Exploration of the Role of Cib1 in Cell Survival and Tumor Growth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CIB1 Antibody Purified Mouse Monoclonal Antibody Catalog # Ao1068a
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CIB1 Antibody Purified Mouse Monoclonal Antibody Catalog # AO1068a Specification CIB1 Antibody - Product Information Application WB, IHC Primary Accession Q99828 Reactivity Human Host Mouse Clonality Monoclonal Description CIB1(also designated calcium and integrin binding 1 or calmyrin),with 191-amino acid protein(about 21kDa), belongs to the calcium-binding protein family.CIB1 is known to interact with DNA-dependent protein kinase and may play a role in kinase-phosphatase regulation of DNA end Figure 1: Western blot analysis using CIB1 joining.CIB1 is an EF-hand-containing mouse mAb against truncated CIB1 protein that binds multiple effector proteins, recombinant protein (1) and A431 cell lysate including the platelet alpha(IIb)beta(3) (2). integrin and several serine/threonine kinases and potentially modulates their function.CIB1 regulates platelet aggregation in hemostasis through a specific interaction with the alpha(IIb) cytoplasmic domain of platelet integrin alpha(IIb)beta(3). CIB1 is also ubiquitously expressed activating and inhibiting protein ligand of the InsP3R. Figure 2: Immunohistochemical analysis of paraffin-embedded human thalamus (left) Immunogen and glioma (right) tissue, showing membrane Purified recombinant fragment of CIB1 localization using CIB1 mouse mAb with DAB expressed in E. Coli. staining. Formulation Ascitic fluid containing 0.03% sodium azide. CIB1 Antibody - References 1. Holly R. Gentry,Alex U. Singer, Laurie Betts. CIB1 Antibody - Additional Information J. Biol. Chem., Mar 2005; 280: 8407 - 8415. 2. Carl White, Jun Yang, Mervyn J. Monteiro. J. Gene ID 10519 Biol. Chem., Jul 2006; 281: 20825 – 20833. -
(Calcium and Integrin Binding Protein 2) Mutation Associated with Non- Syndromic Hearing Loss in a Hispanic Family Kunjan Patel Albert Einstein College of Medicine
University of Kentucky UKnowledge Physiology Faculty Publications Physiology 10-1-2015 A Novel C-Terminal CIB2 (Calcium and Integrin Binding Protein 2) Mutation Associated with Non- Syndromic Hearing Loss in a Hispanic Family Kunjan Patel Albert Einstein College of Medicine Arnaud P. Giese University of Maryland J. M. Grossheim University of Kentucky, [email protected] Rashima S. Hegde Cincinnati Children’s Hospital Medical Centre Maria Delio Mount Sinai School of Medicine See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physiology_facpub Part of the Physiology Commons Repository Citation Patel, Kunjan; Giese, Arnaud P.; Grossheim, J. M.; Hegde, Rashima S.; Delio, Maria; Samanich, Joy; Riazuddin, Saima; Frolenkov, Gregory I.; Cai, Jinlu; Ahmed, Zubair M.; and Morrow, Bernice E., "A Novel C-Terminal CIB2 (Calcium and Integrin Binding Protein 2) Mutation Associated with Non-Syndromic Hearing Loss in a Hispanic Family" (2015). Physiology Faculty Publications. 72. https://uknowledge.uky.edu/physiology_facpub/72 This Article is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Physiology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Kunjan Patel, Arnaud P. Giese, J. M. Grossheim, Rashima S. Hegde, Maria Delio, Joy Samanich, Saima Riazuddin, Gregory I. Frolenkov, Jinlu Cai, Zubair M. Ahmed, and Bernice E. Morrow A Novel C-Terminal CIB2 (Calcium and Integrin Binding Protein 2) Mutation Associated with Non-Syndromic Hearing Loss in a Hispanic Family Notes/Citation Information Published in PLOS One, vol. -
Genetic Diagnosis and Respiratory Management Of
UITNODIGING GENETIC DIAGNOSIS Voor het bijwonen van de openbare verdediging van AND RESPIRATORY het proefschrift Genetic diagnosis and respiratory management of primary ciliary dyskinesia dyskinesia ciliary of primary management respiratory and diagnosis Genetic GENETIC DIAGNOSIS MANAGEMENT OF AND RESPIRATORY MANAGEMENT OF PRIMARY CILIARY PRIMARY CILIARY DYSKINESIA DYSKINESIA Door Tamara Paff Tamara Paff dinsdag 7 november 2017 11:45 uur in de aula van de Vrije Universiteit de Boelelaan, 1105 TE Amsterdam Receptie aansluitend in Grand cafe The Basket op de VU campus Tamara Paff Johann Keplerstraat 8-1 hoog 1098 HL, Amsterdam +31645364292/ [email protected] Tamara Paff Tamara | Paranimfen Marian van der Meij [email protected] 06-15500488 Marc van der Schee [email protected] 06-40883602 14759 - Paff_R11,5_OMS_DEF.indd 1 25-09-17 10:25 UITNODIGING GENETIC DIAGNOSIS Voor het bijwonen van de openbare verdediging van AND RESPIRATORY het proefschrift Genetic diagnosis and respiratory management of primary ciliary dyskinesia dyskinesia ciliary of primary management respiratory and diagnosis Genetic GENETIC DIAGNOSIS MANAGEMENT OF AND RESPIRATORY MANAGEMENT OF PRIMARY CILIARY PRIMARY CILIARY DYSKINESIA DYSKINESIA Door Tamara Paff Tamara Paff Dag datum tijdstip in de aula van de Vrije Universiteit de Boelelaan, 1105 TE Amsterdam Receptie aansluitend in Grand cafe The Basket op de VU campus Tamara Paff Johann Keplerstraat 8-1 hoog 1098 HL, Amsterdam +31645364292/ [email protected] Tamara Paff Tamara Paranimfen Marian van der Meij | [email protected] 06-15500488 Marc van der Schee [email protected] 06-40883602 14759_TPaff_BW.indd 1 19-09-17 13:08 ProefschriftTamaraPaff_Cover+Bladwijzer.indd All Pages 15-08-17 12:47 The studies performed in this thesis were financially supported by the PCD support group (PCD belangengroep), Fonds NutsOhra, the “Dutch mudder” team and Chiesi. -
Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7, -
The Human CIB1–EVER1–EVER2 Complex Governs Keratinocyte
The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses Sarah Jill de Jong, Amandine Créquer, Irina Matos, David Hum, Vignesh Gunasekharan, Lazaro Lorenzo, Fabienne Jabot-Hanin, Elias Imahorn, Andres Arias, Hassan Vahidnezhad, et al. To cite this version: Sarah Jill de Jong, Amandine Créquer, Irina Matos, David Hum, Vignesh Gunasekharan, et al.. The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β- papillomaviruses. Journal of Experimental Medicine, Rockefeller University Press, 2018, 215 (9), pp.2289-2310. 10.1084/jem.20170308. hal-02352844 HAL Id: hal-02352844 https://hal.archives-ouvertes.fr/hal-02352844 Submitted on 7 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Published Online: 1 August, 2018 | Supp Info: http://doi.org/10.1084/jem.20170308 Downloaded from jem.rupress.org on November 7, 2019 ARTICLE The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses Sarah Jill de Jong1, Amandine Créquer1*, Irina Matos2*, David Hum1*, Vignesh Gunasekharan3, Lazaro Lorenzo4,5, Fabienne Jabot‑Hanin4,5, Elias Imahorn6, Andres A. Arias7,8, Hassan Vahidnezhad9,10, Leila Youssefian9,11, Janet G. -
A Novel Splice Variant of Calcium and Integrin-Binding Protein 1 Mediates Protein Kinase D2-Stimulated Tumour Growth by Regulating Angiogenesis
Oncogene (2014) 33, 1167–1180 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis M Armacki1,2, G Joodi2, SC Nimmagadda2, L de Kimpe3,4, GV Pusapati5, S Vandoninck4, J Van Lint4, A Illing1 and T Seufferlein1,2 Protein kinase D2 (PKD2) is a member of the PKD family of serine/threonine kinases, a subfamily of the CAMK super-family. PKDs have a critical role in cell motility, migration and invasion of cancer cells. Expression of PKD isoforms is deregulated in various tumours and PKDs, in particular PKD2, have been implicated in the regulation of tumour angiogenesis. In order to further elucidate the role of PKD2 in tumours, we investigated the signalling context of this kinase by performing an extensive substrate screen by in vitro expression cloning (IVEC). We identified a novel splice variant of calcium and integrin-binding protein 1, termed CIB1a, as a potential substrate of PKD2. CIB1 is a widely expressed protein that has been implicated in angiogenesis, cell migration and proliferation, all important hallmarks of cancer, and CIB1a was found to be highly expressed in various cancer cell lines. We identify Ser118 as the major PKD2 phosphorylation site in CIB1a and show that PKD2 interacts with CIB1a via its alanine and proline-rich domain. Furthermore, we confirm that CIB1a is indeed a substrate of PKD2 also in intact cells using a phosphorylation-specific antibody against CIB1a-Ser118. Functional analysis of PKD2-mediated CIB1a phosphorylation revealed that on phosphorylation, CIB1a mediates tumour cell invasion, tumour growth and angiogenesis by mediating PKD-induced vascular endothelial growth factor secretion by the tumour cells. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
CIB1 Protects Against MPTP-Induced Neurotoxicity Through Inhibiting ASK1. Kyoung Wan Yoon Korea University; Hoseo University
Thomas Jefferson University Jefferson Digital Commons Department of Medicine Faculty Papers Department of Medicine 9-22-2017 CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1. Kyoung Wan Yoon Korea University; Hoseo University Hyun-Suk Yang Hoseo University Young Mok Kim Korea University Yeonsil Kim Korea University Seongman Kang Korea University See next page for additional authors Let us know how access to this document benefits ouy Follow this and additional works at: https://jdc.jefferson.edu/medfp Part of the Medicine and Health Sciences Commons Recommended Citation Yoon, Kyoung Wan; Yang, Hyun-Suk; Kim, Young Mok; Kim, Yeonsil; Kang, Seongman; Sun, Woong; Naik, Ulhas P.; Parise, Leslie V.; and Choi, Eui-Ju, "CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1." (2017). Department of Medicine Faculty Papers. Paper 216. https://jdc.jefferson.edu/medfp/216 This Article is brought to you for free and open access by the Jefferson Digital Commons. The effeJ rson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The ommonC s is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The effeJ rson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Medicine Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Authors Kyoung Wan Yoon, Hyun-Suk Yang, Young Mok Kim, Yeonsil Kim, Seongman Kang, Woong Sun, Ulhas P. -
Endocrine System Local Gene Expression
Copyright 2008 By Nathan G. Salomonis ii Acknowledgments Publication Reprints The text in chapter 2 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics. 2007 Jun 24;8:218. The co-authors listed in this publication co-wrote the manuscript (AP and KH) and provided critical feedback (see detailed contributions at the end of chapter 2). The text in chapter 3 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, Dolganov G, Conklin BR. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12. Epub 2005 Jan 28. The co-authors listed in this publication developed the hierarchical clustering method (KP), co-designed the study (NC, AZ, BC), provided statistical guidance (KV), co- contributed to GenMAPP 2.0 (SD) and performed quantitative mRNA analyses (GD). The text of this dissertation contains a reproduction of a figure from: Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):R74. Epub 2004 Sep 13. The reproduction was taken without permission (chapter 1), figure 1.3. iii Personal Acknowledgments The achievements of this doctoral degree are to a large degree possible due to the contribution, feedback and support of many individuals. To all of you that helped, I am extremely grateful for your support. -
CIB1 Depletion Impairs Cell Survival and Tumor Growth in Triple-Negative Breast Cancer
Breast Cancer Res Treat DOI 10.1007/s10549-015-3458-4 PRECLINICAL STUDY CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer 1 2 1 1 Justin L. Black • J. Chuck Harrell • Tina M. Leisner • Melissa J. Fellmeth • 3 4,5 3,7 5,6 Samuel D. George • Dominik Reinhold • Nicole M. Baker • Corbin D. Jones • 3,7 3,8,9 1,3 Channing J. Der • Charles M. Perou • Leslie V. Parise Received: 9 April 2015 / Accepted: 5 June 2015 Ó Springer Science+Business Media New York 2015 Abstract Triple-negative breast cancer (TNBC) is an hypothesized that CIB1 may play a broader role in aggressive breast cancer subtype with generally poor TNBC cell survival and tumor growth. Methods utilized prognosis and no available targeted therapies, highlight- include inducible RNAi depletion of CIB1 in vitro and ing a critical unmet need to identify and characterize in vivo, immunoblotting, clonogenic assay, flow cytom- novel therapeutic targets. We previously demonstrated etry, RNA-sequencing, bioinformatics analysis, and that CIB1 is necessary for cancer cell survival and pro- Kaplan–Meier survival analysis. CIB1 depletion resulted liferation via regulation of two oncogenic signaling in significant cell death in 8 of 11 TNBC cell lines pathways, RAF–MEK–ERK and PI3K–AKT. Because tested. Analysis of components related to PI3K–AKT and these pathways are often upregulated in TNBC, we RAF–MEK–ERK signaling revealed that elevated AKT activation status and low PTEN expression were key predictors of sensitivity to CIB1 depletion. Furthermore, Electronic supplementary material The online version of this CIB1 knockdown caused dramatic shrinkage of MDA- article (doi:10.1007/s10549-015-3458-4) contains supplementary material, which is available to authorized users. -
CIB1 Protects Against MPTP-Induced Neurotoxicity Through Inhibiting ASK1
Thomas Jefferson University Jefferson Digital Commons Department of Medicine Faculty Papers Department of Medicine 9-22-2017 CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1. Kyoung Wan Yoon Korea University; Hoseo University Hyun-Suk Yang Hoseo University Young Mok Kim Korea University Yeonsil Kim Korea University FSeongmanollow this and Kang additional works at: https://jdc.jefferson.edu/medfp Korea University Part of the Medicine and Health Sciences Commons Let us know how access to this document benefits ouy See next page for additional authors Recommended Citation Yoon, Kyoung Wan; Yang, Hyun-Suk; Kim, Young Mok; Kim, Yeonsil; Kang, Seongman; Sun, Woong; Naik, Ulhas P.; Parise, Leslie V.; and Choi, Eui-Ju, "CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1." (2017). Department of Medicine Faculty Papers. Paper 216. https://jdc.jefferson.edu/medfp/216 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Medicine Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Authors Kyoung Wan Yoon, Hyun-Suk Yang, Young Mok Kim, Yeonsil Kim, Seongman Kang, Woong Sun, Ulhas P. -
A Genome-Wide Algal Mutant Library and Functional Screen Identifies Genes Required for Eukaryotic Photosynthesis
LETTERS https://doi.org/10.1038/s41588-019-0370-6 A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis Xiaobo Li 1,2,3, Weronika Patena1,2, Friedrich Fauser1,2, Robert E. Jinkerson 2,7, Shai Saroussi2, Moritz T. Meyer1, Nina Ivanova2, Jacob M. Robertson1,2, Rebecca Yue2, Ru Zhang2,8, Josep Vilarrasa-Blasi2, Tyler M. Wittkopp 2,4,9, Silvia Ramundo5, Sean R. Blum2, Audrey Goh1, Matthew Laudon6, Tharan Srikumar1, Paul A. Lefebvre6, Arthur R. Grossman2 and Martin C. Jonikas 1,2* Photosynthetic organisms provide food and energy for nearly mapping and mutant propagation from our pilot study9. To enable all life on Earth, yet half of their protein-coding genes remain mapping of insertion sites and screening of pools of mutants on a uncharacterized1,2. Characterization of these genes could be much larger scale, we developed new tools leveraging unique DNA greatly accelerated by new genetic resources for unicellu- barcodes in each transforming cassette. lar organisms. Here we generated a genome-wide, indexed We generated mutants by transforming haploid cells with DNA library of mapped insertion mutants for the unicellular alga cassettes that randomly insert into the genome and inactivate the Chlamydomonas reinhardtii. The 62,389 mutants in the library, genes into which they insert. We maintained the mutants as indexed covering 83% of nuclear protein-coding genes, are available to colony arrays on agar medium containing acetate as a carbon and the community. Each mutant contains unique DNA barcodes, energy source to allow recovery of mutants with defects in photo- allowing the collection to be screened as a pool.