Encyclopedia of Evolutionary Biology

Total Page:16

File Type:pdf, Size:1020Kb

Encyclopedia of Evolutionary Biology Encyclopedia of Evolutionary Biology Exclusive Preview Articles Page 2 - Preface Page 3 - The Evolutionary Ecology of Mutualism Page 10 - Recombination and Molecular Evolution Page 16 - Sex Chromosome Evolution: Birth, Maturation, Decay, and Rebirth PREFACE The Encyclopedia of Evolutionary Biology was developed to pro- Smocovitis and Norman Johnson) cover the history of evo- vide an authoritative overview of the current state of evo- lutionary biology and applications of evolutionary biology. lutionary biology. It was an ambitious goal, especially given Readers of the encyclopedia will find that entries are gen- that the field did not pause for the two and a half years needed erally pitched at a somewhat advanced level, although with to complete the project. The encyclopedia’s 15 section editors great effort by authors to make entries as accessible as possible collaborated to ensure that content gaps were kept to a min- to a broad audience. Encyclopedias, like living organisms, are imum, and their efforts show. When the project was com- compromises. If all entries could be readily understood in pleted, we had compiled 256 entries, covering a broad range their entirety by first-year university students, this encyclopedia of topics selected by the editors to ensure a comprehensive would be of limited value to experts. At the other extreme, resource. It was a privilege to read every one of these entries, if entries were extremely technical – and our authors were and I was truly humbled by the collective efforts of hundreds undoubtedly capable of producing such entries – the en- of authors to communicate the excitement and sophistication cyclopedia might be inaccessible to students. While there is, by of a field of study that touches on every conceivable topic necessity, variation among entries in this regard, we settled on in biology today. a general target: the majority of an entry should be accessible There are many ways to envision an encyclopedia of evo- to a motivated, advanced undergraduate. Readers are, of lution, and we had to choose an approach that would lead course, directed to additional resources, with authors pro- to a cohesive resource. Readers will note that, in the more viding bibliographies and lists of further reading. organismal-focused entries (edited by David Guttman, Amy As with any undertaking of this scale, there are many Litt, and Claudia Russo), there is an emphasis on diversification individuals who should be recognized for their roles in of life. We did not set out to provide an overview of the the development of this encyclopedia. Special thanks go to diversity of life, as such a goal would be untenable; rather, Norman Johnson for early discussions that helped us develop we focused on the evolutionary processes and key events the general structure of the encyclopedia. The dedicated and responsible for diversity. Numerous entries deal with speci- distinguished team of section editors deserves the credit for ation, life history evolution, evolutionary biogeography, and drafting the table of contents, recruiting authors, and working coevolution. These entries (edited by Daniel Ortiz-Barrientos, extensively with authors to ensure the highest quality product. Tim Coulson, Rosemary Gillespie, and Andrew Forbes) bring It should go without saying that the high quality of this en- to light how the evolution and diversification of life is cyclopedia ultimately reflects the efforts of the editors and intimately entwined with ecology. Of course, there is extensive authors. Finally, the project management and development coverage of population genetics, quantitative genetics, evo- teams at Academic Press were always ready to assist, and lutionary developmental biology, the evolution of sex and while it is not possible to name everyone who contributed to mating systems, molecular/genome evolution, and phylo- the effort, I am particularly indebted to Simon Holt, Will genetic analysis (edited by Maria Orive, Jason Wolf, Karen Bowden-Green, Paula Davies, and Justin Taylor. Sears, Nina Wedell, Hiroshi Akashi, and Laura Kubatko), all fundamental to our understanding of evolutionary processes. Richard Kliman And as thematic bookends, several entries (edited by Betty Editor in Chief xxxi Mutualism, the Evolutionary Ecology of DM Althoff and KA Segraves, Syracuse University, Syracuse, NY, USA r 2016 Elsevier Inc. All rights reserved. Glossary individuals of the other species and in return receives By-product mutualism An association among species in nutrients or resources needed for growth and reproduction. which the resources exchanged are cost free to at least one Exploiter A species from outside a mutualistic interaction partner and are produced as by-products of other that takes the resources or services provided by mutualistic organismal functions such as metabolism. species without providing anything in return. Cheater An exploiter species that evolved from a Geographic mosaic of coevolution The concept that most mutualistic one and no longer reciprocates with its partner. of the coevolution among species occurs at different rates in Coevolution Reciprocal evolutionary change caused by an different populations with some populations being interaction among species. hotspots of coevolutionary change. Coevolutionary hotspot Populations where all interacting Host sanctions A mechanism by which a mutualist can species are evolving in response to one another. reduce the trade of resources or services in response to a Connectedness In a community of interacting mutualists, partner that is of inferior quality. connectedness is the proportion of the total possible Nutritional mutualism An interaction among species in interactions among species that are observed within an which partners exchange nutrients needed for growth and interaction network. reproduction. Cooperation The act of individuals working together for a Partner choice A mechanism by which mutualistic common benefit. Mainly applied to interactions among partners preferentially interact with high-quality partners. individuals within the same species. Partner fidelity feedback Mutualisms where the increase Defensive mutualism An interaction among partner in fitness of one mutualistic partner causes an automatic species in which one partner defends the other in exchange increase in the other resulting in a positive feedback loop. for a place to live or for nutrients needed for growth and This is usually only possible between individuals of reproduction. different mutualist species that associate long enough to Dispersive mutualism An interaction among species in experience changes in fitness. which one partner moves the gametes, offspring, or Introduction can apply to mutualistic interactions, but not all mutualisms include cooperation or facilitation, and not all symbioses are Species interact with one another in myriad ways with the mutualisms. ultimate goal of obtaining resources or services needed for Mutualistic interactions are traditionally divided into three survival and reproduction. Many of these interactions are an- different types based on the resources or services that are tra- tagonistic in which one species gains a benefit but the other ded between species. Nutritional mutualism involves inter- suffers a cost. Predators, herbivores, and parasites either kill actions among species that are trading resources that are their hosts for energy and nutrients or take some resources needed for growth and reproduction. A classic example is the directly from their hosts. In contrast, there are interactions in trade of carbon and minerals between plants and mycorrhizal which the species involved all gain reciprocal benefits. Van fungi. Plant roots form intimate associations with the hyphae Beneden (1873) was the first to call these interactions mutu- of fungi that are very fine and can forage efficiently for phos- alisms. For example, bees visiting a flower gain energy from phorus, nitrogen, and micronutrients in the soil (Courty et al., nectar rewards while providing pollen exchange for the plant. 2010). The roots exude rich carbon compounds that are used Since the term was coined, we have come to realize that as food by the fungi which in return provide the plant with mutualisms are the foundation of most ecosystems (Figure 1). scavenged water and minerals. Dispersive mutualism involves For instance, in terrestrial systems, plants interact with a variety one partner species distributing gametes, offspring, or indi- of species that help in the procurement of nutrients, the dis- viduals of another species in return for a resource. The persal of pollen and seeds, and defense against herbivores. In diversification of angiosperm plants is partly attributed to their aquatic systems, coral and their symbiotic algae build the ex- mutualism with pollinating insects that act as directed pollen tensive reef ecosystems that harbor much of the ocean’s bio- dispersal agents (Grimaldi, 1999). Likewise, plants also often diversity. Furthermore, mutualisms involve a taxonomically trade food rewards with a diversity of mammals, birds, and diverse set of species, occur in every environment, and occur insects that inadvertently disperse plant seeds. Lastly, defensive among highly mobile free-living species as well as those that mutualism involves one species defending another in ex- live on or within other species. For this reason, many add- change for resources and/or a place to live. For example, itional terms have been synonymized with mutualism such as ants protect acacia plants from
Recommended publications
  • Stink Bug Management with Trap Cropping
    Stink Bug Management With Trap Cropping Dr. Russell F. Mizell, III Professor of Entomology University of Florida 155 Research Rd, Quincy, FL 32351 [email protected] ufinsect.ifas.ufl.edu 4 Major Species of Stink & Leaffooted Bugs In Southeast Euschistus servus Nezara viridula Chinavia hilaris (was Acrosternum hilare) Leptoglossus phyllopus Other Common Phytophagous Stink Bugs Euschistus Thyanta Banasa Oebelus Proxys Brochymena *Piezodorus dpughphoto *Halyomorpha *Megacopta *New invasive species-bad Common Stink Bug Immature Life Stages Stink Bug Morphology By Sex (Euschistus servus) Female Male Other True Bugs Largus succinctus L. Acanthocephala femorata Predacious Stink Bugs & Other Good Bugs From lower left: Alcaeorrhynchus grandis Podisus maculiventris Euthyrhychus floridanus Apiomerus floridensis Phytophagous vs Predacious Plant feeder Predator ‘phytophagous’ Stink Bug Natural Enemies Wasp Egg Parasites & Tachinid Flies Some Commonalities • Overwinter as adults – most species • Polyphagous – >1 host plant species • Food suitability is ‘qualitative’ • Move through the landscape to find • Respond to vegetation structure Some Commonalities • Have common natural enemies • Highly tolerant to insecticides • Relatively little knowledge for some spp. • Other tools not available – big problem! • Incremental approach required =IPM Strategy: Manage Biodiversity via Vegetation-for Profit • Cover crops • Intercrops, polyculture • Shelter belts, hedgerows • Trap crops • Outside orchard influences – crops, etc. • Spatial configurations? Landscape!
    [Show full text]
  • Origin of a Complex Key Innovation in an Obligate Insect–Plant Mutualism
    Origin of a complex key innovation in an obligate insect–plant mutualism Olle Pellmyr*† and Harald W. Krenn‡ *Department of Biology, Vanderbilt University, Box 1812 Station B, Nashville, TN 37235; and ‡Department of Evolutionary Biology, Institute of Zoology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved January 30, 2002 (received for review November 2, 2001) Evolutionary key innovations give organisms access to new eco- cles to propose a possible developmental genetic basis for the logical resources and cause rapid, sometimes spectacular adaptive trait. radiation. The well known obligate pollination mutualism between yuccas and yucca moths is a major model system for studies of The Function of the Tentacles. The pollinating yucca moth genera coevolution, and it relies on the key innovation in the moths of Tegeticula and Parategeticula constitute a monophyletic group complex tentacles used for pollen collecting and active pollination. within the Prodoxidae (Fig. 1). Jointly they contain at least 25 These structures lack apparent homology in other insects, making extant species (5), two of which are derived nonpollinating them a rare example of a novel limb. We performed anatomical and Tegeticula species that oviposit into yucca fruit created by behavioral studies to determine their origin and found evidence of coexisting pollinator species (16). The sister group Prodoxus a remarkably simple mechanism. Morphological analyses of the coexists with the pollinators on yuccas but feed as larvae on plant tentacles and adjacent mouthparts in pollinators and closely re- parts other than the seeds. Their radiation was thus directly lated taxa showed that the tentacle appears abruptly in female facilitated by the pollinator radiation.
    [Show full text]
  • CITES Orchid Checklist Volumes 1, 2 & 3 Combined
    CITES Orchid Checklist Online Version Volumes 1, 2 & 3 Combined (three volumes merged together as pdf files) Available at http://www.rbgkew.org.uk/data/cites.html Important: Please read the Introduction before reading this Part Introduction - OrchidIntro.pdf Part I : All names in current use - OrchidPartI.pdf Part II: Accepted names in current use - OrchidPartII.pdf (this file) - please read the introduction file first Part III: Country Checklist - OrchidPartIII.pdf For the genera: Aerangis, Angraecum, Ascocentrum, Bletilla, Brassavola, Calanthe, Catasetum, Cattleya, Constantia, Cymbidium, Cypripedium, Dendrobium (selected sections only), Disa, Dracula, Encyclia, Laelia, Miltonia, Miltonioides, Miltoniopsis, Paphiopedilum, Paraphalaenopsis, Phalaenopsis, Phragmipedium, Pleione, Renanthera, Renantherella, Rhynchostylis, Rossioglossum, Sophronitella, Sophronitis Vanda and Vandopsis Compiled by: Jacqueline A Roberts, Lee R Allman, Sharon Anuku, Clive R Beale, Johanna C Benseler, Joanne Burdon, Richard W Butter, Kevin R Crook, Paul Mathew, H Noel McGough, Andrew Newman & Daniela C Zappi Assisted by a selected international panel of orchid experts Royal Botanic Gardens, Kew Copyright 2002 The Trustees of The Royal Botanic Gardens Kew CITES Secretariat Printed volumes: Volume 1 first published in 1995 - Volume 1: ISBN 0 947643 87 7 Volume 2 first published in 1997 - Volume 2: ISBN 1 900347 34 2 Volume 3 first published in 2001 - Volume 3: ISBN 1 84246 033 1 General editor of series: Jacqueline A Roberts 2 Part II: Accepted Names / Noms Reconnu
    [Show full text]
  • Satranala Decussilvae Dypsis Fanjana Status: Endangered (IUCN 2007) 1St Photograph of Fructification Known on Two Sites Only Photo C.Wattier
    The ongoing story of Ambodiriana forest in Madagascar a representative case-study of in situ conservation Jean-Michel Hervouet Chantal Misandeau President of Société Française President of d’Orchidophilie (SFO) Association Des Amis de la Vice-president of ADAFAM Forêt d’Ambodiriana à Manompana (ADAFAM) Photo Gérard Leclerc Deforestation in Madagascar The early years of Ambodiriana forest protection (1996-2013) Orchids of Ambodiriana Recent events (2013-2018) and future? Why deforestation in Madagascar? •Slash and burn (tavy) •Charcoal •Logging: now mostly illegal Rare woods: Ebony – Rosewood - Palisander Photo Adefa Yet the forest is a traditional resource for the people in the East coast of Madagascar •Housing: traditionally in wood in this area •Cooking: charcoal •Food: animals, vegetables, fruits, etc. The traditional custom in the East coast: Wood belongs to who cuts it Land belongs to who clears it Photo Adefa Fires and smoke along the Ankaratra mountains of Madagascar The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Aqua satellite picked up the heat signatures of fires (red NASA image courtesy Jeff Schmaltz, MODIS areas) and smoke on Rapid Response Team. October 25, 2011 at Caption by Rob Gutro, 10:45 UTC (6:45 a.m. NASA's Goddard EDT). These are mostly Space Flight Center agricultural fires. Humid tropical forest of the East coast of Madagascar… Mananara National Park Verezanantsoro sector 8 December 2007 Manjakatompo forest reserve 22 February 2011 An example of illegal logging… Rosewood (Dalbergia sp.) Masoala National Park 250 000 ha « protected » 100 to 200 trees logged daily 7 containers of 30 tons per day Photos ©Tobias Smith/EIA/Global Witness Madagascar tries to dispose of seized stockpiles of illegally logged rosewood.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Aerangis Articulata by Brenda Oviatt and Bill Nerison an Exquisite Star from Madagascar
    COLLECTor’s item by Brenda Oviatt and Bill Nerison Aerangis articulata An Exquisite Star from Madagascar IN ALL HONESTY, WHEN WE FOUND out that our photo of Aerangis articulata was chosen for the cover of Isobyl la Croix’s (2014) new book Aerangis, we were more than just a little excited! We decided that this is a perfect opportunity to tell people more about Aergs. articulata and give an introduction to her new book. We will try and help clarify the confusion surrounding the identification of this species, describe what to look for if you intend to buy one and discuss culture to help you grow and bloom it well. We love angraecoids, and the feature that most share and what sets them apart is their spurs or nectaries. In some orchid species, attracting the pollinator is all about fooling someone (quite often an insect). Some will mimic a female insect while others will mimic another type of flower to attract that flower’s pollinator. Oftentimes the u n s u s p e c t i n g insect gets nothing in return; not the promised mate or the nectar of the Brenda Oviatt and mimicked flower. Bill Nerison With angraecoids, the pollinator is often rewarded with a sweet treat: nectar that sits in the bottom of the spur. The pollinator of Aergs. articulata is a hawk moth (DuPuy, et al 1999) whose proboscis can reach that nectar. These moths are attracted by the sweet nighttime fragrance TT (scented much like a gardenia) and by the A VI O white flower (more visible than a colored A D flower in the dark).
    [Show full text]
  • University of Mysore
    Biodata of Dr. N. B. RAMACHANDRA Ph.D, FASc PROFESSOR, AND PRINCIPAL INVESTIGATOR Chairman - Department of Studies in Genetics and Genomics Chairman- Board of Studies in Genetics and Genomics Deputy Coordinator for UGC-SAP (CAS-1), DOS in Zoology Director- University of Mysore Genome Centre (Local Secretary - 103rd Indian Science Congress 2016 Former Chairman-Board of Studies in Zoology (UG&PG) & BOS in Clinical Research & Clinical Data Management) University of Mysore, Manasagangotri, Mysuru – 570 006, INDIA [email protected] / [email protected] http://scholar.google.co.in/citations?user=CBqZv1oAAAAJ http://www.ramachandralab.com/ Phone: 0821-2419781/888 (O) ; Mobile: 09880033687 1. Date of Birth: 31.05.1958 2. Educational Qualification: 1982-88: Ph.D. in Zoology, Department of Zoology, University of Mysore, INDIA. Thesis title: "Contributions to population cytogenetics of Drosophila: Studies on interracial hybridization and B-chromosomes". 1980-82: M.Sc. in Zoology, 1st Class with 2nd Rank, University of Mysore, Mysore. 1977-80: B.Sc. (Chemistry, Botany, and Zoology), 1st class, Cauvery College, Gonicoppal, University of Mysore, INDIA. 3. Area of Specialization: 1) Drosophila Genetics and Evolution 2) Human Genetic Diseases and Genomics 4. Awards/ Recognitions: Sl.No. Year Recognition Institution “Best boy of the college” Cauvary College, Gonicoppal, Univ. 1 1980 award of Mysore. 2 1982 II Rank in M.Sc DOS in Zoology, Univ. of Mysore. Government of India Nehru Department of Biological sciences, 3 1990 Centenary British Fellowship Warwick University, Coventry, United (common wealth) Award Kingdom (not availed). 1990 - McMaster University, Department of 4. 1992 Post Doctoral Fellow Award Biochemistry, Canada University of California, Department of 1999- Senior Research Associate 5 Cell Molecular and Developmental 2000 II award Biology, Los Angeles, USA VISITING PROFESSOR- to Dept.
    [Show full text]
  • Analysis of Drosophila Buzzatii Transposable Elements Doctoral
    Analysis of Drosophila buzzatii transposable elements Doctoral Thesis Nuria Rius Camps Departament de Genetica` i de Microbiolog`ıa, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain Memoria` presentada per la Llicenciada en Biologia Nuria Rius Camps per a optar al grau de Doctora en Genetica.` Nuria Rius Camps Bellaterra, a 23 de novembre de 2015 El Doctor Alfredo Ruiz Panadero, Catedratic` del Departament de Genetica` i Microbiologia de la Fac- ultat de Biociencies` de la Universitat Autonoma` de Barcelona, CERTIFICA que Nuria Rius Camps ha dut a terme sota la seva direccio´ el treball de recerca realitzat al Departament de Genetica` i Microbiologia de la Facultat de Biociencies` de la Universitat Autonoma` de Barcelona que ha portat a l’elaboracio´ d’aquesta Tesi Doctoral titulada “Analysis of Drosophila buz- zatii transposable elements”. I perque` consti als efectes oportuns, signa el present certificat a Bellaterra, a 23 de novembre de 2015 Alfredo Ruiz Panadero I tell you all this because it’s worth recognizing that there is no such thing as an overnight success. You will do well to cultivate the resources in yourself that bring you happiness outside of success or failure. The truth is, most of us discover where we are headed when we arrive. At that time, we turn around and say, yes, this is obviously where I was going all along. It’s a good idea to try to enjoy the scenery on the detours, because you’ll probably take a few. (Bill Watterson) CONTENTS Abstract iii Resumen v 1. Introduction 1 1.1. Transposable elements .......................... 1 1.1.1.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Generalized Olfactory Detection of Floral Volatiles in the Highly Specialized Greya-Lithophragma Nursery Pollination System
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Generalized olfactory detection of floral volatiles in the highly specialized Greya-Lithophragma nursery pollination system Schiestl, Florian P ; Wallin, Erika A ; Beck, John J ; Friberg, Magne ; Thompson, John N Abstract: Volatiles are of key importance for host-plant recognition in insects. In the pollination system of Lithophragma flowers and Greya moths, moths are highly specialized on Lithophragma, in whichthey oviposit and thereby pollinate the flowers. Floral volatiles in Lithophragma are highly variable between species and populations, and moths prefer to oviposit into Lithophragma flowers from populations of the local host species. Here we used gas chromatography coupled with electroantennographic detection (GC-EAD) to test whether Greya moths detect specific key volatiles or respond broadly to many volatiles of Lithophragma flowers. We also addressed whether olfactory detection in Greya moths varies across populations, consistent with a co-evolutionary scenario. We analyzed flower volatile samples from three different species and five populations of Lithophragma occurring across a 1400 km range intheWestern USA, and their sympatric female Greya politella moths. We showed that Greya politella detect a broad range of Lithophragma volatiles, with a total of 23 compounds being EAD active. We chemically identified 15 of these, including the chiral 6, 10, 14-trimethylpentadecan-2-one (hexahydrofarnesyl acetone), which was not previously detected in Lithophragma. All investigated Lithophragma species produced the (6R, 10R)-enantiomer of this compound. We showed that Greya moths detected not only volatiles of their local Lithophragma plants, but also those from allopatric populations/species that they not encounter in local populations.
    [Show full text]
  • Chapter 15 Comparative Phylogeography of North- Western North America: a Synthesis
    Chapter 15 Comparative phylogeography of north- western North America: a synthesis S. J. Brunsfeld,* J. Sullivan,†D. E. Soltis‡and P. S. Soltis§ Introduction Phylogeography is concerned with the principles and processes that determine the geographic distributions of genealogical lineages, within and among closely related species (Avise et al. 1987;Avise 2000).Although this field of study is very new (only a little more than a decade has passed since the term ‘phylogeography’was first coined; see Avise et al. 1987),the scientific literature in this research area is now voluminous. To date, most phylogeographic investigations of natural populations have focused on muticellular animals (Hewitt 1993; Patton et al. 1994; daSilva & Patton 1998; Eizirik et al. 1998;Avise 2000; Hewitt 2000; Schaal & Olsen 2000; Sullivan et al. 2000). This bias is due in large part to the ready availability of population-level genetic markers afforded by the animal mitochondrial genome. The more slowly evolving chloroplast genome,in contrast,often does not provide sufficient variation to reconstruct phylogeny at the populational level (Soltis et al. 1997; Schaal et al. 1998; Schaal & Olsen 2000). Phylogeographic data have accumulated so rapidly for animal taxa that it has been possible to compare phylogeographic structure among codistributed species. In fact, one of the most profound recent contributions of molecular phylogeography is the construction of regional phylogeographic perspec- tives that permit comparisons of phylogeographic structure among codistributed species, and subsequent integration of genealogical data with independent biogeo- graphic and systematic data. Probably the best-known regional phylogeographic analysis for North America involves animals from the southeastern USA (reviewed in Avise 2000).
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]