the Signal to Noise ratio of the input. • Most basic definition was defined by Friis in the 1940’s.  S   S       S  N N    in  out  N  F = in  S    G , Na  N out

Reference: Harald Trap Friis: 1944: Proceedings of the IRE

Noise Figure Basics Page 5 What is Noise Figure ?

Noise Out Noise in

Measurement bandwidth=25MHz a) C/N at input b) C/N at amplifier output Nin Nout

Noise Figure Basics Page 6 Definition of Noise Figure

 S   S      Nout  N in  N out Noise N a Added

G , Na GNin

Sout f1 f2 Gain = G = Nout = Na + GNin Sin N + GN  S  Nout a in   F = = Noise Factor  N  GNin GNin F = in  S   N + GN    NF (dB) =10log a in  N   Noise Figure  out  GNin 

Noise Figure Basics Page 7 Noise Voltage

StandardEquationforNoiseVoltageproducedbyaResistor

e2 = 4kTBR

k = Boltzman's Constant = .1 38×10−23 Joules/°K is T is absolute temperature ( °K) is B is bandwidth (Hz) e is rms voltage

Reference:JBJohnson/Nyquist:1928:BellLabs

Noise Figure Basics Page 8 Noise Power at Standard Temperature

ThermalLoad k=1.38x10 23 joule/k R - j X T=Temperature(K) R+jX L L B=Bandwidth(Hz)

AvailableNoisePowerDeliveredtoaConjugateLoad,

Pav = kTB

-21 At 290K P av = 4 x 10 W/Hz = -174dBm / Hz

In deep space kT = -198dBm/Hz

Noise Figure Basics Page 9 Noise Power is Linear with Temperature

Nin Nout = Na + GNin

= Na + GkTs B G , Na Z s @ Ts

Nout Slope = kGB N2

N1

Na Output Noise Noise Output Power Ts T1 T2 Temperature of Source Impedance

Noise Figure Basics Page 10 An Alternative Way to Describe Noise Figure:

Effective Input ( T e)

N = N + GN ∑∑∑ out a in = GkTe B + GkTs B G , Na = 0 = GkB(Te +Ts ) Z s @ Ts Z s @ Te N out Slope = kGB

T = (F −1)T e s N

and a Output Noise Noise Output Power

Ts Te +Ts TemperatureT of Source F = e Impedance Ts Noise Figure Basics Page 11 Te or NF: which should I use?

••UseUse either either - - they they are are completely completely interchangeable interchangeable ••TypicallyTypically NF NF for for terrestrial terrestrial and and Te Te for for space space ••NFNF referenced referenced to to 290K 290K - - not not appropriate appropriate in in space space ••IfIf Te Te used used in in terrestrial terrestrial systems, systems, the the temperatures temperatures cancan be be large large (10dB=2610K) (10dB=2610K) ••TeTe is is easier easier to to characterize characterize graphically graphically

Noise Figure Basics Page 12 Friis or Cascade Equation

• Here we see what contribution a second amplifier has on the overall noise factor.

N = N + G N + G G N Nin out a2 1 a1 1 2 in

G = G1G2 G , N G , N 1 a1 2 a2 Nin = kTs B Z s @ Ts Na1 = kTe1B = (F1 −1)kTs B

Na2 Na2 = kTe2 B = (F2 −1)kTs B N F = out

Na1G2 GNin Na1

kT B kT BG kT BG G F2 −1 Nin = s s 1 s 1 2 F12 = F1 + G1

Noise Figure Basics Page 13 Effects of Multiple Stages on Noise Factor

• The cascade equation can be generalized for multiple stages

Nin

G1 , Na1 G2 , Na2 GN , N N 2 Z s @ Ts F −1 F −1 F = F + 2 +L+ N total 1 K G1 G1G2 GN −1     N  F −1  F = F + i total 1 ∑ N  i=2 G  ∏ j−1   j=i 

Noise Figure Basics Page 14 Demo of Cascade Equation F2 −1 F = F1 + G1

ABC

Gain (dB) 6.0 12.0 20.0 Gain 4.0 16.0 100.0 Noise Figure(dB) 2.3 3.0 6.0 Noise Factor 1.7 2.0 4.0

0.2 −1 0.4 −1 F = 7.1 + + = .1 70 + .0 25 + .0 047 = .1 997 ABC 4.0 4.0×16.0 NFABC =10log( .1 997) = .3 00 dB 0.4 −1 0.2 −1 F = 7.1 + + = .1 70 + .0 75 + .0 025 = .2 475 ACB 4.0 4.0×100.0 NFACB =10log( .2 475) = .3 93 dB

Noise Figure Basics Page 15 Agenda • Overview of Noise Figure • Noise Figure Measurement Techniques • Accuracy Limitations • PNA-X’s Unique Approach

Gain

So/N o DUT

Si/N i

Noise Figure Basics Page 16 Measuring Noise Figure

Na+Nin.Ga F= Nin.Ga Nin Nout=Na+kTB Ga

Rs Ga , Na

r e

w Slope=kBGa

o

P

t

u tic p ris t te

u c TosolveforNa: ara TosolveforNa: O h C 1)establish2pointsoncurve ee 1)establish2pointsoncurve Fr ise oror No 2)establish1pointandgradient2)establish1pointandgradient Na

Te Te SourceTemperature(K)

Noise Figure Basics Page 17 Hot/Cold Technique

Nin=kB(ThorTc) Nout=NhorNc

Rs

r

e w

o Nh

P

t

u Slope=kBGa

p

t

u O •Physicallyhot/coldsource•Physicallyhot/coldsource Nc •avalanchediode•avalanchediode

Na

Te TcSourceTemp(K) Th

Noise Figure Basics Page 18

)

o

N (

No = kGB • Ts + Na

r e

Measured w

o Nh P

Slope=kGB Nh t

Y = u p

Nc t u O Nc

Na SourceTemp(Ts) Te Tc Th Input (Th − To ) ENR = To Calculated  ENR  Na Na = kBGTo −1 Te =  Y −1  kGB Na + kGBTo ENR Te + To F = = = Te = To(F −1) kGBTo Y −1 To

Noise Figure Basics Page 19 Noise Source - the Avalanche Diode

Matching Pad

Bias Noise Input Output

Excess Noise Ratio, ENR (dB) = 10 Log ( T - 290) 10 h Frequency ENR dB

290 XXX AAA YYY BBB ZZZ CCC . . . .

Noise Figure Basics Page 20 Noise Figure Analyzer

Nout_cold Nh Nin_cold Source variable DUT impedance attenuator Nout_hot Nc Nin_hot

Nh kGB(Te+Th) Th YTc Y=___=______Te=______(solveforTe) Nc kGB(Te+Tc) Y 1 Te+To F=______To

Noise Figure Basics Page 21 Calibrating out System NF

Source variable DUT impedance attenuator

F1, Ga1 F2

F12

F2-1 F1 = F 12 - Ga1

F2-1 if F 12 ≈≈≈ then uncertainty increases, so beware if F 1 and G 1 are low Ga1

Noise Figure Basics Page 22 How does the NFA measure gain

Slope=kBG 1G2 Nh_meas

t r en e em w ur o as Slope=kBG 2

P Nh_cal e

t m u UT p nt t D me u e Nc_meas sur O ea nm atio Nc_cal libr Ca

TcSourceTemp(K) Th

Noise Figure Basics Page 23 Avoidable Measurement Errors: EM Susceptance

Lights (Esp. Fluorescent)

Noise Source

FM TV * DoubleshieldedCablesforIF Computers (OrdinaryBraidifporous) * ShieldedHPIBCables * EncloseAllCircuits * JiggleConnectors(Esp.BNC) * Trysnaponferritecoresoncables,dampencommonmodecurrents *LOContributesSpuriousandNoise

Noise Figure Basics Page 24 Avoidable Measurement Errors: Choose the Appropriate Noise Source

•15dBENRnoisesourcetomeasureNFofup•15dBENRnoisesourcetomeasureNFofup to30dB(egN4001A,N4002A,346B/C)to30dB(egN4001A,N4002A,346B/C) •Use6dBENRforverylownoisefigure•Use6dBENRforverylownoisefigure devicestokeepnoisedetectorlinearityissuesdevicestokeepnoisedetectorlinearityissues toaminimum(egN4000A,346A).toaminimum(egN4000A,346A).

•UseaNoiseSourcewithgreaterinternal•UseaNoiseSourcewithgreaterinternal attenuationiftheDUTismatchsensitive(egattenuationiftheDUTismatchsensitive(eg N4000A,346A).N4000A,346A).

Noise Figure Basics Page 25 Avoidable Measurement Errors: Accurate Loss Compensation

Cable C1 Noise Coax/WG adapter Source G 1

DUT Cable C2 G 2 Measurement system Coax/WG adapter

Noise Figure Basics Page 26 Avoidable Measurement Errors: Loss Compensation and Calibration

Noise Figure Basics Page 27 Noise Source - the Avalanche Diode

Matching Pad

Bias Noise Input Output

Excess Noise Ratio, ENR (dB) = 10 Log ( T - 290) 10 h Frequency ENR dB

290 XXX AAA YYY BBB ZZZ CCC . . . .

Noise Figure Basics Page 28 AvoidableAvoidable Measurement Measurement Errors: Errors:

TemperatureTemperature Considerations Considerations (Diode) (Diode)

r e

To=296.5K w

Th=10,000or1,500 o Nh

P

t

u

p

t

u O Nc

Na

Te ToTc Th Th’

SourceTemp(K) ReportAmbientTemperaturetoAnalyzerforAccurateENRInterpre tations

Noise Figure Basics Page 29 Noise Figure Basics Page 30 Avoidable Measurement Errors: Loss and Temperature Corrections

• A temperature must be entered in Loss Compensation Setup for valid results NFA & PSA Default = 0 degrees K • The NFA and PSA accept S2P files from a Network Analyzer for the Loss Compensation table

Noise Figure Basics Page 31 Avoidable Measurement Errors: Account for Frequency Conversion (DSB Measurement) Mixer

Noise fMeasure f IF Noise Source Meter

f NP NP LO fLO External LO

f IF f IF f IF Freq Freq DSB is recommended when : • The application is DSB • The DUT is broadband • No SSB filter is available • The frequency range make SSB filters impossible/impractical Loss compensation of 3dB (under perfect conditions) needs to be entered to account for doubling of power during measurement

Noise Figure Basics Page 32 Avoidable Measurement Errors: Account for Frequency Conversion (SSB Measurement)

Mixer

Noise SSB fMeasure f IF Noise Source Filter Meter

fLO NP NP External LO fLO

f IF f IF f IF Freq Freq SSB is recommended when : • The application is SSB • The DUT is narrowband If down conversion is part of the measurement system, filters should be included in calibration path and measurement path because the calibration and measurement are performed at the same .

Noise Figure Basics Page 33 ReduceMeasurementSystemNoiseFigure Using a pre-amplifier to improve accuracy

preamplifier Mixerconvloss9dB Source DUT impedance

AnalyzerNF6dB

variable attenuator DUTG=10dB, NF=1.0dB F12_wanted=4dB

Noise Figure Basics Page 34 MinimiseMinimise ErrorsErrors whichwhich cannotcannot bebe eliminated:eliminated: ReduceReduce MeasurementMeasurement SystemSystem NoiseNoise FigureFigure

F2 −1 • Most important of all F = F1 + G uncertainties 1 • if DUT has low gain/ low NF - F2-1 watch out! F = F - 1 12 G • NF2 ≤≤≤ (NF1 + G1) - 5dB for a1 F2 current -1 accuracy F2 reduced = F preamp + Gpream • work out new system NF with p F2 current -1 preamp G = preamp F2 -F • work out preamp gain reduced preamp • avoid overload

Pin = -174dBm/Hz + ENR(dB) + 10log(BW) + NF1 +G1(dB) + Gpre(dB)

Noise Figure Basics Page 35 ReduceReduce MeasurementMeasurement SystemSystem NoiseNoise FigureFigure (cont)(cont) ErrorError inin 2nd2nd StageStage CorrectionCorrection Uncertaintyimprovement byaddingpreamplifier 3. 0 2. ♦♦♦ 5 2. 0 GAIN=0 dB 5 dB 10 dB 1. 0. 9. 15 8. dB 7 . 6 . (dB) 5 20 . dB 4

RSSUNCERTAINTY . 3 ♦♦♦ . 2

. 1 0. 5. 10. 15. 20. 0 0 0 0 0 SYSTEMNOISEFIGURE,F2(dB)

Noise Figure Basics Page 36 AdditionalAdditional RecommendationsRecommendations

•• MinimizeMinimize the the noise noise figure figure of of the the test test system system (especially(especially when when measuring measuring low low gain gain DUTs).DUTs). •• ReduceReduce the the magnitude magnitude of of all all mismatches mismatches by by usingusing isolators isolators or or pads pads •• MinimizeMinimize the the number number of of adapters, adapters, and and take take carecare of of them them •• CalibrateCalibrate Noise Noise Source Source ENR ENR values values regularlyregularly and and use use good good pedigree pedigree calibration calibration •• UseUse Averaging Averaging to to Avoid Avoid Display Display Jitter •• ChooseChoose the the Appropriate Appropriate Bandwidth Bandwidth •• AvoidAvoid DUT DUT non-linearities non-linearities

Noise Figure Basics Page 37 Agenda • Overview of Noise Figure • Noise Figure Measurement Techniques • Accuracy Limitations • PNA-X’s Unique Approach

Gain

So/N o DUT

Si/N i

Noise Figure Basics Page 38 Calculating Unavoidable Uncertainty Availableat:www.agilent.com/find/nfu

Noise Figure Basics Page 39 Measurement Uncertainty Case Studies Noise Figure Uncertainty The uncertainty of the overall noise system is related to the noise source (match and ENR uncertainty), device under test (noise figure, gain , i/p and o/p match) and instrument parameters (noise figure uncertainty, gain uncertainty, level of noise figure and match). See http://www.agilent.com/find/nfu

Example 1. @ 1GHz DUT Noise Figure = 1dB DUT Gain = 20dB DUT i/p match = 1.5 DUT o/p match = 1.5 PSA=0.167dB8970B=0.19dB; N8973A=0.167dB 12%lessRSSnoisefigureuncertaintywithNFAorPSA

Example 2. @ 6GHz DUT Noise Figure = 6dB DUT Gain = 15dB DUT i/p match = 1.5 DUT o/p match = 1.5 PSA=0.186dB8970B=0.327dBN8973A=0.186dB 43%lessRSSnoisefigureuncertaintywithNFAorPSA

Example 3. @ 12GHz DUT Noise Figure = 4dB DUT Gain = 20dB DUT i/p match = 1.8 DUT o/p match = 1.8 8970B/8971C=0.423dBN8975A=0.353dB 16%lessRSSnoisefigureuncertaintywithNFA

Example 4. @ 20GHz DUT Noise Figure = 4dB DUT Gain = 20dB DUT i/p match = 1.8 DUT o/p match = 1.8 8970B/8971C=0.945dBN8975A=0.409dB Noise Figure Basics 57%lessRSSnoisefigureuncertaintywithNFA Page 40 Noise Figure Basics Page 41 Noise Figure Basics Page 42 Agilent’s Noise Figure Legacy

8970 8560/90withNF 340A 1980 1995 1958 85120 1999 Nearly 50 years of Leadership NFA 2000

NEW!NEW! NEW!NEW! PSAwithNF 2002 ESAwithNF PNAXwith 2003 NF MXA,EXAwith 2007 NF 2007

Noise Figure Basics Page 43 Agenda • Overview of Noise Figure • Noise Figure Measurement Techniques • Accuracy Limitations • PNA-X’s Unique Approach

Gain

So/N o DUT

Si/N i

Noise Figure Basics Page 44 Source-corrected Noise Figure PNA Series 325 GHz Measurements 110 GHz for the PNA-X 67 GHz PNA-X 50 GHz 40 GHz 20 GHz 13.5 GHz 6 GHz 1010 MHzMHz -- 26.5 26.5 GHzGHz

Noise Figure Basics Page 45 Single Connection, Multiple Measurements • Easilyswitchbetweenmeasurements:

• Onesignalsource • CW S-parameters • Pulsed S-parameters • Gain compression • AM-to-PM conversion • Harmonics • Twosignalsources • Intermodulation

• Hot-S22 • Phase versus drive • True-mode stimulus • Conversion loss/gain • Noisefigure

Noise Figure Basics Page 46 Noise Figure Definition Noise figure is defined in terms of SNR degradation:

(S i/N i) (N o) F= = (noisefactor) (S o/N o) (GxN i)

NF=10xlog(F) (noisefigure)

Gain

So/N o DUT

Si/N i

Testsystemisassumedtobe50Testsystemisassumedtobe50

Noise Figure Basics Page 47 PNA-X’s Unique Source-Corrected Technique • PNA-X varies source match around 50 ohms using an ECal module (source-pull technique) • With resulting impedance/noise-figure pairs and vector error terms,

very accurate 50-ohm noise figure (NF 50 ) can be calculated • Each impedance state is measured versus frequency

(Z 1,F 1),(Z 2,F 2),…

Z’smeasuredduringcal F’smeasuredwithDUT

frequency

Noise Figure Basics Page 48 Speed Comparison: PNA-X Versus Y-Factor

Noise Figure Speed Benchmarks 10 MHz - 26.5 GHz

45

40

35 PNA-X is 40% to 900% faster than NFA!

30

25 NFA PSA EXA Seconds 20 PNAX

15

10

10x* 5 6.8x* 1.4x* 4.2x*

0 11 51 101 201 Points *PNAXsweepspeedimprovementcomparedtotheNFA

Noise Figure Basics Page 49 Noise Figure Uncertainty Example (ATE Setup)

Amplifier: 4.500 Gain=15dB Input/outputmatch=10dB Y-factor with noise source NF=3dB connected to DUT via switch matrix Gammaopt=0.27 ∠ 0o Fmin=2.7dB Rn=12– 33 4.000

0.75dB

3.500 Y-factor with noise source 0.5dB directly at DUT input

NF NF (dB) PNA-X 0.2dB

3.000

2.500

2.000 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24.5 26.5 GHz *Note:thisexampleignoresdriftcontribution

Noise Figure Basics Page 50 Uncertainty Breakdown (ATE Setup) Duetoimperfect 50ohmsourcematch

YfactorwithATEnetwork dB Yfactorwithnoise sourceconnectedtoDUT PNAXwithATEnetwork Jitter

Mismatch Notes:

interaction Gain=15dB(4.5GHz)

s NF=3dB Totaluncertainty DUTnoise/ Γ ENRuncertainty Sparameter Input/outputmatch=10dB Fmin=2.8dB Gopt=0.27+j0 Rn=37 Uncertaintycontributors Noisesource=346C 97%confidence

Noise Figure Basics Page 51 Noise Figure Uncertainty Example (Wafer Setup) Amplifier: Y-factor with noise source 4.500 Gain=15dB Y-factor with noise source connected Input/outputmatch=10dB connected to DUT via switch matrix NF=3dB to probe via switch matrix Gammaopt=0.27 ∠ 0o Fmin=2.7dB 1.1dB Rn=12– 33 4.000

Y-factor with noise source connected to DUT input Y-factor with noise source 0.75dB 3.500 connected to probe input PNA-X

0.3dB

NF (dB) NF PNA-X

3.000

Amplifier: 2.500 Gain=15dB Input/outputmatch=10dB NF=3dB Gammaopt=0.268 ∠ 0o Fmin=1.87dB Rn=12– 33 Wavemodelcorrelation=50% 2.000 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24.5 26.5 GHz *Note:thisexampleignoresdriftcontribution

Noise Figure Basics Page 52 Uncertainty Breakdown (Wafer Setup)

On Wafer 15 dB amp with 3 dB Noise figure at 4.5 GHz (Fmin = 2.8 dB, Gopt = 0.27 +j0, Rn = 37.4)

1.8 1.6 1.4 1.2 1 97% Confidence (dB) 0.8 0.6 0.4 Wave 0.2 YFactor 0 YFactor PNAXWave Jitter Mismatch TotalUncertainty ENRUncertainty Sparameters

Uncertainty Contributor NoiseParameters

Noise Figure Basics Page 53 Example NF Measurements 5

4

PNAXmethodusingsourcecorrection 3

2 NoiseFigure(dB) 1 TraditionalYfactortechnique 0 0 5 10 15 20 25 Frequency(GHz)

Noise Figure Basics Page 54 Airline Demonstration

NF using NFA (Unit 354)

4

3

Noairline DUT 2 dB Withairline

1 Measurement1: DUTalone 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7.8 2 2.9 3 Freq (GHz)

NF using PNA-X (Unit 354)

4.00 7.5mm(length)airline DUT 3.00

Noairline 2.00 dB Withairline Measurement2: DUTwithairline 1.00

0.00 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7.8 2 2.9 3 Freq (GHz)

Noise Figure Basics Page 55 NF Comparison in Pseudo ATE environment

Noisesource(measurement) NFA

12”cable DUT Losscomp: 4GHz 0.30dB 6GHz– 0.38dB

12”cable DUT

PNAXcalandmeasurementplanes

Noise Figure Basics Page 56 2-Port PNA-X Options 219, 224, 029

Source 1 LO OUT2 OUT1 To OUT1 OUT2 Pulse receivers modulator Pulse modulator

+28V J11 J10 J9 J8 J7 J2 J1 Rear

Noisereceiverspanel

10MHz 3 26.5GHz 3GHz

R1 A R2

Pulse generators 35dB B

65 dB 35dB

65dB

Source 2 DU Source 2 Receivers Test port Output 1 Output 2 Test port 1 T 2

RFjumpers Mechanicalswitch

Noise Figure Basics Page 57 Typical Noise Figure of Port Two

Noise Figure Basics Page 58 Noise Channel Parameters

Noise Figure Basics Page 59 Noise Figure Setup

4through7

Noise Figure Basics Page 60 Calibration Procedure

• Calibration uses sinusoidal and noise sources, plus cold terminations • Some differences between high and low band calibrations • Calibration sequence for simplest case (insertable) 1. Connectnoisesourcetoport2 • Measure hot and cold noise power • Measure hot and cold match of noise source 2. Connectthrough(ports1and2) • Measure gain differences between 0, 15, 30 dB stages • Measure load match of noise receivers

• Measure ΓΓΓs values of ECal used as impedance tuner

• Measure receiver noise power with different tuner ΓΓΓs values (mechanical cal only) 3. Connectcalibrationstandards(ports1and2) • Measure normal S-parameter terms

• Measure receiver noise power with different ΓΓΓs values (use ECal or mechanical standards) • Non-insertable cases require extra steps • additional 1-port calibration to account for adapter if noise source is non-insertable • additional S-parameter cal steps for non-insertable DUTs

Noise Figure Basics Page 61 Calibrating On Wafer

1 2

1portcal

3

2portcal

Noise Figure Basics Page 62 Comparison Between Gain Settings

Noise Figure Basics Page 63 Measuring Attenuators

20dBattenuator 40dBattenuator

Noise Figure Basics Page 64 Interference Beware of unshielded devices, especially near 0.9, 1.8, 2.4, 5.5 GHz!

Noise Figure Basics Page 65 Compression and Damage • Compression in noise receivers: • Wideband noise compresses front-end first • Narrowband noise likely to compress ADC before front-end amplifiers • PNA-X will report overload for both cases • Damage level for noise receivers is lower than standard receivers • Front-panel specification is +25 dBm in noise mode • Firmware checks power before switching in 30 dB stage

Detectsfrontendoverload

Noise Figure Basics Page 66 Summary • Y-factor method offers reasonable accuracy when noise source is connected directly to DUT • Source-corrected cold-source technique: • Offers best accuracy in all cases • Works in fixtured, on-wafer, and ATE environments • Is 1.4 to 10 times faster than NFA • PNA-X offers highest accuracy as well as speed and convenience of singleconnection to DUT for a variety of amplifier measurements

Noise Figure Basics Page 67 References • Applications Notes • Fundamentals of RF and Microwave Noise Figure Measurements, AN 57-1, Publication Number 5952-8255E • Noise Figure Measurement Accuracy - The Y-Factor Method, AN 57-2, Publication Number • 10 Hints for Making Successful Noise Figure Measurements, AN 57-3, Publication Number 5980-0288EN

• Web Links http://www.agilent.com/find/nf NFA : http://www.agilent.com/find/nfa PSA : http://www.agilent.com/find/psa NF Uncertainty Calculators: http://www.agilent.com/find/nfu

Noise Figure Basics Page 68