Jadeite in Shocked Meteorites and Its Textural Variations

Total Page:16

File Type:pdf, Size:1020Kb

Jadeite in Shocked Meteorites and Its Textural Variations Journal of Mineralogical and Petrological Sciences, Volume 112, page 247–255, 2017 REVIEW Jadeite in shocked meteorites and its textural variations Eiji OHTANI*,**, Shin OZAWA* and Masaaki MIYAHARA*** *Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980–8578, Japan **V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia ***Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi–Hiroshima 739–8526, Japan Jadeite occurs as the shocked product of albite feldspar in shocked meteorites, and is one of the most common high–pressure polymorphs in shock–melt veins of meteorites. The characteristic textures of jadeite in shocked ordinary chondrites show that some of jadeite crystals were formed from originally albite feldspar by a solid– state transformation and some were crystallized from a shock–induced albite melt. Based on these textures of jadeite together with the other high–pressure mineral assemblages and their crystallization kinetics, we can estimate the impact conditions such as impact velocity and parent–body size. Keywords: Jadeite, Ordinary chondrite, Shocked meteorite, Crystallization, Solid–state transformation INTRODUCTION polymorph. The phase diagram of albite based on the stat- ic high–pressure and high–temperature experiments indi- Shocked meteorites contain high–pressure polymorphs of cates that albite transforms to NaAlSi3O8 with hollandite– constituent minerals, such as high–pressure polymorphs structure (lingunite) or CaFe2O4–type NaAlSiO4 + stisho- of olivine, pyroxene, feldspar, and silica minerals. Such vite subsequent to jadeite + SiO2 assemblages with in- high–pressure polymorphs were formed by collisions in creasing pressure and temperature (e.g., Holland, 1980; the early solar system and the impact events on the sur- Yagi et al., 1994; Liu, 2006; Tutti, 2007). Jadeite occurs faces of Mars and Moon. Recent discoveries of new as the shocked product of albite feldspar, and is one of the high–pressure polymorphs (e.g., El Goresy et al., 2000; most common high–pressure polymorphs in shocked me- Hollister et al., 2014; Bindi et al., 2017; Litasov and teorites. Jadeite and tissintite, Ca–bearing isostructural Podgornykh, 2017) drastically increased the number of phase of jadeite, have been discovered in six different meteorite types containing high–pressure polymorphs types of meteorites with the compositions close to basalt. since early 2000s. Figure 1 shows the classification tree Jadeite was reported in H, L, and LL ordinary chondrites of meteorites. The meteorite groups containing high– (e.g., Ohtani et al., 2004; Miyahara et al., 2013; Ozawa et pressure polymorphs are shown as the shaded boxes in al., 2014) and CB group carbonaceous chondrite (Miya- this figure. Now we can see 13 groups of meteorites con- hara et al., 2015). Whereas, shergottite and eucrite contain tain high–pressure polymorphs. tissintite which is the isostructural phase of jadeite con- Albite is one of the major constituents of ordinary taining Ca in its structure (Ma et al., 2015; Pang et al., chondrites. Some albite grains become maskelynite in 2016). Identification of jadeite in meteorites has been shocked ordinary chondrites. Albite grains entrained in made by using micro–Raman spectroscopy. The typical or adjacent to the shock–melt veins of these meteorites Raman spectrum of jadeite in the shock melt vein of Che- experienced both high–pressure and high–temperature lyabinsk LL5 ordinary chondrite measured with a micro– conditions due to localized frictional heating during the Raman spectrometer (JASCO NRS–5100) is shown in shock events. Accordingly, albite entrained in or adjacent Figure 2. to the shock–melt veins transformed into its high–pressure Two distinct textures, i.e., the solid state transforma- tion and crystallization from the melt, have been ob- doi:10.2465/jmps.170329 served as the high pressure polymorphs of minerals in- E. Ohtani, [email protected] Corresponding author cluding jadeite, olivine, low–Ca pyroxene, and garnet. 248 E. Ohtani, S. Ozawa and M. Miyahara Figure 1. Meteorite classification tree. That presented by Weisberg et al. (2006) was modified in this figure. Meteorite types including high– pressure polymorphs are shadowed. Meteorite types including jadeite (or tissintite) are highlighted with a dark shadow (CB, H, L, LL, SHE, EUC). URE, ureilite; BRA, brachinite; ACA, acapulcoite; LOD, lodranite; WIN, winonaite; SHE, shergottite; NAK, nakhlite; CHA, chas- signite; OPX, orthopyroxenite; ANG, angrite; AUB, aubrite; EUC, eucrite; DIO, diogenite; HOW, howardite; MES, mesosiderite; MG PAL, main–group pallasite; ES PAL, Eagle Station pallasite; PP PAL, pyroxene pallasite. The contrasting textures are observed in olivine in differ- ning electron microscopy (SEM), transmission electron ent L6 chondirites (Ohtani et al., 2004, 2006). microscopy (TEM) and X–ray diffraction (XRD). Differ- Olivine crystals existing along the shock–melt veins ent textures of formation of jadeite with or without silica in Yamato (Y)–791384 L6 chondrite contain ringwoodite and lingunite from albite feldspar has been reported in with a lamellar texture. The lamellar texture indicates that many previous studies. These phase assemblages record ringwoodite was formed by the solid–state transformation the pressure and temperature conditions during the shock with a mechanism of the coherent nucleation and suc- event occurred on its parent–body. Here, we review the ceeding incoherent nucleation (Ohtani et al., 2004; Miya- recent works on textures of jadeite in several shocked hara et al., 2010). On the other hand, wadsleyite–ring- meteorites, and discuss the pressure and temperature con- woodite assemblage occurred in the shock–melt veins ditions during the shock events for formation of jadeite of Allan hills (ALH) 78003 and Peace River L6 ordinary with different textures. chondrites, indicating overgrowth in the melt at high– pressure (Ohtani et al., 2006) or fractional crystallization TEXTURAL VARIATIONS OF JADEITE IN from the melt (Miyahara et al., 2008, 2009). SHOCKED METEORITES As mentioned above, jadeite is commonly identified in many kinds of shocked meteorites as a high–pressure Solid–state transformation polymorph formed from albite feldspar. The occurrence of jadeite in shocked meteorites has been investigated in Kimura et al. (2000) confirmed the existence of jadeite in detail by using laser micro–Raman spectroscopy, scan- albite feldspar grains entrained in or adjacent to the shock– Jadeite in shocked meteorites 249 melt veins of Y–74445 L6 ordinary chondrite (Ozawa et al., 2009). Original albite feldspar (Ab83–85An10Or5–7) grains entrained in the shock–melt veins of Y–74445 transformed into jadeite and lingunite without any crys- talline silica phases. The lamellar intergrowth of jadeite and lingunite indicates these phases were formed by the solid state transformation. Jadeite crystallite assemblages contain many ‘particle–like’ materials as shown in Figure 3B. Ozawa et al. (2009) described that the ‘particle–like’ material was silica–rich amorphous material, and pro- posed that original albite feldspar transformed to jadeite and the amorphous material. Similar jadeite crystallite assemblages were also observed in the albite feldspar (Ab83–85An10Or5–7) grains entrained in the shock–melt veins of Sahara 98222 L6 ordinary chondrite (Ozawa et al., 2009). Numerous particle–like or stinger–like materi- als occurred coexisting with jadeite in the albite feldspar grains of Sahara 98222. Their typical textures are shown in Figure 4. Ozawa et al. (2009) suggested that the parti- Figure 2. A typical Raman spectrum of jadeite from Chelyabinsk – – LL5 ordinary chondrite (Ozawa et al., 2014) measured with a cle like and stringer like materials may be composed of micro–Raman spectrometer (JASCO NRS–5100). Ol, Raman silica–rich amorphous materials. Further detail investiga- peaks of neighboring olivine. tion on jadeite in shocked ordinary chondrites was con- ducted using focused ion beam (FIB)–assisted TEM and XRD patterns together with FE–SEM and Raman spec- melt veins of Yamato (Y)–75100 H6 ordinary chondrite troscopy. Miyahara et al. (2013) investigated jadeite oc- using a laser micro–Raman spectroscopy for the first time. curring in the albite feldspar (Ab84–86An9–10Or5–7 in Y– When jadeite is formed by the decomposition reaction of 791384; Ab80–81An13–14Or5–6 in Y–75100) grains entrain- albite, silica phase should be accompanied with jadeite ed in or adjacent to the shock–melt veins of Y–791384 L6 based on the composition of albite; i.e., albite (NaAlSi3 and Y–75100 H6 ordinary chondrites. Synchrotron XRD O8) → jadeite (NaAlSi2O6) + silica (SiO2) (e.g., Birch patterns and TEM observations revealed that the albite and LeCompte, 1960; Boyd and England, 1963). Y– feldspar grains contain jadeite and residual amorphous 75100 also contains wadsleyite, lingunite and majorite– (or poorly–crystallized) materials. pyrope solid–solution as high–pressure polymorphs, indi- Kubo et al. (2010) conducted in situ X–ray diffrac- cating that the peak shock pressure condition exceeded ~ tion measurements of two kinds of feldspar (albite and 15 GPa based on the stability fields of the high–pressure labradorite) under the conditions of high–pressure and assemblages (Kimura et al., 2000). Considering the shock high–temperature below the liquidus temperature of the pressure conditions recorded in the shock–melt
Recommended publications
  • Formation Mechanisms of Ringwoodite: Clues from the Martian Meteorite
    Zhang et al. Earth, Planets and Space (2021) 73:165 https://doi.org/10.1186/s40623-021-01494-1 FULL PAPER Open Access Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705 Ting Zhang1,2, Sen Hu1, Nian Wang1,2, Yangting Lin1* , Lixin Gu1,3, Xu Tang1,3, Xinyu Zou4 and Mingming Zhang1 Abstract Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The frst two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor- phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post- shock pressure of 14–16 GPa and a temperature of 1650–1750 °C.
    [Show full text]
  • 50 Years of Petrology
    spe500-01 1st pgs page 1 The Geological Society of America 18888 201320 Special Paper 500 2013 CELEBRATING ADVANCES IN GEOSCIENCE Plates, planets, and phase changes: 50 years of petrology David Walker* Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA ABSTRACT Three advances of the previous half-century fundamentally altered petrology, along with the rest of the Earth sciences. Planetary exploration, plate tectonics, and a plethora of new tools all changed the way we understand, and the way we explore, our natural world. And yet the same large questions in petrology remain the same large questions. We now have more information and understanding, but we still wish to know the following. How do we account for the variety of rock types that are found? What does the variety and distribution of these materials in time and space tell us? Have there been secular changes to these patterns, and are there future implications? This review examines these bigger questions in the context of our new understand- ings and suggests the extent to which these questions have been answered. We now do know how the early evolution of planets can proceed from examples other than Earth, how the broad rock cycle of the present plate tectonic regime of Earth works, how the lithosphere atmosphere hydrosphere and biosphere have some connections to each other, and how our resources depend on all these things. We have learned that small planets, whose early histories have not been erased, go through a wholesale igneous processing essentially coeval with their formation.
    [Show full text]
  • The Akimotoite–Majorite–Bridgmanite Triple Point Determined in Large Volume Press and Laser-Heated Diamond Anvil Cell
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2019 doi:10.20944/preprints201912.0177.v1 Peer-reviewed version available at Minerals 2020, 10, 67; doi:10.3390/min10010067 Article The Akimotoite–Majorite–Bridgmanite Triple Point Determined in Large Volume Press and Laser-Heated Diamond Anvil Cell Britany L. Kulka1, Jonathan D. Dolinschi1, Kurt D. Leinenweber2, Vitali B. Prakapenka3, and Sang-Heon Shim1 1 School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA 2 Eyring Materials Center, Arizona State University, Tempe, Arizona, USA 3 GeoSoilEnviroCars, University of Chicago, Chicago, Illinois 60439, USA * Correspondence: [email protected] Abstract: The akimotoite–majorite–bridgmanite (Ak–Mj–Bm) triple point in MgSiO3 has been measured in large-volume press (LVP; COMPRES 8/3 assembly) and laser-heated diamond anvil cell (LHDAC). For the LVP data, we calculated pressures from the calibration by Leinenweber et al. [1]. For the LHDAC data, we conducted in situ determination of pressure at high temperature using the Pt scale by Dorogokupets and Dewaele [2] at synchrotron. The measured temperatures of the triple point are in good agreement between LVP and LHDAC at 1990–2000 K. However, the pressure for the triple point determined from the LVP is 3.9±0.6 GPa lower than that from the LHDAC dataset. The triple point determined through these experiments will provide an important reference point in the pressure-temperature space for future high-pressure experiments and allow mineral physicists to compare the pressure–temperature conditions measured in these two different experimental methods. Keywords: triple point; bridgmanite; akimotoite; majorite; large-volume press; laser-heated diamond anvil cell 1.
    [Show full text]
  • Discovery of Bridgmanite, the Most Abundant Mineral in Earth
    RESEARCH | REPORTS 23. A. Cassie, S. Baxter, . Trans. Faraday Soc. 40,546–551 (1944). 28. Materials and methods are available as supplementary materials. C.-J.K. and T.L. have filed a patent on this work 24. T. Liu, C.-J. Kim, in Proceedings of the International Conference materials on Science Online. (“Liquid-repellent surface made of any materials,” International on Solid State Sensors, Actuators and Microsystems 29. These liquids are commonly used for applications such as Application no. PCT/US2014/57797). (Transducers’13), Barcelona, Spain, 16 to 20 June 2013 electrochemistry, fuel cells, integrated circuits fabrication, (IEEE, Piscataway, NJ, 2013). microfluidic systems, heat transfer, etc. SUPPLEMENTARY MATERIALS 25. Y. Ma, X. Cao, X. Feng, Y. Ma, H. Zou, Polymer (Guildf.) 48, www.sciencemag.org/content/346/6213/1096/suppl/DC1 7455–7460 (2007). ACKNOWLEDGMENTS Materials and Methods 26. R. Hensel et al., Langmuir 29, 1100–1112 (2013). C.-J.K. was encouraged by D. Attinger to start this research. Supplementary Text 27. This general definitions of f and f follow Cassie and Baxter’s T.L. acknowledges W. Choi and K. Ding for discussion of the s g Figs. S1 to S9 original paper (23), which included all of the nonflat (e.g., fabrication, L.-X. Huang for assistance with high-speed imaging, Tables S1 and S2 rough, curved) effects on the liquid-solid and liquid-vapor and K. Shih for help with roll-off angle measurements. C.-J.K. References (30–36) interface. In addition to the most simplified version of flat and T.L. thank an anonymous referee for advice on the biofouling Movies S1 to S7 liquid-solid and flat liquid-vapor interfaces, which results in test; D.
    [Show full text]
  • Impact Shock Origin of Diamonds in Ureilite Meteorites
    Impact shock origin of diamonds in ureilite meteorites Fabrizio Nestolaa,b,1, Cyrena A. Goodrichc,1, Marta Moranad, Anna Barbarod, Ryan S. Jakubeke, Oliver Christa, Frank E. Brenkerb, M. Chiara Domeneghettid, M. Chiara Dalconia, Matteo Alvarod, Anna M. Fiorettif, Konstantin D. Litasovg, Marc D. Friesh, Matteo Leonii,j, Nicola P. M. Casatik, Peter Jenniskensl, and Muawia H. Shaddadm aDepartment of Geosciences, University of Padova, I-35131 Padova, Italy; bGeoscience Institute, Goethe University Frankfurt, 60323 Frankfurt, Germany; cLunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058; dDepartment of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; eAstromaterials Research and Exploration Science Division, Jacobs Johnson Space Center Engineering, Technology and Science, NASA, Houston, TX 77058; fInstitute of Geosciences and Earth Resources, National Research Council, I-35131 Padova, Italy; gVereshchagin Institute for High Pressure Physics RAS, Troitsk, 108840 Moscow, Russia; hNASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, TX 77058; iDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy; jSaudi Aramco R&D Center, 31311 Dhahran, Saudi Arabia; kSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland; lCarl Sagan Center, SETI Institute, Mountain View, CA 94043; and mDepartment of Physics and Astronomy, University of Khartoum, 11111 Khartoum, Sudan Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved August 12, 2020 (received for review October 31, 2019) The origin of diamonds in ureilite meteorites is a timely topic in to various degrees and in these samples the graphite areas, though planetary geology as recent studies have proposed their formation still having external blade-shaped morphologies, are internally at static pressures >20 GPa in a large planetary body, like diamonds polycrystalline (18).
    [Show full text]
  • Spherulitic Aphyric Pillow-Lobe Metatholeiitic Dacite Lava of the Timmins Area, Ontario, Canada: a New Archean Facies Formed from Superheated Melts
    ©2008 Society of Economic Geologists, Inc. Economic Geology, v. 103, pp. 1365–1378 Spherulitic Aphyric Pillow-Lobe Metatholeiitic Dacite Lava of the Timmins Area, Ontario, Canada: A New Archean Facies Formed from Superheated Melts E. DINEL, B. M. SAUMUR, AND A. D. FOWLER,† Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, Canada K1N 6N5 and Ottawa Carleton Geoscience Centre Abstract Fragmental rocks of the V10 units of the Vipond Formation of the Tisdale assemblage previously have been identified as pillow basalts, but many samples are shown to be intermediate-to-felsic in character, likely tholei- itic dacite in composition. Specifically, the V10b unit is mapped as a pillow-lobe dacite. Aside from being more geochemically evolved in terms of their “immobile” trace elements, these rocks differ from typical pillow basalts in that they have more abundant primary breccia and hyaloclastite. The pillow lobes are contorted, hav- ing been folded in a plastic state and are zoned, typically having a spherulite-rich core. Moreover, the flows are aphyric, interpreted to mean that they were erupted in a superheated state. This along with their pillow-lobe nature demonstrates that they were erupted as relatively low-viscosity melts for such silicic compositions. In- teraction with water quenched the outer pillow lobe and contributed to the formation of the abundant brec- cia. The fact that the melt was crystal and microlite free inhibited crystal growth, such that the bulk of the lobes were quenched to crystal-free glass. Nucleation occurred only in the cores, where cooling rates were lower in comparison to the medial and exterior areas of the pillow lobes, although in the cores crystal growth rates were high so that abundant spherulite formation took place.
    [Show full text]
  • Ultrafast Growth of Wadsleyite in Shock-Produced Melts and Its Implications for Early Solar System Impact Processes
    Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes Oliver Tschaunera,b, Paul D. Asimowb, Natalya Kostandovab, Thomas J. Ahrensb,c,1, Chi Mab, Stanislas Sinogeikind, Zhenxian Liue, Sirine Fakraf, and Nobumichi Tamuraf aHigh Pressure Science and Engineering Center, Department of Physics, University of Nevada, Las Vegas, NV 89154; bDivision of Geological and Planetary Sciences, and cLindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125; dHigh Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439; eGeophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015; and fAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Thomas J. Ahrens, June 17, 2009 (sent for review June 20, 2008) We observed micrometer-sized grains of wadsleyite, a high-pres- induced melt veins of meteorites. Seconds- to minutes-long sure phase of (Mg,Fe)2SiO4, in the recovery products of a shock high-pressure durations are not achievable in laboratory-scale experiment. We infer these grains crystallized from shock-gener- shock experiments, which is generally considered one of the ated melt over a time interval of <1 ␮s, the maximum time over principal reasons for the failure to recover these phases in which our experiment reached and sustained pressure sufficient to experiments (12, 20, 25). If long shock durations are in
    [Show full text]
  • Akimotoite to Perovskite Phase Transition in Mgsio3 R
    GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L10611, doi:10.1029/2004GL019704, 2004 Akimotoite to perovskite phase transition in MgSiO3 R. M. Wentzcovitch,1 L. Stixrude,2 B. B. Karki,1,3 and B. Kiefer2,4 Received 11 February 2004; revised 6 April 2004; accepted 22 April 2004; published 25 May 2004. [1] The akimotoite to perovskite phase transition of [3] The slope of a phase boundary is determined by the MgSiO3 is shown by first principles calculations to have Clausius-Clapeyron equation a negative Clapeyron slope, consistent with experimental observations. The origin of the negative slope, i.e., the dP DS ¼ : ð1Þ increase of entropy across the transformation, can be dT DV attributed to the larger density of states of low frequency vibrations in the perovskite phase. Such vibrations consist It is the sign of the entropy change DS that determines this of 1) magnesium displacements and 2) octahedral rotations, slope since DV and dP invariably have opposite signs. with the larger magnesium coordination and larger Mg-O Systematic investigations of phase transformations have bond lengths, as well as a lower degree of polyhedral lead to the rationalization of such entropy changes in connectivity accounting for the existence of low frequency different classes of materials [Navrotsky, 1980]. The entropy modes. The larger density of states in perovskite in this may increase across a transformation when there is an regime accounts also for the increase in other thermodynamic increase in configurational disorder, the development of properties across the phase transition. This ab initio solid-electrolyte behavior, an increase in electronic density calculation of a solid-solid phase boundary provides new of states at the Fermi level, a decrease in directional insights into our ability to predict high pressure-temperature bonding, or an increase in coordination.
    [Show full text]
  • Spherulite Formation in Obsidian Lavas in the Aeolian Islands, Italy
    1 Spherulite formation in obsidian lavas in the Aeolian Islands, Italy 2 Running title: Spherulites in obsidian lavas, Aeolian Islands 3 4 Liam A. Bullocka, b*, Ralf Gertissera, Brian O’Driscolla, c 5 6 a) School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG, UK 7 b) Dept. of Geology & Petroleum Geology, Meston Building, University of Aberdeen, King’s College, 8 Aberdeen, AB24 3UE, UK 9 c) School of Earth and Environmental Science, University of Manchester, Williamson Building, Oxford 10 Road, Manchester, M13 9PL, UK 11 12 *Corresponding author. 13 Email [email protected] 14 15 16 ABSTRACT 17 Spherulites in obsidian lavas of Lipari and Vulcano (Italy) are characterised by spatial, textural and geochemical 18 variations, formed by different processes across flow extrusion and emplacement. Spherulites vary in size from 19 <1 mm to 8 mm, are spherical to elongate in shape, and show variable radial interiors. Spherulites occur 20 individually or in deformation bands, and some are surrounded by clear haloes and brown rims. Spherulites 21 typically contain cristobalite (α, β) and orthoclase, titanomagnetite and rhyolitic glass, and grew over an average 22 period of 5 days. 23 Heterogeneity relates to formation processes of spherulite ‘types’ at different stages of cooling and 24 emplacement. Distinct populations concentrate within deformation structures or in areas of low shear, with 25 variations in shape and internal structure. CSD plots show differing size populations and growth periods. 26 Spherulites which formed at high temperatures show high degree of elongation, where deformation may have 27 triggered formation. Spherulites formed at mid-glass transition temperatures are spherical, and all spherulites are 28 modified at vapour-phase temperatures.
    [Show full text]
  • Spherulite Crystallization Induces Fe-Redox Redistribution in Silicic Melt Jonathan M
    Spherulite crystallization induces Fe-redox redistribution in silicic melt Jonathan M. Castro, Elizabeth Cottrell, H. Tuffen, Amelia V. Logan, Katherine A. Kelley To cite this version: Jonathan M. Castro, Elizabeth Cottrell, H. Tuffen, Amelia V. Logan, Katherine A. Kelley. Spherulite crystallization induces Fe-redox redistribution in silicic melt. Chemical Geology, Elsevier, 2009, 268 (3-4), pp.272-280. 10.1016/j.chemgeo.2009.09.006. insu-00442797 HAL Id: insu-00442797 https://hal-insu.archives-ouvertes.fr/insu-00442797 Submitted on 23 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spherulite crystallization induces Fe-redox redistribution in silicic melt Jonathan M. Castro a, Elizabeth Cottrellb, Hugh Tuffenc, Amelia V. Loganb and Katherine A. Kelleyc, d aISTO, UMR 6113 Université d'Orléans-CNRS, 1a rue de la Férollerie, 45071 Orléans cedex 2, France bDepartment of Mineral Sciences, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA cDepartment of Environmental Science, Lancaster University, LA1 4YQ, UK dGraduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA Abstract Rhyolitic obsidians from Krafla volcano, Iceland, record the interaction between mobile hydrous species liberated during crystal growth and the reduction of ferric iron in the silicate melt.
    [Show full text]
  • Transformation of Pyroxene to Akimotoite (Mgsio 3- Ilmenite) in NWA 5011 L6 Chondrite
    EPSC Abstracts Vol. 6, EPSC-DPS2011-792, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Transformation of pyroxene to akimotoite (MgSiO 3- ilmenite) in NWA 5011 L6 chondrite Sz. Nagy (1), I. Gyollai (1), S. Józsa (1), Sz. Bérczi (1), A. Gucsik (2), M. Veres (3) (1) Eötvös University, Budapest, Hungary; (2) Tohoku University, Sendai, Japan; KFKI-SZFKI, Budapest, Hungary 1. Introduction growth solid state transformation. The observed akimotoite aggregates clearly distinguishable from The NWA 5011 L6 type chondrite is a heavily the pyroxene grains. The akimotoite has grayish shocked meteorite. It contains up to 6mm wide shock colour in our sample (Fig. 1). At higher melt veins (SMV). The akimotoite was firstly magnification the akimotoite aggregates show discovered in Tenham chondrite [1]. These shock granular texture. veins attribute high pressure and high temperature to phase transformation its inside and near by its boundary. We found MgSiO 3 ilmenite which clearly distinguish from the pyroxene. This high pressure phase is connecting with ringwoodite and maskelynite environment in the chondritic portion very close to boundary of the shock vein. 2. Sample and Method The NWA 5011 meteorite has unknown fall date. It contains more than 3000 pieces. The major mineralogical components are as follows: olivine, orthoenstatite, plagioclase (mainly presence as maskelynite or lingunite), troilite. The most important accessory is the chromite. The optical Fig. 1. Akimotoite aggregates (ak) in the chondritic observation was done with a Nikon LV100POL portion of NWA 5011. (OM-image, pp-light) microscope, and the structural identification was using Renishaw RM2000 raman spectrometer. The The micro-raman investigation revealed that this lenght of detection time was 120 sec.
    [Show full text]
  • The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
    ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis.
    [Show full text]