Mcafee Guidance on Container Security Strategy Aligned to NIST SP 800-190

Total Page:16

File Type:pdf, Size:1020Kb

Mcafee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 Holistic view of container risks, threat scenarios, and countermeasures to help formulate container security strategy 1 McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER Table of Contents 6 MVISION CNAPP Mapping to NIST SP 800-190 8 Review of Risk Elements and Countermeasures 8 Image Risks and Countermeasures 10 Registry Risks and Countermeasures 12 Orchestrator Risks and Countermeasures 20 Container Risks and Countermeasures 24 Host Risks and Countermeasures 26 Key Takeaways 27 About McAfee 2 McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 Holistic view of container risks, threat scenarios, and countermeasures to help formulate container security strategy Government and Private Sector organizations are transforming their businesses by embracing DevOps principles, microservice design patterns, and container technologies across on-premises, cloud, and hybrid environments. Container adoption is becoming mainstream to drive digital transformation and business growth and to accelerate product and feature velocity. Companies have moved quickly to embrace cloud native applications and infrastructure to take advantage of cloud provider systems and to align their design decisions with cloud properties of scalability, resilience, and security first architectures. The declarative nature of these systems enables However, the unique methods by which application numerous advantages in application development and containers are created, deployed, networked, and deployment, like faster development and deployment operated present unique challenges when designing, cycles, quicker bug fixes and patches, and consistent implementing, and operating security systems for build and monitoring workflows. These streamlined these environments. They are ephemeral, often too and well controlled design principles in automation numerous to count, talk to each other across nodes pipelines lead to faster feature delivery and drive and clusters more than they communicate with the competitive differentiation. outside endpoints, and they are typically part of fast- moving continuous integration/continuous deployment Legacy application architecture stacks continue (CI/CD) pipelines. Additionally, development toolchains to make way for loosely coupled microservices, and operations ecosystems continue to present significantly reducing the cost, allowing parallel new ways to develop and package code, secrets, development, simplifying complexity, and shortening and environment variables. Unfortunately, this also the time needed to package and deploy applications. compounds supply chain risks and presents an ever- Containers (especially Docker) are intended to run increasing attack surface. Connect With Us single applications which makes them ideal for microservices based application patterns. 3 McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER AWS Code Pipeline Source Build Deploy AWS CodeCommit AWS CodeBuild Amazon Elastic Container Service AWS Cloud9 Developer Amazon Simple Amazon Elastic Storage Service Container Registry Figure 1. Example Architecture of Deployment to Containers in AWS Azure Container 7 Registry 4 2 3 5 6 Azure Repos Azure DevOps Azure DevOps Azure Container Service Pipelines Pipelines (Managed Kubernetes) 8 9 Engineer Visual Studio Azure Application Insights 10 Azure DevOps Boards Figure 2. Example Architecture of Deployment to Containers in Azure 4 McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER As more enterprises adapt to cloud-native architectures ■ Section 1: Introduction and embark on multi-cloud strategies, demands are ■ Section 2: Introduces containers, including their technical changing usage patterns, processes, and organizational capabilities, technology architectures, and uses structures. Despite having a greater percentage of ■ Section 3: Explains the major risks for the core containers in production, these enterprises have only components of application container technologies modestly reduced their security concerns, primarily because of the lack of a comprehensive container ■ Section 4: Recommends countermeasures for the risks security strategy or often not knowing where to start. identified in Section 3 There are legitimate concerns that persist about ■ Section 5: Defines threat scenario examples for misconfigurations and runtime risks in cloud native containers applications, and still too few organizations have a ■ Section 6: Presents actionable information for robust security plan in place. planning, implementing, operating, and maintaining As organizations continue to recognize the need to evolve container technologies their security toolchains and processes and somehow ■ Section 7: Conclusion embrace complexity via automation, there are common themes that have emerged, such as the emphasis on This whitepaper covers the mapping of each of the cloud teams to integrate specific security and compliance key risk components from Section 3 of NIST SP 800- checks into their respective DevOps processes to better 190 to individual capabilities within MVISION Cloud understand and manage risks over time. Native Application Protection Platform (CNAPP). These capabilities are then aligned with a significant majority These complex problem definitions mentioned above of countermeasures that have been proposed in have led to the development of a special publication Section 4 of NIST SP 800-190, which should be reviewed from National Institute of Standards and Technology as reference implementation guidance to automate (NIST) – NIST SP 800-190. It outlines a set of guidelines compliance and implement security for containerized for securing container applications and infrastructure application workloads. components. While centered in container technologies, it comprises seven main sections: 5 McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER MVISION CNAPP Mapping to NIST SP 800-190 builds from being pushed to production. The same MVISION Cloud Native Application Protection Platform principles apply to orchestrator configurations to help (CNAPP) is a comprehensive device-to-cloud security secure how containers get deployed using CI/CD tools. platform for visibility and control across SaaS, PaaS, These baseline checks can be augmented with other and IaaS platforms. It provides deep coverage on cloud policy types to ensure file integrity monitoring and native security controls that can be implemented configuration hardening of hosts (e.g., no insecure ports throughout the entire application lifecycle. The chart or unnecessary services), which help apply defense-in- in this section outlines how CNAPP’s capabilities map depth by minimizing the overall attack surface. to support individual risk elements in NIST SP 800-190 Finally, the platform enforces policy-based immutability Application Container Security Guide. on running container instances (and hosts) to help MVISION CNAPP first discovers all the cloud-native identify process-, service-, and application-level components mapped to an application, including hosts, whitelists. By leveraging the declarative nature of IaaS/PaaS services, containers, and the orchestration containerized workloads, threats can be detected during context that a container operates within. With the use of the runtime phase, including any exposure created native tagging and network flow log analysis, customers as a result of misconfigurations, application package can visualize cloud infrastructure interactions including vulnerabilities, and runtime anomalies such as execution across compute, network, and storage components. of reverse shell or other remote access tools. While Additionally, the platform scans cloud native object and segmentation of workloads can be achieved in the file stores to assess presence of any sensitive data or build and deploy phases of a workload using posture malware. Depending on the configuration compliance checks for constructs like namespaces, network policies, of the underlying resources and data sensitivity, an and container runtime configurations to limit system aggregate risk score is computed per application which calls, the same should also be enforced in the runtime provides detailed context for an application owner to phase to detect and respond to malicious activity in an understand risks and prioritize mitigation efforts. automated and scalable way. As a cloud security posture management platform, The platform defines baselines and behavioral models MVISION CNAPP provides a set of capabilities that that can specially be effective to investigate attempts at ensure that assets comply with industry regulations, network reconnaissance, remote code execution due to best practices, and security policies. This includes zero-day application library and package vulnerabilities, proactive scanning for vulnerabilities in container and malware callbacks. Additionally, by mapping these images and VMs and ensuring secure container threats and incidents to the MITRE ATT&CK tactics runtime configurations to prevent non-compliant and techniques, it provides a common taxonomy to cloud security teams regardless of the underlying cloud 6 McAfee Guidance on Container Security Strategy Aligned to NIST SP 800-190 WHITE PAPER application or an individual component.
Recommended publications
  • Remote Attestation on Light VM
    POLITECNICO DI TORINO Master's Degree in Computer Engineering Master Thesis Remote Attestation on light VM Supervisor prof. Antonio Lioy Candidate Fabio Vallone Accademic Year 2016-2017 To my parents, who helped me during this journey Summary In the last decade Cloud Computing has massively entered the IT world, changing the way services are offered to the final users. One important aspect of Cloud Computing is the needs to provide greater scalability and flexibility and this can be done by using a technique called Virtualization. This enables us to execute different virtualized ambient on a single piece of hardware. Each virtualized ambient can be seen as a node that offers some services to the final users by exchanging information with other nodes. For this reason the ability to trust each other is growing exponentially. This process is called Remote Attestation and it is from this consideration that the thesis work start. When we say that a node is trustworthy, we are saying that we are sure that all the file that are loaded into memory are the ones that are supposed to be loaded. In other word we need to be sure that the code, and in general the files loaded on that node, have not been tampered by anyone in order to produce a different behaviour of the node. It is important to note that we are not checking in anyway that the behaviour of the machine is logically correct, but we are simply checking that no one has modified it, so bug and logical error can still occurs in the code.
    [Show full text]
  • A Study on the Evaluation of HPC Microservices in Containerized Environment
    ReceivED XXXXXXXX; ReVISED XXXXXXXX; Accepted XXXXXXXX DOI: xxx/XXXX ARTICLE TYPE A Study ON THE Evaluation OF HPC Microservices IN Containerized EnVIRONMENT DeVKI Nandan Jha*1 | SaurABH Garg2 | Prem PrAKASH JaYARAMAN3 | Rajkumar Buyya4 | Zheng Li5 | GrAHAM Morgan1 | Rajiv Ranjan1 1School Of Computing, Newcastle UnivERSITY, UK Summary 2UnivERSITY OF Tasmania, Australia, 3Swinburne UnivERSITY OF TECHNOLOGY, AustrALIA Containers ARE GAINING POPULARITY OVER VIRTUAL MACHINES (VMs) AS THEY PROVIDE THE ADVANTAGES 4 The UnivERSITY OF Melbourne, AustrALIA OF VIRTUALIZATION WITH THE PERFORMANCE OF NEAR bare-metal. The UNIFORMITY OF SUPPORT PROVIDED 5UnivERSITY IN Concepción, Chile BY DockER CONTAINERS ACROSS DIFFERENT CLOUD PROVIDERS MAKES THEM A POPULAR CHOICE FOR DEVel- Correspondence opers. EvOLUTION OF MICROSERVICE ARCHITECTURE ALLOWS COMPLEX APPLICATIONS TO BE STRUCTURED INTO *DeVKI Nandan Jha Email: [email protected] INDEPENDENT MODULAR COMPONENTS MAKING THEM EASIER TO manage. High PERFORMANCE COMPUTING (HPC) APPLICATIONS ARE ONE SUCH APPLICATION TO BE DEPLOYED AS microservices, PLACING SIGNIfiCANT RESOURCE REQUIREMENTS ON THE CONTAINER FRamework. HoweVER, THERE IS A POSSIBILTY OF INTERFERENCE BETWEEN DIFFERENT MICROSERVICES HOSTED WITHIN THE SAME CONTAINER (intra-container) AND DIFFERENT CONTAINERS (inter-container) ON THE SAME PHYSICAL host. In THIS PAPER WE DESCRIBE AN Exten- SIVE EXPERIMENTAL INVESTIGATION TO DETERMINE THE PERFORMANCE EVALUATION OF DockER CONTAINERS EXECUTING HETEROGENEOUS HPC microservices. WE ARE PARTICULARLY CONCERNED WITH HOW INTRa- CONTAINER AND inter-container INTERFERENCE INflUENCES THE performance. MoreoVER, WE INVESTIGATE THE PERFORMANCE VARIATIONS IN DockER CONTAINERS WHEN CONTROL GROUPS (cgroups) ARE USED FOR RESOURCE limitation. FOR EASE OF PRESENTATION AND REPRODUCIBILITY, WE USE Cloud Evaluation Exper- IMENT Methodology (CEEM) TO CONDUCT OUR COMPREHENSIVE SET OF Experiments.
    [Show full text]
  • A Comparative Analysis Between Traditional Virtualization and Container Based Virtualization for Advancement of Open Stack Cloud
    ISSN (Online) 2394-2320 International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 5, Issue 4, April 2018 A Comparative Analysis between Traditional Virtualization and Container Based Virtualization for Advancement of Open Stack Cloud [1] Krishna Parihar, [2] Arjun Choudhary, [3] Vishrant Ojha [1][2] Department of Computer Science and Engineering, Sardar Patel University of police, Security and Criminal Justice, Jodhpur Abstract: - LXD based machine containerized new concept in the virtualization world. Its give performance to the bare metal virtualizations. A Centralized system is accessed through IP and can be scalable on demand as per requirement, Technology that eases the user problem like hardware, as well as software most popular technologies, is known as Cloud Computing. As per enterprise and industries demand cloud computing holds a big part of IT world. An OpenStack is a way to manage public and private cloud computing platform. A Linux Container Hypervisor brings Cloud Computing to the next generation Hypervisor with its features Fast, Simple, Secure. The main goal of this paper is factual calibrate is determine various virtualization technique and performance analysis. Keywords— OpenStack, LXD, Cloud Computing, Virtualization, Container, Hypervisor power their public cloud infrastructure.[2] The core I. INTRODUCTION component of virtualization is Hypervisors. Analysis of structured and consistent data has seen A B. Hypervisor cloud computing technologies have been rapidly devel- It is a software which provides isolation for virtual ma- oping. resources are dynamically enlarged, virtualized as chines running on top of physical hosts. The thin layer of well as feed as a service over the Internet, it permits software that typically provides capabilities to virtual providers to provide users connected to a virtually parti-tioning that runs directly on hardware, It provides a unlimited number of resources i.e.
    [Show full text]
  • Application Container Security Guide
    NIST Special Publication 800-190 Application Container Security Guide Murugiah Souppaya John Morello Karen Scarfone This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-190 C O M P U T E R S E C U R I T Y NIST Special Publication 800-190 Application Container Security Guide Murugiah Souppaya Computer Security Division Information Technology Laboratory John Morello Twistlock Baton Rouge, Louisiana Karen Scarfone Scarfone Cybersecurity Clifton, Virginia This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-190 September 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Kent Rochford, Acting Under Secretary of Commerce for Standards and Technology and Acting Director NIST SP 800-190 APPLICATION CONTAINER SECURITY GUIDE Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority.
    [Show full text]
  • Separating Protection and Management in Cloud Infrastructures
    SEPARATING PROTECTION AND MANAGEMENT IN CLOUD INFRASTRUCTURES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Zhiming Shen December 2017 c 2017 Zhiming Shen ALL RIGHTS RESERVED SEPARATING PROTECTION AND MANAGEMENT IN CLOUD INFRASTRUCTURES Zhiming Shen, Ph.D. Cornell University 2017 Cloud computing infrastructures serving mutually untrusted users provide se- curity isolation to protect user computation and resources. Additionally, clouds should also support flexibility and efficiency, so that users can customize re- source management policies and optimize performance and resource utiliza- tion. However, flexibility and efficiency are typically limited due to security requirements. This dissertation investigates the question of how to offer flexi- bility and efficiency as well as strong security in cloud infrastructures. Specifically, this dissertation addresses two important platforms in cloud in- frastructures: the containers and the Infrastructure as a Service (IaaS) platforms. The containers platform supports efficient container provisioning and execut- ing, but does not provide sufficient security and flexibility. Different containers share an operating system kernel which has a large attack surface, and kernel customization is generally not allowed. The IaaS platform supports secure shar- ing of cloud resources among mutually untrusted users, but does not provide sufficient flexibility and efficiency. Many powerful management primitives en- abled by the underlying virtualization platform are hidden from users, such as live virtual machine migration and consolidation. The main contribution of this dissertation is the proposal of an approach in- spired by the exokernel architecture that can be generalized to any multi-tenant system to improve security, flexibility, and efficiency.
    [Show full text]
  • Openshift Container Platform 4.6 Architecture
    OpenShift Container Platform 4.6 Architecture An overview of the architecture for OpenShift Container Platform Last Updated: 2021-09-22 OpenShift Container Platform 4.6 Architecture An overview of the architecture for OpenShift Container Platform Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • Master's Thesis
    Containerization of telco cloud applications Samu Toimela School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 22.05.2017 Thesis supervisor: Prof. Jukka Manner Thesis advisor: M.Sc. Tero Venetjoki aalto university abstract of the school of electrical engineering master’s thesis Author: Samu Toimela Title: Containerization of telco cloud applications Date: 22.05.2017 Language: English Number of pages: 7+56 Department of Communications and Networking Professorship: Communications Engineering Supervisor: Prof. Jukka Manner Advisor: M.Sc. Tero Venetjoki Mobile service providers and manufacturers have moved towards virtualized network functions, because the amount of mobile data traffic has increased a lot during the past few years. Virtual machines offer high flexibility and easier management. They also enable flexible scaling, which makes it easier to respond to the varying traffic patterns during the day. However, the traditional virtual machines contain overhead and have reduced performance in most of the operations. One high performing alternative to a virtual machine is a Linux container. Linux containers do not contain additional operating system or any unnecessary services. Containers are isolated user spaces which share host computer’s kernel. This makes processes inside them perform almost as well as if they would be running directly on host. Also, the startup time of containers is extremely fast compared to virtual machines. This thesis studies, if Linux containers are suitable for telco applications. The research is conducted via proof-of-concept where parts of an existing telco appli- cation are moved to containers. First, the container technology and related tools are discussed.
    [Show full text]
  • Security of Containers
    Security of Containers Shruti Kulkarni About myself • Enterprise Security Architect • 12+ years of experience in Information Security • Experience with security frameworks like ISO27001 and PCI-DSS • Policies, Processes and Technology • CISA, CRISC, CISSP, CCSK, ITILv3 • Architecture, Design, Implementation and Maintenance of security systems What are containers? • An application container is a mechanism that is used to isolate applications from each other within the context of a running operating system instance. – Conceptually, an application container is similar to a jail filesystem. When configured to do so, applications contained within a container cannot access components outside of the established boundary. – A container has a segmented network stack, process space and instance of a filesystem – A container shares the operating system with other containers that are running on the host • Containers like any other asset need to be assured for security Uses of containers • Malware analysis • Easier deployment of repetitive jobs • Micro-services • Deployments to hybrid cloud, multi- cloud Background of containers Background • Linuxfeatures – – file system root its change to aprocess allows – chroot – Namespaces • • • • • • • thehostname theNISand domainname identifiers: twosystem isolationof provide UTS– hostsand containers andhostids between user Separates ids – User system the file host affecting without Mountmount–and systemsunmount file stack network Separates – Network communication IPCInter-process – sub-processes isolated of
    [Show full text]
  • Flatcar Container Linux Datasheet
    Datasheet: Flatcar Container Linux Why Container Linux? Modern applications are increasingly deployed as containers. Hence, enterprises need a reliable, secure foundation for those applications that can be managed at scale. Traditional enterprise Linux distributions are not well suited to this task. This is where Flatcar Container Linux comes in: Container Optimized Flatcar Container Linux is designed for containerized applications. ❏ It comes with a minimal set of components required to deploy containers, including a modern Linux kernel and the Docker container engine. ❏ Packages such as language runtimes are already bundled in container images, so are not included at the host level. ❏ Many typical Linux tools are included in a utilities container. Automated Updates Flatcar Container Linux discovers when updates are available, and can apply them automatically, ensuring the entire fleet is always up to date. For system administrators wanting more control, the Kinvolk Update Service enables update policy controls. Secure by Design Flatcar Container Linux can play a key role in your security strategy. ❏ As a minimal Linux distribution, the potential attack surface area is minimized. ❏ Flatcar has an immutable file system. This eliminates a whole class of vulnerabilities. ❏ Automatic updates ensure security patches are always up to date. Seamless Migration from CoreOS In the best traditions of the open source community, Flatcar Container Linux was created as a fork of CoreOS Container Linux, itself derived from Gentoo and ChromeOS. This ensures a seamless migration path — an in-place upgrade from ​ CoreOS to Flatcar is no more intrusive than a regular CoreOS version update. Even your existing configuration files will continue to work.
    [Show full text]
  • IBM Cloud Private System Administrator S Guide
    Front cover IBM Cloud Private System Administrator’s Guide Ahmed Azraq Wlodek Dymaczewski Fernando Ewald Luca Floris Rahul Gupta Vasfi Gucer Anil Patil Sanjay Singh Sundaragopal Venkatraman Dominique Vernier Zhi Min Wen In partnership with IBM Academy of Technology Redbooks IBM Redbooks IBM Cloud Private System Administrator’s Guide April 2019 SG24-8440-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (April 2019) This edition applies to IBM Cloud Private Version 3.1.2. © Copyright International Business Machines Corporation 2019. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . .x Preface . xi Authors. xii Now you can become a published author, too . .xv Comments welcome. xvi Stay connected to IBM Redbooks . xvi Part 1. IBM Cloud Private overview, architecture, and installation . 1 Chapter 1. Introduction to IBM Cloud Private. 3 1.1 IBM Cloud Private overview . 4 1.2 IBM Cloud Private node types. 6 1.2.1 Boot node . 6 1.2.2 Master node . 7 1.2.3 Worker node . 7 1.2.4 Management node . 8 1.2.5 Proxy node . 8 1.2.6 VA (Vulnerability Advisor) node . 9 1.2.7 An etcd node. 10 1.3 IBM Cloud Private architecture . 10 1.4 IBM Cloud Private features and benefits. 12 1.4.1 A unified installer. 12 1.4.2 Robust logging with ELK stack . 12 1.4.3 Monitoring and alerts .
    [Show full text]
  • Workshop Lpi Devops Tools
    WORKSHOP LPI DEVOPS TOOLS 15:35h a 16:40h Integración y despliegue continuo mediante contenedores Docker sobre Kubernetes, Openshift y Jenkins Ponente: Sergio Rodríguez de Guzmán, CTO at PUE LPI Certification Programs Changes in the last years ● [ Tagcloud ] So what? ● What does that mean for you? ● What does that mean for our candidates? ● How long will we need the Jack-of-all-trades sysadmin? ● Is it worth investing time in learning these things? ● To answer this we have to discover ... ○ … what these buzzwords really mean ○ … what their technological impact is ○ … how we can embrace the relevant portion of these tools ● Let’s take a tour through DevOps Tools Land! HOW IT USED TO BE 5 The (not so) old days ● Companies buy computers / servers ○ Probably put some virtualization on them ○ Admins install os / prepare and enroll templates ○ New servers / VMs require manual configuration ○ There is usually a process for new servers / VMs ● Software is packaged with installation routines ○ Packages tend to be large ○ Specific requirements on the runtime environment ○ Conflicts with other installed software possible ○ Post-installation configuration required The (not so) old days ● Implications ○ Admins do a lot of repetitive, boring work ○ Setting up new servers / VMs is hard ■ Testing systems live long ■ Prod / Dev parity ○ Updates / releases require downtime and work ■ Releases are risky and complicated ■ Bugs require time to get fixed ■ Large releases ○ It’s all about servers ■ Stored data ■ “Nursing” sick servers back to health Devs and Ops ● Administrators and Developers have contradictory requirements: ○ Daily fresh testing systems vs. repetitive work ○ Frequent deployments vs. uptime ○ Blaming platforms vs.
    [Show full text]
  • Host Configuration Guide
    Red Hat Satellite 6.2 Host Configuration Guide A guide to managing hosts in a Red Hat Satellite 6 environment. Edition 1.0 Last Updated: 2018-06-25 Red Hat Satellite 6.2 Host Configuration Guide A guide to managing hosts in a Red Hat Satellite 6 environment. Edition 1.0 Red Hat Satellite Documentation Team [email protected] Legal Notice Copyright © 2016 Red Hat. This document is licensed by Red Hat under the Creative Commons Attribution- ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]