Functional Analysis of Outer Membrane Vesicles Shed by Legionella Pneumophila

Total Page:16

File Type:pdf, Size:1020Kb

Functional Analysis of Outer Membrane Vesicles Shed by Legionella Pneumophila Functional analysis of outer membrane vesicles shed by Legionella pneumophila Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Jens Jäger aus Bad Hersfeld 1. Referent: Professor Dr. Michael Steinert 2. Referentin: Professor Dr. Petra Dersch 3. Referent: Professor Dr. Ulrich Dobrindt eingereicht am: 08.07.2013 mündliche Prüfung (Disputation) am: 20.08.2013 Druckjahr 2013 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Juli C, Sippel M, Jäger J, Thiele A, Weiwad M, Schweimer K, Rösch P, Steinert M, Sotriffer CA, Holzgrabe U. Pipecolic acid derivatives as small-molecule inhibitors of the Legionella MIP protein. J Med Chem. 2011 Jan 13;54(1):277-83. PubMed PMID: 21142106. Shevchuk O*, Jäger J*, Steinert M. Virulence properties of the Legionella pneumophila cell envelope. Front Microbiol. 2011;2:74. PubMed PMID: 21747794. (*: equal contributions) Jäger J, Steinert M. Enrichment of outer membrane vesicles shed by Legionella pneumophila. Methods Mol Biol. 2013;954:225-30. PMID: 23150399. Jäger J*, Marwitz S*, Tiefenau J, Rasch J, Shevchuk O, Kugler C, Goldmann T, Steinert M. Human lung tissue explants reveal novel interactions in Legionella pneumophila infections. In revision. (*: equal contributions) Jäger J, Keese S, Steinert M, Schromm A. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems. In preparation. Tagungsbeiträge Jäger J, Schromm A, Steinert M. Functional analysis of outer membrane vesicles shed by Legionella pneumophila - Fusion with eukaryotic membranes? 1st Public Retreat of the Helmholtz International Graduate School for Infection Research, Quedlinburg, November 2010. Jäger J, Marwitz S, Goldmann T, Steinert M. Ex vivo infection of human lung tissue with Legionella pneumophila. 2nd Public Retreat of the Helmholtz International Graduate School for Infection Research, Goslar, June 2011. I Jäger J, Marwitz S, Tiefenau J, Goldmann T, Steinert M. Human lung tissue explants to study Legionella pneumophila infections. 64th Annual Meeting of the German Society of Hygiene and Microbiology (DGHM), Hamburg, October 2012. Jäger J, Marwitz S, Tiefenau J, Rasch J, Goldmann T, Steinert M. Human lung tissue explants to study Legionella pneumophila infections. 3rd Public Retreat of the Helmholtz International Graduate School for Infection Research, Bad Bevensen, October 2012. Posterbeiträge Jäger J, Steinert M. Functional analysis of outer membrane vesicles shed by Legionella pneumophila. 3rd PhD symposium of the Helmholtz Centre for Infection Research, Braunschweig, December 2009. Jäger J, Schromm A, Steinert M. Fusion studies of Legionella pneumophila outer membrane vesicles and eukaryotic membranes. 4th PhD symposium of the Helmholtz Centre for Infection Research, Braunschweig, December 2010. Jäger J, Krüger S, Galka F, Steinert M. Interaction of Legionella pneumophila outer membrane vesicles with host cells and bacteria. 63rd Annual Meeting of the German Society of Hygiene and Microbiology (DGHM), Essen, September 2011. Jäger J, Tiefenau J, Marwitz S, Goldmann T, Steinert M. Ex vivo infection of human lung tissue with Legionella pneumophila. 5th PhD symposium of the Helmholtz Centre for Infection Research, Braunschweig, December 2011. Jäger J, Krüger S, Steinert M. Interactions of Legionella pneumophila outer membrane vesicles with host cells and bacteria. Annual Conference of the Association of General and Applied Microbiology (VAAM), Tübingen, March 2012. II “I am not young enough to know everything. “ J. M. Barrie III Danksagung Mein erster Dank gilt Prof. Dr. Michael Steinert für die Möglichkeit, diese Arbeit in seiner Arbeitsgruppe zu erstellen, für die Motivation, die Diskussionen, die Anregungen – vielen Dank für alles! Außerdem danke ich Prof. Dr. Petra Dersch für die Übernahme des Zweitgutachtens sowie ihr und Prof. Dr. Susanne Häußler für die konstruktive Mitarbeit in meinem Thesis-Komitee. Prof. Dr. André Fleißner danke ich für die Übernahme des Prüfungsvorsitzes. Ich bedanke mich bei der Helmholtz International Graduate School for Infection Research für die Unterstützung sowie in besonderem Maße bei der Stiftung der Deutschen Wirtschaft für die ideelle und materielle Förderung. Riesige Mengen Backwaren, unvergessliche Mensabesuche, ausgedehnte Harzwanderungen: Besonders dankbar bin ich der AG Steinert – Barbara, Can, Chris, Corina, Dennis, Elena, Freddi, Gabi, Hannes, Jana, Janine, Julia, Olga, Qunxiu, Simon, Simone, Steffi – für Rat und Tat, für die grandiose Stimmung sowie für eine wichtige Einsicht: Genie und Wahnsinn liegen nah beieinander. Am Rande des Letzteren habe ich mich in Borstel öfters bewegt – dank Jana und Janine habe ich aber immer noch die Kurve gekriegt. Keinesfalls auslassen möchte ich die anderen „Mibis“. Ihr habt zu der fantastischen Arbeitsatmosphäre beigetragen – danke an Euch alle! Ich möchte auch den Studenten der AG Steinert danken, die mit guter Laune und Unterstützung im Labor zum Gelingen dieser Arbeit beigetragen haben. Und ich bedanke mich herzlich bei PD Dr. Andra Schromm und PD Dr. Torsten Goldmann vom Forschungszentrum Borstel dafür, dass sie mit ihrem Wissen und ihren Erfahrungen dazu beigetragen haben, dass diese Zusammenarbeit erfolgreich verlaufen ist. Ihren Arbeitsgruppen für Immunbiophysik bzw. Experimentelle Pathologie, hier im Besonderen Sebastian Marwitz, danke ich für die Unterstützung bei den Versuchen und Messungen. Schließlich möchte ich meinen Eltern, meinen Freunden und meiner Familie für die Unterstützung danken. Ihr seid die Besten! IV V Jens Jäger Table of contents Table of contents 1 Summary .................................................................................................... 1 2 Zusammenfassung .................................................................................... 2 3 Introduction ................................................................................................ 3 3.1 Legionella pneumophila: physiology and virulence ................................... 3 3.2 Intracellular life cycle ................................................................................ 4 3.2.1 Adhesion and uptake ............................................................................ 4 3.2.2 Modification of the Legionella-containing vacuole by secreted proteins................................................................................................. 5 3.2.3 Release from the LCV and the host cell ............................................... 8 3.3 Legionnaires‟ disease and Pontiac fever .................................................. 8 3.3.1 Host response to L. pneumophila infections ......................................... 9 3.4 Bacterial outer membrane vesicles ......................................................... 11 3.4.1 Functions of bacterial OMVs .............................................................. 13 3.4.2 L. pneumophila OMVs ........................................................................ 15 3.5 Model systems to study L. pneumophila infections ................................. 17 3.6 Aim of this work ...................................................................................... 20 4 Materials and methods ............................................................................ 21 4.1 Consumables and chemicals .................................................................. 21 4.2 Cell lines ................................................................................................. 21 4.3 Bacterial strains ...................................................................................... 21 4.4 Bacteriology ............................................................................................ 21 4.4.1 Cultivation of L. pneumophila ............................................................. 21 4.4.2 Cryoconservation of bacterial strains ................................................. 22 4.4.3 Enrichment of OMVs .......................................................................... 23 4.5 Biophysical methods ............................................................................... 23 4.5.1 Förster resonance energy transfer (FRET) spectroscopy .................. 24 V Jens Jäger Table of contents 4.5.2 Fourier-transform infrared (IR) spectroscopy ...................................... 25 4.6 Cell culture .............................................................................................. 25 4.6.1 Cryoconservation of mammalian cell lines ......................................... 25 4.6.2 Activation of macrophage-like cells .................................................... 26 4.6.3 Assessment of intracellular replication ............................................... 26 4.7 Human lung tissue explants .................................................................... 27 4.7.1 Infection of tissue samples ................................................................. 27 4.7.2 CFU determination from infected tissue samples ............................... 28 4.7.3 Histological analysis ........................................................................... 28 4.7.4 Immunohistochemistry.......................................................................
Recommended publications
  • Frontiers in Integrative Genomics and Translational Bioinformatics
    BioMed Research International Frontiers in Integrative Genomics and Translational Bioinformatics Guest Editors: Zhongming Zhao, Victor X. Jin, Yufei Huang, Chittibabu Guda, and Jianhua Ruan Frontiers in Integrative Genomics and Translational Bioinformatics BioMed Research International Frontiers in Integrative Genomics and Translational Bioinformatics Guest Editors: Zhongming Zhao, Victor X. Jin, Yufei Huang, Chittibabu Guda, and Jianhua Ruan Copyright © òýÔ Hindawi Publishing Corporation. All rights reserved. is is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Frontiers in Integrative Genomics and Translational Bioinformatics, Zhongming Zhao, Victor X. Jin, Yufei Huang, Chittibabu Guda, and Jianhua Ruan Volume òýÔ , Article ID Þò ¥ÀÔ, ç pages Building Integrated Ontological Knowledge Structures with Ecient Approximation Algorithms, Yang Xiang and Sarath Chandra Janga Volume òýÔ , Article ID ýÔ ò, Ô¥ pages Predicting Drug-Target Interactions via Within-Score and Between-Score, Jian-Yu Shi, Zun Liu, Hui Yu, and Yong-Jun Li Volume òýÔ , Article ID ç ýÀç, À pages RNAseq by Total RNA Library Identies Additional RNAs Compared to Poly(A) RNA Library, Yan Guo, Shilin Zhao, Quanhu Sheng, Mingsheng Guo, Brian Lehmann, Jennifer Pietenpol, David C. Samuels, and Yu Shyr Volume òýÔ , Article ID âòÔçý, À pages Construction of Pancreatic Cancer Classier Based on SVM Optimized by Improved FOA, Huiyan Jiang, Di Zhao, Ruiping Zheng, and Xiaoqi Ma Volume òýÔ , Article ID ÞÔýòç, Ôò pages OperomeDB: A Database of Condition-Specic Transcription Units in Prokaryotic Genomes, Kashish Chetal and Sarath Chandra Janga Volume òýÔ , Article ID çÔòÔÞ, Ôý pages How to Choose In Vitro Systems to Predict In Vivo Drug Clearance: A System Pharmacology Perspective, Lei Wang, ChienWei Chiang, Hong Liang, Hengyi Wu, Weixing Feng, Sara K.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Differentiation-Defective Phenotypes Revealed by Large-Scale Analyses of Human Pluripotent Stem Cells
    Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells Michiyo Koyanagi-Aoia,1, Mari Ohnukia,1, Kazutoshi Takahashia, Keisuke Okitaa, Hisashi Nomab, Yuka Sawamuraa, Ito Teramotoa, Megumi Naritaa, Yoshiko Satoa, Tomoko Ichisakaa, Naoki Amanoa, Akira Watanabea, Asuka Morizanea, Yasuhiro Yamadaa,c, Tosiya Satod, Jun Takahashia,e, and Shinya Yamanakaa,f,2 aCenter for iPS Cell Research and Application, eDepartment of Biological Repair, Institute for Frontier Medical Sciences, and cInstitute for Integrated Cell- Material Sciences, Kyoto University, Kyoto 606-8507, Japan; bDepartment of Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan; dDepartment of Biostatistics, Kyoto University School of Public Health, Kyoto 606-8501, Japan; and fGladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Contributed by Shinya Yamanaka, October 30, 2013 (sent for review September 13, 2013) We examined the gene expression and DNA methylation of 49 at least three passages. In addition, we analyzed the original somatic human induced pluripotent stem cells (hiPSCs) and 10 human cells, two human embryonic carcinoma cell (hECC) lines (NTera2 embryonic stem cells and found overlapped variations in gene cloneD1 and 2102Ep 4D3), and three cancer cell lines (HepG2, expression and DNA methylation in the two types of human MCF7, and Jurkat). pluripotent stem cell lines. Comparisons of the in vitro neural The mRNA microarray analyses (Fig. 1A) identified 61 probes fi differentiation of 40 hiPSCs and 10 human embryonic stem cells with signi cant differences in expression between hESCs and < showed that seven hiPSC clones retained a significant number of hiPSCs [t test, false discovery rate (FDR) 0.05].
    [Show full text]
  • Interleukin 28 Is a Potential Therapeutic Target for Sepsis
    Clinical Immunology 205 (2019) 29–34 Contents lists available at ScienceDirect Clinical Immunology journal homepage: www.elsevier.com/locate/yclim Interleukin 28 is a potential therapeutic target for sepsis T ⁎ Qin Luoa,b, Yi Liuc, Shuang Liub, Yibing Yinb, Banglao Xud, Ju Caoa, a Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China b Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China c Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China d Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China ARTICLE INFO ABSTRACT Keywords: Identification of new therapeutic targets for the treatment of sepsis is imperative. We report here that cytokine Interleukin-28 IL-28 (IFN-λ) levels were elevated in clinical and experimental sepsis. Neutralization of IL-28 protected mice Sepsis from lethal sepsis induced by cecal ligation and puncture (CLP), which was associated with improved bacterial Infection clearance and enhanced neutrophil infiltration. Conversely, administration of recombinant IL-28 aggravated Immunity mortality, facilitated bacterial dissimilation and limited neutrophil recruitment, in the model of sepsis induced Neutrophil by CLP. This study defines IL-28 as a detrimental mediator during sepsis and identifies a potential therapeutic target for the immune therapy in sepsis. 1. Introduction immunopathology of sepsis is still poorly understood. To address this issue, we examined the potential role of IL-28 in the Each year, about 31.5 million individuals develop sepsis, and up to progression of sepsis.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Characterization of BRCA1-Deficient Premalignant Tissues and Cancers Identifies Plekha5 As a Tumor Metastasis Suppressor
    ARTICLE https://doi.org/10.1038/s41467-020-18637-9 OPEN Characterization of BRCA1-deficient premalignant tissues and cancers identifies Plekha5 as a tumor metastasis suppressor Jianlin Liu1,2, Ragini Adhav1,2, Kai Miao1,2, Sek Man Su1,2, Lihua Mo1,2, Un In Chan1,2, Xin Zhang1,2, Jun Xu1,2, Jianjie Li1,2, Xiaodong Shu1,2, Jianming Zeng 1,2, Xu Zhang1,2, Xueying Lyu1,2, Lakhansing Pardeshi1,3, ✉ ✉ Kaeling Tan1,3, Heng Sun1,2, Koon Ho Wong 1,3, Chuxia Deng 1,2 & Xiaoling Xu 1,2 1234567890():,; Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intra- tumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung. 1 Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China. 2 Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Mechanism of Action Through an IFN Type I-Independent Responses To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767
    [Show full text]
  • The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines Received: 07 August 2015 1 1 2 3,4 Accepted: 27 October 2015 Maurice A
    www.nature.com/scientificreports OPEN The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines Received: 07 August 2015 1 1 2 3,4 Accepted: 27 October 2015 Maurice A. Canham , Amy Van Deusen , Daniel R. Brison , Paul A. De Sousa , 3 5 6 5 7 Published: 26 November 2015 Janet Downie , Liani Devito , Zoe A. Hewitt , Dusko Ilic , Susan J. Kimber , Harry D. Moore6, Helen Murray3 & Tilo Kunath1 The application of human embryonic stem cell (hESC) derivatives to regenerative medicine is now becoming a reality. Although the vast majority of hESC lines have been derived for research purposes only, about 50 lines have been established under Good Manufacturing Practice (GMP) conditions. Cell types differentiated from these designated lines may be used as a cell therapy to treat macular degeneration, Parkinson’s, Huntington’s, diabetes, osteoarthritis and other degenerative conditions. It is essential to know the genetic stability of the hESC lines before progressing to clinical trials. We evaluated the molecular karyotype of 25 clinical-grade hESC lines by whole-genome single nucleotide polymorphism (SNP) array analysis. A total of 15 unique copy number variations (CNVs) greater than 100 kb were detected, most of which were found to be naturally occurring in the human population and none were associated with culture adaptation. In addition, three copy-neutral loss of heterozygosity (CN-LOH) regions greater than 1 Mb were observed and all were relatively small and interstitial suggesting they did not arise in culture. The large number of available clinical-grade hESC lines with defined molecular karyotypes provides a substantial starting platform from which the development of pre-clinical and clinical trials in regenerative medicine can be realised.
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]